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Abstract: In this paper, we define an invariant equivalence relationdigg the groug (2). Then we investigate some combinatorial
properties of subgraphs 6.
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1 Introduction

1.1 Motivation

Using the notion of the imprimitive action for an invariamfugévalence relation of) by the congruence subgrodg(n),
Jones, Singerman and Wicks obtained suborbital graphseaitidular groug™ and showed that these graphs are the
generalization of the well-known Farey graph[Then Akbas found certain relationship between the lemghtircuits

in these graphs and periods of elliptic elements of the giigp)[1]. This is important taking into account that the
elliptic elements are one of the invariants of the group.déesuborbital graphs can be viewed as a tool to investigate
permutation groups in terms of combinatorkis|

Actually, the suborbital graphs of the grofig were studied iff] for the relation/,2 < I'Oz(n) < M2 withneN. In here,
taking I (2) instead of"#(n), we investigate some combinatorial properties of the n@shystructed subgraphs 62)
different from[7]. We can summarize the cause of this choice as follows.

Congruence subgroups bfare very important in number theory; they all have finite iael", but not every subgroup
of finite index is a congruence subgroup. Some of them haveeiapnterest. In[6], Singerman showed th&p(2) is
isomorphic to the universal tessellatibri2, 0, ). He pointed that this is a chance taking into account thecdiffes of
construction of universah-gonal tessellations. It is known that the group&2,c,n) are Hecke groups and more
complicated than the modular grofi§2, 3, «).

Furthermore, the plane trees, the maps of genus 0 with aesfagk, can be probably seen as the simplest class of
bipartite maps. Irf)], I (2) is given the automorphism group of the universal bipartiggo® on H. It is used as an
illustration to emphasized the connections between magsidaces, permutations, Riemann surfaces.
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From this point of view, to collect new results about/of2), we used the relatioRi? < I" (2) < I'? for the imprimitive
action in this paper.

1.2 Preliminaries

Definel’™ as the subgroup of generated by thet" powers of all elements of . Especially,/ 2 and "3 have been
studied extensively byl[1][12][13]. It turns out that,

,-2{(22) el’:ab+bc+cd0(modz)},

by Rankin [L4]. From the equatioab+ bc+ cd = 0O(mod?), we see that at least one of the lettayb, c,d must be even.
Suppose first thad = 2ay. Then using the determinant, we have thaindc are odd. Sod must be odd as well. Hence,

. 2a b - .
we get the element df? as the matrlce< Ca d) . Similarly, supposingl = 2dy, we can get the elements of the form

ab . . .
( ) . Lastly, if a ord is not even, then both andc will be even. To sum up] 2 has three types of elements

c2d
<2ab> <a2b> <a b)
cd/'\2cd/)’\ca2d )/’
whereb, c andd of the first,a andd of the second and, b, ¢ of the third matrix are odd.
In this study, we also use congruance subgrb(f) of the modular group, so we give some information about this

group. For any positive integer the group showefl (n) is defined as follow:

r(n) = { <iz) er :azdzl(modr‘),bECEO(modr)}.

Forn= 2, the group™ (2) is generated by three elements

) 2

and its cusps are, @, co.

2 TheAction of F20on Q

Every element ofQ can be represented as a reduced fracgorwith XYy € Z and (x,y) = 1; since§ = j—;j this

representation is not unique. We represets = = Tl. The actiorz — 222 of 72 onQ now becomes

cz+d
ab\ x ax+bhy
== .
cd/ y cx+dy

Lemma 1.[7]

(i) The action of 2 onQ is transitive.
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(i) The stabilizer of a point is in infinite cyclic group.

Proposition 1.[4] Let (G, Q) be transitive. TheiiG, Q) is primitive if and only if G, the stabilizer of a pointr € Q, is
a maximal subgroup of G for eaghe Q.

Indeed, suppose th&, < H < G. SinceG acts transitively, every element 6f has the forng(a) for someg € G. One
easily checks that there is a well-defin@d invariant equivalence relation on Q, given byg(a) =~ ¢ (a) if and only if
g €gH.

We now apply these ideas to the case whgris "2, andQ is Q. Herer2, the stabilizer o, is the subgroup of 2

generated b\(é i) so by finding subgroupld of "2 containingr,2 ( or equivalently, containin<é i) ) we can

. . . . - (12 . .
producel ?— invariant equivalence relations d. From the matrix 01} some obvious choices fdd are the

congruence subgroups
r2)={Aer :A=1(mod)}.

)
by I (2). If v= L andw = % are elements o, thenv = g(e) andw = ¢/ () for elementsy, g € I2 of the form

| o= [10)- ()

] ) we see thav ~ w if and only if

Clearly,[;2 < ' (2) < I'2, sol"2 acts imprimitively onQ. Let~ denotel"2— invariant equivalence relation induced @n
r
S

nowv~ wif and only ifg~'g’ € H = I'(2), and sincey* = ( !

IXx—Kky=rt —sz=+ 1 (modR)

Iz—kt=ry—sx=+ 1 (mod)
To put this another way, = £ andw = § are equivalent if and only if they "have the same reductioni&ipthat is,
X = ur andy = us(mod?)

for some unitu € U,.
By our general discussion of imprimitivity, the numbBg(2) of equivalence classes undetis given by

W2)=1r?2:r)=s.

