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Abstract: Aim of the paper is to investigate solution of inverse parabolic problem with non-local boundary condition. Under some
natural regularity and consistency conditions on the input data the existence, uniqueness and continuous dependence upon the data of
solution are shown by using the generalized Fourier method. Also, an iteration algorithm for the numerical solution of this problem is
constructed and examined numerical solution by using linearization and Crank-Nicolson difference scheme.
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1 Introduction

Recently, there have been a lot of recent problems with inverse problems that have a lot of applications like chemical
diffusion, applications in heat conduction, population dynamics, thermoelasticity, medical science, electrochemistry,
engineering, wide scope, chemical engineering.The inverse problem of determining unknown coefficient in a quasi-linear
parabolic equation has generated an increasing amount of interest from engineers and scientist [3,4,5,6]. Nonlocal
boundary conditions have been a lot of many important role in heat transfer, termoelasticity, control theory, mathematical
biology [1,2].

Let’s take the following problem with unknowns (g, u)

u = e +q(t)g(x,t,u), (x1) € T, ()
u(x,0) = 6(x), x€[0,1], 2)

u(0,1) =0, ue(0,1) = uy(1,¢), 0 <t <T, 3)
h(t) =u(1,1),0<t <T. 4)

Here [ :={0<x<1,0<:<T}, 0(x) €[0,1] and g(x,z,u) € I’ x (—o0,00).
Definition 1. {g(t),u(x,1)} € C[0,T] x (C>! (I'")NC'0(T")) is called the classical solution.

2 Solution of the inverse problem

Let assume the following conditions are ensured.
(C1) h(r) € C'[0,T], q(r) € C[0,T],
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(C2) 6(x) € C?[0,1],
0(x)|,—o =0, 0 (x)],_o = 6x(x)|,—;, (C3) g(x,t,u) is provided the following conditions (1)

DWg(xtu)  Wg(nt,a)
ox" ox"

Sb(xat”u*ﬂ‘a n=0,1,2,

where b(x,t) € Ly(I'"), b( t) >0,

(2) g(x.t.u) € C20,1], 1€ [0,7),

(3) g(xvtvu)|x:0 :07 gx(x t u)‘ -0 — gx(x7t7u)|x:17

(4) 4go(r,u) +16 Y gor—1(t,u) # 0. By Fourier method,
k=1

u(x,t) = 2up(t) Z upy (1) cos 2mwhkx + upp—1 (t) sin2mwkx]

u(xt) =2 | 6+ / 4(t)go(T,u0)dT

+4 Y xcos2mkx (6y—1 — 4kt O3) o~ (2mk)t
k=1

+16 ZxcosZﬂkx/q(r)gzk,l(T,u) e~ Tk (1=7) 41 5)
k=1

t
— 167 ) k(1 —T)xcos Zﬂkx/q(’c)ng(r,u) e~ QT (1=1) g
k=1 o

+4 Z sin27wkx O, o~ (2nk)
k=1

+4Y sin27mkx /q(r)gzk(r,u) e QT (1=7) g .
k=1 o

Under the condition (A1)-(A3), differentiating (4), we obtain

!

w(L,0)dx=h (1),0<t<T, (6)
(5), (6) yield
oo o I
H(t)+4 Y (2mk)2eCmh% (0| —4mkt€s) +16 Y. [ q(T)gak1(T,u) e~ G (=) g

q(t) _ k=1 _ k=10 . (7)
4g0(t,u) + lékzl 82k—1 (t,u)

Definition 2. Ler {u(t)} = {uo(t),ua(t),upx—_1(t),k = 1,...,n} is satisfied that

luo ()] B
Jmax =5 + Z <0ma<xT|u2k( )+Orga<xT|u2k1(t)|) < oo, by By.

