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Abstract: In this paper, we define an invariant equivalence relation byusing the groupΓ (2). Then we investigate some combinatorial
properties of subgraphs ofΓ 2.
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1 Introduction

1.1 Motivation

Using the notion of the imprimitive action for an invariant equivalence relation on̂Q by the congruence subgroupΓ0(n),

Jones, Singerman and Wicks obtained suborbital graphs of the modular groupΓ and showed that these graphs are the

generalization of the well-known Farey graph[8]. Then Akbas found certain relationship between the lenghts of circuits

in these graphs and periods of elliptic elements of the groupΓ0(n)[1]. This is important taking into account that the

elliptic elements are one of the invariants of the group. Hence, suborbital graphs can be viewed as a tool to investigate

permutation groups in terms of combinatorics[5].

Actually, the suborbital graphs of the groupΓ 2 were studied in[7] for the relationΓ 2
∞ � Γ 2

0 (n)� Γ 2 with n∈ N. In here,

takingΓ (2) instead ofΓ 2
0 (n), we investigate some combinatorial properties of the newlyconstructed subgraphs ofΓ (2)

different from[7]. We can summarize the cause of this choice as follows.

Congruence subgroups ofΓ are very important in number theory; they all have finite index in Γ , but not every subgroup

of finite index is a congruence subgroup. Some of them have a special interest. In[16], Singerman showed thatΓ0(2) is

isomorphic to the universal tessellationΓ (2,∞,∞). He pointed that this is a chance taking into account the difficulties of

construction of universaln-gonal tessellations. It is known that the groupsΓ (2,∞,n) are Hecke groups and more

complicated than the modular groupΓ (2,3,∞).

Furthermore, the plane trees, the maps of genus 0 with a single face, can be probably seen as the simplest class of

bipartite maps. In[9], Γ (2) is given the automorphism group of the universal bipartite map B̂ on H. It is used as an

illustration to emphasized the connections between maps onsurfaces, permutations, Riemann surfaces.
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From this point of view, to collect new results about onΓ (2), we used the relationΓ 2
∞ � Γ (2) � Γ 2 for the imprimitive

action in this paper.

1.2 Preliminaries

DefineΓ m as the subgroup ofΓ generated by themth powers of all elements ofΓ . Especially,Γ 2 andΓ 3 have been

studied extensively by [11][12][13]. It turns out that,

Γ 2 =

{(

a b

c d

)

∈ Γ : ab+bc+ cd≡ 0(mod2)

}

,

by Rankin [14]. From the equationab+bc+ cd≡ 0(mod2), we see that at least one of the lettersa,b,c,d must be even.

Suppose first thata= 2a0. Then using the determinant, we have thatb andc are odd. So,d must be odd as well. Hence,

we get the element ofΓ 2 as the matrices

(

2a b

c d

)

. Similarly, supposingd = 2d0, we can get the elements of the form
(

a b

c 2d

)

. Lastly, if a or d is not even, then bothb andc will be even. To sum up,Γ 2 has three types of elements

(

2a b

c d

)

,

(

a 2b

2c d

)

,

(

a b

c 2d

)

.

whereb,c andd of the first,a andd of the second anda,b,c of the third matrix are odd.

In this study, we also use congruance subgroupΓ (2) of the modular group, so we give some information about this

group. For any positive integern, the group showedΓ (n) is defined as follow:

Γ (n) =

{(

a b

c d

)

∈ Γ : a≡ d ≡ 1(modn),b≡ c≡ 0(modn)

}

.

Forn= 2, the groupΓ (2) is generated by three elements

(

1 2

0 1

)

,

(

3 −2

2 −1

)

,

(

−1 0

0 −1

)

and its cusps are 0,1,∞.

2 The Action of Γ 2 on Q̂

Every element ofQ̂ can be represented as a reduced fractionx
y, with x,y ∈ Z and (x,y) = 1; since x

y = −x
−y, this

representation is not unique. We represent∞ as 1
0 = −1

0 . The actionz→ az+b
cz+d of Γ 2 on Q̂ now becomes

(

a b

c d

)

:
x
y
→ ax+by

cx+dy
.

Lemma 1.[7]

(i) The action ofΓ 2 on Q̂ is transitive.
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(ii) The stabilizer of a point is in infinite cyclic group.

Proposition 1.[4] Let (G,Ω) be transitive. Then(G,Ω) is primitive if and only if Gα , the stabilizer of a pointα ∈ Ω , is

a maximal subgroup of G for eachα ∈ Ω .