3 Suborbital Graphsfor 2 on Q

Let (G, Q) be a transitive permutation group. Théracts onQ x Q by

g:(a,B) = (9(a),9(B))

(ge G, a,B € Q). The orbits of this action are called suborbital€3fthat containinda, 3) being denoted bp(a, B)
FromO(a, 3) we can form a suborbital gragh(a, 3): Its vertices are the elements &f, and there is a directed edge
from yto thed if (y,d) € O(a, B).
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ClearlyO(a, ) is also a suborbital graph, and it is either equal to our @isfoom O(a, ). In the latter caseG(a, 3)

is justG(a, B) with the arrows reversed, and we c@(a, 3) andG(S, a) paired suborbital graphs. In the former case,
G(a,B) = G(B,a) and the graphs consists of pairs of oppositely directed®dgyis convenient to replace each such
pair by a single undirected edge, so that we have an unditgectgph which we call self-paired. These ideas were first
introduced by Simd[5] and are also described in a paper by Newmafinand in books Tsuzukd[7], Biggs and
White[4], the emphasis being on applications to finite groups. Tlaelee is also refereed t@][3][6][7] for some
relevant previous work on suborbital graphs.

Theorem1. L — § € Gy if and only if
X= =4 ur (mod#), x= £ us(mod2) and ry— sx=+ 2
Proof. By the transitivity ofl 2, without loos of generality, we assume tHat § where all letters are positive integers.

. . ab
Thus, we have thaty —sx< 0. Sinceg — § € Gy, there exist som@& = cd] € 2 such thaff (3,4) = (£, y)- As

c
a=-r, c=—s, au+2b=x, cu+2d=yandry —sx=—2. Thatis,x= —ur (mod2) andy = —us(mod2). Sincesis
even we see thdi andc must be even becaué'e(%) = =L = 2. Sinceb is even, we have that= —ur (mod4) and
y= —us(mod2).

S lu) . - - i . .
ry — sx< 0, the multiplication of a 3) <0 ;) is equal to< ;i/) or <r X). If the first case is valid, we have that

In the opposite direction, we shall prove the theorem foruwmisign. Suppose that= —ur (mod4), y= —us(mod2)
and ry — sx= —2. In this, there exist integerb,d such thatx = —ur — 4b, y = —us— 2d. So, it is clear that

(; 2db> € I'? which meansf — X € Gy . Because—2 = ry — sx = r(—us— 2d) — s(—ur — 4b). This implies

. . . -2 -
rd — 2bs= 1. We can illustrate one example for this subgraph obtainat Element = (2 1) andB = (g 2)

with figurel.

Fig. 1: The paths of 2.

4n+1 —2n

ab ; i
Theorem 2. Let T = <c d) €2 Then; — z € F?ifand only if T= <16n+2 1-8n

) withne Z.
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. (2a—11- .
Proof.LetT(3) = = 228 Because+2d=a+2b+2,Tis < aZC 5 2) .SinceT €I, 4a—c=3ands@=4k+1,
2k+1 —k 2
k € Z. Therefore,T = 8kt21_dk) On the other hand, becauSee "< (2k+ 1)(—K) + (—k)(8k+ 2) 4+ (8k +
2)(1—-4k) = 0 (mod2).From the last congruenck,= 0 (mod2). So,k =2, ne Z. As a result,T is in the form
an+l —2n . The opposite is obvious.
16n+21—8n
: . 4n+1 -—-2n . .
Theorem 3. Letn> 2, n € Z. The transformations of the matricesT 16042 1 8n are hyperbolic transformations
and fixed points of these transformation are attracting figenhts.
. . an+1 —-2n\.
Proof. The trace of the transformations of the matrites: 16042 1 8n is equal to|2—4n|. So, whem=0and 1,

these transformations are parabolic, winen 2, they are hyperbolic, because |@— 4n| > 2. The fixed points of these
transformations,

15 1 ' _ 1 ; : i
Therefore, T'(z) = Ao 22 T8 and soT'(z2) = (m) < 1, with ¥n > 2. Thus, these fixed points are
attracting fixed pointa

an+1 bn

Theorem 4. Let Ty := (
cn  dn+

1) € I (n), c#0and n> 2. Then|Ty(e) — T,2(e0)| < .

2
Proof.ForT = (an+1 bn 1) , T?is equal to<(an+1) +bcr? bn(an+dn+2)

. Therefore,
cn dn+t cn(an+dn+2) ber? + (dn+- 1)2>

T () = % andTZ(oo) _ (an+1)2+ber?

~ cn(an+dn4-2) -
So,
T() )] = ‘an+1 an+1)+bcnz’7‘ 1 ‘ 1 1
N cn(an+dn+2) cr’(a+d)+2cnl  [gn|n(a+d)+2°
Let M be m In this case, when > 2, |n(a+d)+2| > |2(a+d)+ 2| =2la+d+ 1| > 2. So,M becomes less

thani , whenn > 2 andc # 0. As a resulfT () — T?(c0)| < 4

From this theorem, we can easily say that, the maximum valaéstance of two vertice¥ («) and T2(w) is 7 for all
T € ' (2). The following is a result of this theorem.

in+1 -2

Corollary 1. Let T= | " " ). Then|T () — T2(e0)| < 3
16n+21—-8n

Proof. BecauseT (o) = 155 andT?(e0) = %, then

2o |7‘ 4n+1 —16n°+4n+1 1 7 1

1
IT() = “lientr2 —64n2+24n+4’ - ‘4(16n2—6n—1) T 4]16n2—6n—1]

-I>IH

If M is taken aﬁm, M becomes 1, witn = 0 andM < 1, whenn # 0. As a result T (c0) — T?(c0)| <
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