[lu()|| = nax I“"z(t L4+ ): <max |uox ()] +0ri1a<xTu2k_1(t)|) , be the norm where By is Banach space.
<i<

Theorem 1. If the assumptions (C1)-(C3) be provided then the problem (1), (4) has a unique solution.
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Proof. Using iteration to equation (5)

r1
u(()NH)(t):u(()o)(t)+//q(m(ﬁ)g (a7ﬁ7u(N)(a,ﬁ))dadﬁa
0 0

t 1
a0 =l 044 [ [ gV (B) glerou (e B))cos2mka e 0P aadp,
00
t 1.
Wy V() =l (r) +4/ / g™ (B) g(at, B,u™ (e, B))(1 — o) sin 27k e~ 2™’ (=P g p (8)
00

t 1
_ 4mk / / (1= B)g™ (B)g(ax, B,u™ (e, B)) cos 2mker =P (~B) g,
00

”E)O) (t) = 6o, ué?f (1) = (Bop 1 — 4kt 6y) e~ P7R ”gl?f () = O~ 2T

!

h (l) +4 E (2nk)26—(2nk)2t (62k—1 — 4wkt sz)
gVt () = k=1

4go(t,u™) + 161(21 go1(t,u™)

oo I
+16 £ J4" ()gu1(Bu™) e G ag
=10

+ =
4go(t,u™) + lékzl o1 (t,u™)

From the theorem, we find u()(t) € By, 1 € [0,T).
For N =0,

t 1
i ) =0+ [ [40B) ¢ (o.B.u" (0. B)) dEap.
00

‘1
Adding and subtracting [ [¢\9) (7)f(&,7,0)dEdt, we find
00

t 1 t 1
1) = 00+ [ [ 4OB)ls(a B (E. )~ gl B.0)dadp + [ [ 4 (B)s(ex.B.0)dadp.
00 00

Applying Cauchy inequality,

1 1

¢ 2 t 1 g ’
)] < 160l + ( / dﬁ) / {/ !q“”(ﬂ)![g(a,ﬁ,u@)(a,ﬁ))—g(a,ﬁ,onda} dp
0 0 0

1
2 2

t % t 1
¥ (/dﬁ) ./{/\q(o)(ﬁ)\lg(mﬁﬁ)lda} a | .
0 0 0

and using Lipschitzs condition, we obtain
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D=

¢ 2
4 0)] < 160l + v /{/ (ﬁ)‘b(a,ﬁ)]u<o)(a7ﬁ)\d0¢} ap
0

/ {/\q<0><ﬁ>\g<a,ﬁ,o>da} a | .
0 0

and taking maximum, we find

HC[O,T]

()] < 100] 4+ VT ey [0 [l

max
0<t<T
(0)
VT [0 I8 0y
using the same estimations and Holder, Bessel inequality and taking maximum
3 V3 ) 0)
z s [ ) < L 18]+ 37 1560 ey PRI FRICT .

. g 90 5, IO

and applying the same estimations, we obtain

1 -
”gzg(f)‘ Y 16 1|+47f|T|Z ‘921{‘
i—1

+ £2 [b(x,1) HLz(F) HM(O) ®) HB1 Hq<0) ®) HC[O,T]

Y max
(= o<i<t

Vg0 )] ., 0510 s
f'” 16, )l “(O)(f)HB. 0 HC[OJ]

L -

and then, we find

ool

B,

< 2|90|+SZ 61|+ 167 |T| ) ‘ez;k‘
= =1

<2f+2\[ f|T|>b Dy H HB1HCI(0)(I)HC[O,T]

(z\m” f'”)Hq(% [ PICE RO
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uV(z) € B. Same estimations for N,

o

B,

<26|+8 Y |0 1|+ 167|7| Y |65
k=1 k=1

(v 22 2 g [0 [0,
(v BRI 0t
According to u™)(1) € By and theorem, ¥+ (1) € By,
{u(0)} = {uo(t),w(t) s (0, k= 1,2,...} € B,
If we used with same estimations, we obtain
e, <5 W)
A E (sl
M 16l [0, 0]
T/I qu) / Hcm] lgx, 2,01, ()