Indeed, suppose thatGα < H < G. SinceG acts transitively, every element ofΩ has the formg(α) for someg∈ G. One

easily checks that there is a well-definedG− invariant equivalence relation≈ onΩ , given byg(α)≈ g′(α) if and only if

g′ ∈ gH.

We now apply these ideas to the case whereG is Γ 2, andΩ is Q̂. HereΓ 2
∞ , the stabilizer of∞, is the subgroup ofΓ 2

generated by

(

1 2

0 1

)

, so by finding subgroupsH of Γ 2 containingΓ 2
∞

(

or equivalently, containing

(

1 2

0 1

))

, we can

produceΓ 2− invariant equivalence relations on̂Q. From the matrix

(

1 2

0 1

)

, some obvious choices forH are the

congruence subgroups

Γ (2) = {A∈ Γ : A≡ I (mod2)}.

Clearly,Γ 2
∞ < Γ (2)< Γ 2, soΓ 2 acts imprimitively onQ̂. Let≈ denoteΓ 2− invariant equivalence relation induced onQ̂

by Γ (2). If v= r
s andw= x

y are elements of̂Q, thenv= g(∞) andw= g′(∞) for elementsg,g′ ∈ Γ 2 of the form

g=

(

r k

s l

)

,

(

x z

y t

)

;

nowv≈ w if and only if g−1g′ ∈ H = Γ (2), and sinceg−1 =

(

l −k

−s r

)

we see thatv≈ w if and only if

lx− ky≡ rt − sz≡± 1 (mod2)

lz− kt ≡ ry− sx≡± 1 (mod2)

To put this another way,v= r
s andw= x

y are equivalent if and only if they ”have the same reduction mod2”, that is,

x≡ ur andy≡ us(mod2)

for some unitu∈U2.

By our general discussion of imprimitivity, the numberΨ (2) of equivalence classes under≈ is given by

Ψ(2) = |Γ 2 : Γ (2)|= 3.

3 Suborbital Graphs for Γ 2 on Q̂

Let (G,Ω) be a transitive permutation group. ThenG acts onΩ ×Ω by

g : (α,β )→ (g(α),g(β ))

(g∈ G, α,β ∈ Ω). The orbits of this action are called suborbitals ofG, that containing(α,β ) being denoted byO(α,β )
FromO(α,β ) we can form a suborbital graphG(α,β ): Its vertices are the elements ofΩ , and there is a directed edge

from γ to theδ if (γ,δ ) ∈ O(α,β ).
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ClearlyO(α,β ) is also a suborbital graph, and it is either equal to our disjoint from O(α,β ). In the latter case,G(α,β )
is justG(α,β ) with the arrows reversed, and we callG(α,β ) andG(β ,α) paired suborbital graphs. In the former case,

G(α,β ) = G(β ,α) and the graphs consists of pairs of oppositely directed edges; it is convenient to replace each such

pair by a single undirected edge, so that we have an undirected graph which we call self-paired. These ideas were first

introduced by Sims[15] and are also described in a paper by Newmann[10] and in books Tsuzuku[17], Biggs and

White[4], the emphasis being on applications to finite groups. The reader is also refereed to [2][3][6][7] for some

relevant previous work on suborbital graphs.

Theorem 1. r
s → x

y ∈ Gu,2 if and only if

x≡± ur (mod4), x≡± us(mod2) and ry− sx=± 2

Proof. By the transitivity ofΓ 2, without loos of generality, we assume thatr
s <

x
y where all letters are positive integers.

Thus, we have thatry− sx< 0. Since r
s → x

y ∈ Gu,2, there exist someT =

(

a b

c d

)

∈ Γ 2 such thatT(1
0,

u
2) = ( r

s,
x
y). As

ry− sx< 0, the multiplication of

(

a b

c d

)(

1 u

0 2

)

is equal to

(

−r x

−s y

)

or

(

r −x

s −y

)

. If the first case is valid, we have that

a=−r, c=−s, au+2b= x, cu+2d = y andry− sx= −2. That is,x≡ −ur (mod2) andy≡ −us(mod2). Sinces is

even we see thatb andc must be even becauseT(1
0) =

−r
−s = a

c . Sinceb is even, we have thatx ≡ −ur (mod4) and

y≡ −us(mod2).