We show that the iterations u™*1)(z), g¥*1) converge By and C[0, T], respectively for N — oo,

u u()) t
t 1
—2 ( / / ¢9(B) [s(et.p.u (. B)) ~ &(ct.B.0)] dad[})
00

Lol
+4Z//q g(a.B,u® (0, ) g(0t,B,0)] cos2mkare™ ™ =P duap
=10 o
L il
+4Z//q g(e, B,u® (a ,ﬁ))—g(a,[i,o)} (1—a)sin2zka e~ ™ (-Pgaap
k=190
t 1
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t 1
+4Z//q(0>(,6)g(a7[370)(1—Oc)sin27rkoce @7k12(=B) g ra B
00

t 1
— Amtk / / (i — B)q™ (B) g(a, B,0) cos2kax e~ 2™ (~B) .
00

Using Cauchy, Bessel, Holder inequality, Lipschitzs condition and taking maximum of both side of the last inequality, we
obtain

M(l)(;)fu(())(t)HB] < <2\/T+2\3/§+\/§7I|T|> 160G,y oy ”(0)([)HB] Hq(0>t)HC[O,T]7

2v3  V2ITI || (o)
+<2\/T+3+ ) 000 N0

(z\mz\ﬁf'”) o Dllugiry [ 0, @] g1
<zﬁ+2f *f'T') 401 ] ., N0y
Hq(l)(’)_q<0)(t)Hc[or} =M Hq H [o,r]H”m(t)_”(())(t)HBl 1)l
Hu@)(t)—u“)(t) ’Bl < <2\fT+2\3/§+\/§ﬂ|T|> 16Ce )1, H”(U(I) _”(O)(t)’ B ‘ q(]>(t)Hc[o,T]

(22 ) (52 0 )

u® ()~ 1) {(z\m” Q”)(wf)}Anb(x,mLzmqu(t)HCm

qu(t)_q(O)(t)Hc[o,T] 3M 4\4[\fMH (2)<t)H

Vi, Vo 2
AT ()] e 0y

I DR IC] M EI s

Hu@) (1) —u® (1)

For N :

7
clo.1] = m H <N+1)(t)H

HM(NH)@ _u(N)([)HBl < \/% { <2ﬁ+ 2\36 + \/577:|T|> (3_1\@) }N X

15,1112 ) - ©)

Hq(NH)(t) — ™) H cor HuW“)(t) —u) (I)HBI 160 )|,y

Hq(l)(t)Hc[o,T] Hq (I)HC[O,T] HqW) (I)HC[O,T]
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For N — oo, u™*1)(r),g™*+1) are converged. Let show that there exists u and ¢ such that

N—oo N—oo

t 1
| [ aB) [s(ct.B.u(eB) — gl B.u™ (et )] dadp
00

| [ aB) [s(. BV @) — gler. p.u™) (e, B)) ] derap
00

Sl
+4) //q(ﬁ) [g(a,ﬁ,u(a,/a))_g(a,ﬁ,u(wm(a’ﬁ))] cos 2k e C6D ggap
k=110 o
Sl
+4) //CI(B) [g(oc,ﬁ,u(NH)((x,ﬁ))—g(a,[},u(m(aﬁ))] cos2mké e_(ZEk)z(’—T)dédT
k=115 0
e
+4Z //Q(ﬁ)g(a,ﬁ,u<N>(a,ﬁ))cosz7rka e—(2nk)2(t_3)dadﬁ
k=115 0
e
+4) //q(B) [g(a,ﬁ,u(a,ﬁ))*g(avﬁvu“v“)(a,ﬁ))} (1 - a)sin2aka e~ @™ =B gaap
k=115 0
e
+4) //Q(ﬁ) [g(aaB,u(N+l)(OC;ﬁ))*f(OC,,B,u(N)(a’ﬁ))} (1 — ) sin27ke e~ C™20B) gy B
k=1
N Ot 01
Y //q(a)g(a’ﬁv"(N)(avB))(l*Ot)sin27rka e PP goap
=10

(1~ B)a(B) [s(t,B,u(t,B)) —g(t, B,u*)(ct,B)] cos2mkB e~ " ddp

(t— B)q(B) g(ct, B,u™ (a, B)) cos2mkar e~ P™*=P) g B

Ot 1
[l
ram Yk / /1 (t=B)a(B) [s(er.pu™* (@) ~ glor.B.u (@, B))] cos2mka "™ Pacuap
%
o
Il
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Using same inequality and Gronwall’s inequality ,we obtain

2
<
B,

2\ffT 3 !
L/{G«f+ J)(3_%@>}HﬂﬂkmﬂQWmmmNM%m%w)

2
xe@{z<mﬁ49j§+“aT>( 5iﬁ)}|mu>au]memim

Hu(;) —u<N+’>(t)‘

(10)

34

q(t) — g™V (2) < ————|lg(®)llcio.ry || (@) =™ V@) b))
a" clo.7) 3M4\4f\fM m By
where [|Q()|cio.r = Hq(l)(t H clo.7] Hq HC[O.T]'" Hq(N)(tHC[o,T}'

We obtain uV 1) — 4, g™+ 5 g N — oo,

For the uniqueness, let (u,g), (v,h) are two solution of (1), (4). After applying Cauchy, Bessel, Lipschitz, Holder
inequality to |u(¢) —v(r)| and |r(r) — q(¢)|, we obtain

1
2

[u(t) = v(t)l|g, < Kzﬁ zf ‘fﬂ”) (31\@)] (O/qz(ﬁ)bz(aﬁ)lu(ﬁ)—v(ﬁ)zdadﬁ) , (D

here, u(t) = v(t) and then r(¢) = g(¢).

The proof is over.

3 Stability of problem
Theorem 2. Assumption (C1)-(C3) the solution (q,u) of the problem (1), (4) depends continuously upon the data 0, h.

Proof. Let @ = {6,h,f} and @ = {6, h, f} be two sets of the data, which satisfy the assumptions (C;) — (C3). Let us
denote [|P[| = ([|Allcijo )+ 101lc3j0.1) + [1f1lc30(r))- Let (¢,u) and (¢, %) be solutions of problems (1), (4).

(651 — By sin 2 ke~ (2%

s

u—ﬁ:2(90—970)+4

k=1

27mk)2t

+4) (01— 6y 1)xcos27‘ckxe (

Ms

k=1

oo

— 167 Y ki (6o1 — B )xcos 2mkxe (270"
k=1

//ﬂmmaﬁ(aM)(aﬁ(amwww>
0tol

[ [ @®- m»<aﬁ<amme)

00

R
+4Z//q([3)[g(a,ﬁ,u(a,5)) (o, B,i(a, B))]cos2mkar e~ 2™ =P g
00
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(a(B) —a(B)) g(ax, B.u(ax, B)) cos 2mkae *™* =B o

+
~
(aok

~
Il
—

a(B) lg(a, B,u(at, B)) — g(at, B,u(ex, B))] (1 - @) sin2mkae ™™ ~P)dap

(a(B) ~a(B)) g(e, B, (t, B)) (1 — ) sin2mkae™ 2™ “Plaquap

+
~
ok

+
IN
T
O L O °—_
O O O~

~
Il

—47ert o, B,u(a,B)) —g(a,B,i(a, B))] cos2mka e~ (=P goqp

—47ert (9(B)—g(B)) glat, B,(cx, B)) cos2mker e~ 2™ =P gqa

S O —
0\_ 0\_
|

By using same estimations, we obtain

llu—ul5 <[6—8 (12)

1

2

t 1
<2W+2f f'”) (//f B (. ) u(B) ~(B) dadﬁ) 7
00

where, let ||6 — 8| <2 |60 — 6o +4k§1(y|92k,1 — G|+ || 6 — O])) +47r§1 5 — 2]

1
2

t 1
*tﬁ (//qz(ﬁ)bz(a, )|u(l3)u(B)2dadﬁ)
00

applying Gronwall’s inequality to (12), we obtain
_ —12
lu—lly, <2||@— @]

X exp (2//1q2 B)v*(a,B) dadﬁ)

0

where, let [ @ — | < |0 8]+ & |1 (1) - W) + i L y (HGZH 0, 1H+2‘62k o,

Hence g — ¢q.