In the opposite direction, we shall prove the theorem for minus sign. Suppose thatx ≡ −ur (mod4), y ≡ −us(mod2)

and ry − sx = −2. In this, there exist integersb,d such thatx = −ur − 4b, y = −us− 2d. So, it is clear that
(

−r −2b

−s −d

)

∈ Γ 2 which meansr
s → x

y ∈ Gu,2. Because−2 = ry − sx= r(−us− 2d)− s(−ur − 4b). This implies

rd −2bs= 1. We can illustrate one example for this subgraph obtained from elementsA=

(

3 −2

2 −1

)

andB =

(

5 −8

2 −3

)

with figure1.

Fig. 1: The paths ofΓ 2.

Theorem 2. Let T=

(

a b

c d

)

∈ Γ 2. Then1
2 → 1

4 ∈ F2 if and only if T=

(

4n+1 −2n

16n+2 1−8n

)

with n∈ Z.
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Proof.LetT(1
2) =

1
4 =

a+2b
c+2d . Becausec+2d= a+2b+2,T is

(

2a−1 1−a

2c 2− c

)

. SinceT ∈Γ , 4a−c= 3 and soa= 4k+1,

k ∈ Z. Therefore,T =

(

2k+1 −k

8k+2 1−4k

)

. On the other hand, becauseT ∈ Γ 2 (2k+ 1)(−k) + (−k)(8k+ 2) + (8k+

2)(1− 4k) ≡ 0 (mod2).From the last congruence,k ≡ 0 (mod2). So, k = 2, n ∈ Z. As a result,T is in the form
(

4n+1 −2n

16n+2 1−8n

)

. The opposite is obvious.

Theorem 3. Let n≥ 2, n∈Z. The transformations of the matrices T=

(

4n+1 −2n

16n+2 1−8n

)

are hyperbolic transformations

and fixed points of these transformation are attracting fixedpoints.

Proof.The trace of the transformations of the matricesT =

(

4n+1 −2n

16n+2 1−8n

)

is equal to|2−4n|. So, whenn= 0 and 1,

these transformations are parabolic, whenn≥ 2, they are hyperbolic, because of|2−4n| ≥ 2. The fixed points of these

transformations,

z1,2 =
3n±

√
n2−n

8n+1
.

Therefore,T ′(z) = 1
[(16n+2z+1−8n)]2

and soT ′(z1,2) =
(

1

1−2n±
√

n2−n

)

< 1, with ∀n ≥ 2. Thus, these fixed points are

attracting fixed points.

Theorem 4. Let Tn :=

(

an+1 bn

cn dn+1

)

∈ Γ (n), c 6= 0 and n≥ 2. Then|Tn(∞)−T2
n (∞)| ≤ 1

2n.

Proof.ForT =

(

an+1 bn

cn dn+1

)

, T2 is equal to

(

(an+1)2+bcn2 bn(an+dn+2)

cn(an+dn+2) bcn2+(dn+1)2

)

. Therefore,

T(∞) = an+1
cn andT2(∞) = (an+1)2+bcn2

cn(an+dn+2) .

So,

|T(∞)−T2(∞)|=
∣

∣

∣

an+1
cn

− (an+1)2+bcn2

cn(an+dn+2)

∣

∣

∣
=
∣

∣

∣

1
cn2(a+d)+2cn

∣

∣

∣
=

1
|c|n

1
|n(a+d)+2|.

Let M be 1
|n(a+d+2)| . In this case, whenn ≥ 2, |n(a+ d)+ 2| ≥ |2(a+ d)+ 2|= 2|a+ d+ 1| ≥ 2. So,M becomes less

than 1
2 , whenn≥ 2 andc 6= 0. As a result|T(∞)−T2(∞)| ≤ 1

2n. .

From this theorem, we can easily say that, the maximum value of distance of two verticesT(∞) andT2(∞) is 1
4 for all

T ∈ Γ (2). The following is a result of this theorem.

Corollary 1. Let T=

(

4n+1 −2n

16n+2 1−8n

)

. Then|T(∞)−T2(∞)| ≤ 1
4.

Proof.BecauseT(∞) = 4n+1
16n+2 andT2(∞) = −16n2+4n+1

−64n2+24n+4
, then

|T(∞)−T2(∞)|=
∣

∣

∣

4n+1
16n+2

− −16n2+4n+1
−64n2+24n+4

∣

∣

∣
=
∣

∣

∣

1
4(16n2−6n−1)

∣

∣

∣
=

1
4

1
|16n2−6n−1|

If M is taken as 1
|16n2−6n−1| , M becomes 1 , withn= 0 andM < 1, whenn 6= 0. As a result|T(∞)−T2(∞)| ≤ 1

4. .
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