).For@—)@thenu—)u.
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4 Numerical Procedure for the nonlinear problem

An iteration algorithm for the linearization of the problem (1), (4)

du™ 92,

8t :W—i_qg)g()@hu(nil))a ()CJ)ED (]3)
u™ (x,0) = 6(x) x€0,1]. (14)
u™0,1)=0, t€l0,T] 15)
" (0,1) = ul (1,1), 1 € [0,T). (16)

Let u (x,1) = v(x,7) and g(x,z,u"~)) = g(x,1) then a new linear problem

2
O i) () eD ()
v(0,7) =0, t€10,7T] (18)
ve(0,1) = vy (1,1), t€1[0,7T) (19)
v(x,0) = 0(x), x €[0,1]. (20)

we use the method of the linearization and the finite difference method to solve (17), (18), (19),(20). We subdivide the
intervals [0, 1] and [0, 7] into subintervals Ny and N; of equal lengths 4 = - and T = T , respectively. We use the Crank-

Nicolson scheme which is absolutely stable and has a second-order accuracy in h and a first-order accuracy in 7. The
Crank-Nicolson scheme for (17), (18), (19), (20) is as follows

L [ 1, 1 Uit gy (it
7(‘}{ _v{)_th (Vj 211 +V{+])+2h2 (v 1—21/ +vt+l)+1(q1+ +q])( &l +g1)7

T
W=, 21
vé =0, (22)
V1 = Vi (23)

where 1 <i <N, and 0 < j < N, are the indices for the spatial and time steps respectively, vlj =v(x;,tj), 6; = 0(x;),
q’ =q(tj), g = g(xi,tj), x; = ih, t; = jT. Now, let us construct the predicting-correcting mechanism. We obtain

The finite difference approximation of (23) is

/' ((th h/) /‘L’) (VN +1 ZV{;,X +v1<,x71) /h
q = ;
ng

where i/ = h(t;), j=0,1,...,N,

We denote the values of ¢/, vlj at the s-th iteration step ¢/(*), v
step is very small, we can take qf‘H(O) =4/, V{H(O) = vlj, j=0,1,2,...N;, i =1,2,...,N,. At each (s + 1)-th iteration step
we first determine /(1) from the formula

oo G50 2) (2 22 )

gN

X

f (S), respectively. In numerical computation, since the time

q

Then from (21), (21), (22) we obtain
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L) = e[ 2 )
(- )]
b (0 +09) @7 +8). ©5)
W9 Zo, (26)
i =i ), (27)

The system of equations (24), (25), (26) can be solved by the Gauss elimination method and vj D) is determined. If
the difference of values between two iterations reaches the prescrlbed tolerance, the iteration is stopped and we accept the

corresponding values ¢/(*1), v/ (G =1,2,..,Ny) as ¢/, v ! (i=1,2,...,Ny), on the (j+ 1)-th time step, respectively.
In virtue of this iteration, we can move from level jtolevel j + 1.

5 Numerical example
Example 1. If we consider the inverse problem (1), (2), (3), (4), with
g(x,t,u) = (14 (27m)*) uexp(—2¢) +4msin27mxexp(t),
0(x) = xcos(27mx), h(t) = exp(r), x € [0,1], 1 €[0,T].

It is easy to check that the analytical solution of this problem is {q(¢), u(x,t)} = {exp(2¢), xcos(2zx)exp(r)}. Let us
apply the scheme which was explained in the previous section for the step sizes 4 = 0.005, T = 0.005. In the case when
T =1 the comparisons between the analytical solution and the numerical finite difference solution are shown in Figures
1 and 2.

0 02 04 06 0.8 1

Fig. 1: Exact and approximate q(t) when T=1.
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uix, 1)

02 04 06 08 1

Fig. 2: Exact and approximate solutions of u(x,t) at the T=1

6 Discussions

The inverse problem regarding the simultaneously identification of the time-dependent coefficient and the temperature
distribution in inverse parabolic problem with non-local boundary condition has been considered. This inverse problem has
been investigated from both theoretical and numerical points of view. In the theoretical part of the article, the conditions
for the existence, uniqueness and continuous dependence upon the data of the problem have been established. In the
numerical part, the finite difference method by the Crank-Nicolson difference scheme with an iteration are presented.
This work advances our understanding of the use of the Fourier method of separation of variables and the finite difference
methods in the investigation of inverse problems for inverse quasilinear parabolic equations. The authors plan to consider
various inverse problems in future studies, since the method discussed has a wide range of applications. Also, the implicit
monotone difference schemes can be examined. The convergence of these numerical methods may be studied.
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