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Abstract: This paper studies the Jacobi-Perron algorithm over thedbpower series fieldq((X 1)), following E. Dubois. Let
Fq[X][p] be any formal power series field extension with dedree 1), wheren € N. This should be concerned with the periodicity of
the vector(w, wy,...,wn) € (Fg[X][p])" under the iteration of the Jacobi-Perron algorithm. We edothat there is a vector
(o, @y, ..., wn) € (Fg[X][p])", which is periodic by the Dubois version of the Jacobi-Peatgorithm.

We also proved that there is no algebraic formal sesiesuch that the vectofw, w?) is 2-periodic by Jacobi-Perron algorithm.
Besides, we gave a characterization of the ve@inrw?) which is 1 and 3-purely periodic. These results are the goal® of those in
the real case. We also conjectured that there is no véaton?) which is Z-purely periodic by Jacobi-Perron algorithm and the
odd-purely periodic is the same with the cases of 1 and 3yppeziodic.

Keywords: Jacobi-Perron Algorithm, Dubois version, Pisot elemelgelaraic extension, periodic.

1 Introduction

In 1907, since Perron introduced the Jacobi-Perron atguaritvhich is the simple generalization of continued fratsio
to finite sets of real numbers, the following conjecture dreltterizing the periodicity is still open.

Conjecture 1Let K be a real number field of degreet 1. Let (as,...,an) € K be such that Joy,..., a, are linearly
independent ove®. Then then-tuple(as, ..., an) is, eventually becomes periodic by the Jacobi-Perron glgor

The casen = 2 is a special one, since the characteristic equation iduaible ( see14,15]).

Due to Dubois and Paysant-Le Ro it is proved that for any cubic extension of the fi€ld there is a pair of numbers
01, 0z such that their expansion by Jacobi-Perron algorithm iger.

Bouhamza, inT,8] was able to prove that there is no natural numimes O such that the Jacobi-Perron algorithm of
(m, \3/r_n2) is purely periodical. He proved also that for any extensibthe field Q, of degree 4 there is a triple of
numbersay, az, a3 such that their expansion by Jacobi-Perron algorithm iegder.

Again, R. Paysant-Le Roux and Dubo8} proved that for any real number field there exists a basisvfich we have
periodicity. This result depends on properties of the Riswhber.

In the formal power case, Duboid][gave a New version of Jacobi-Perron algorithm. He proved tie simultaneous
Diophantine properties of the algorithm are stronger thrathé real case. But He did not characterize the system of
formal power series whose expansion by Jacobi-Perronigigois periodic. Furthermore he characterized the vector
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(e, ..., an) which is 1-periodic by his version of Jacobi-Perron aldorit

In this paper we are able to prove that over any formal powgeséeld extension of degréa+ 1), Fq[X][p], thereis a
vector(wy, wy, ..., wh) in (Fg[X][p])", which is periodic by the Dubois version of the Jacobi-Peaigorithm.

we prove also that there is no algebraic formal setiesuch that the vectofw, w?) is 2-purely periodic by the
homogenous version of Jacobi-Perron algorithm and we gielaaacterization of the vectdw, w?) which is 1 and
3-purely periodic by it. We conjecture that this result feoldr 2n and 21+ 1.

This paper is organized in the following way. $ection2, we present a brief review of the field of formal power series
and we present the basic notions and notations needed tiootthe work.. Insection3, we give the main results and
propose a weaker conjecture which concerns purely pen@aior byJ.

2 The field of formal power series

LetFq be a field withg elements of characteristit Fq[X] the set of polynomials of coefficients iy andFq(X) its field
of fractions. The sefq((X 1)) of formal power series ovéfy is defined as follows

+o0 .
Fo(X™) ={w= Y ajX" : aj € Fq, as# 0 withse Z}.
]=S

+00 .

Let w = Z ajX™1 € Fq((X™1)), we denote its polynomial part biw] and {w} its fractional part. We state that
j=s

w = [w]+{w}.

A Pisot elementw € Fy((X™1)) is an algebraic integer ovéiy[X] such thatjw| > 1 whose remainder conjugates in
Fq((X~1)) have an absolute value strictly smaller than 1. For morerinétion about Pisot element se8[6,9,10,11,

12].

Recall that Fy((X™1)) contains Pisot elements of any degree oWg(X). Indeed, consider the polynomial
Yd _aXyd-1_1 whereac Fq\{0}, it can be seen easily, considering its Newton polygon, tiepblynomial, which is
irreducible overFq(X), has a rootw € Fy((X~1)) such that| w |> 1 and all of its conjugates ifFq((X 1)) have an
absolute value strictly smaller than 1.

Notations: In all this paper, we denote kiythe Jacobi-Perron algorithm and Byits Dubois version.

The Jacobi-Perron Algorithm: Let Mg = {w € Fq((X™1))": | w|< 1} andM = Mg\ {0} x MJ~* the Jacobi-Perron
algorithm is defined, for alf = (f1,..., fn) € M, by

o f2 f2 fn fn 1 1 n
e e S s IR ®
We setM* = {f € M : J5(f) is well defined for alls > 1}. Let f € M*, we definef® = (£ i) = Jt(f) and
fﬁ*”
k(t)(f):(k(lt),___7k,(1t)):([ﬁ % ), forallt > 1. We notice thaM* = {f € M :forall s> 1, f* +0}.
£ £

1 1
1 + 1 ,Ietkﬁ,”l): 1 and

f(t) f(t)

1 1

1
We claim that the sequen¢k)) is unique. In fact, iff € M*, we havew = [
fy
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£ ®
e {%} . AsFo(X~1) = F4[X] @ Mo, the decomposition is unique. The relatiq(ﬁ“) = %t)l - [%t)l defines
fi fi fi

in an unique wayfi(t”) andki(t”), for all 1< i< n—1, thereforeks ' has an unique value, so the sequefid®) is
unigue.

The version of J introduced by Dubois. Let E = (Fq((X~1)))". In order to have an algorithm defined in the whole
spaceE a version of {) is introduced in§]. For all f = (fy,..., fy) € E, f1 ¢ Fg[X], we define the map

(el faolfd 1
D(f)(fl—[fl]’m’fl—[fl]vfl—[f1]>GE' @)

Let f € E* = {f € E : DS(f) is well defined for alls > 1}. For allt > 1, we setf® = D'(f) = (£ ... f{) and

aV(f)=(@y,....a0) = (3 VL. VLY. 3)

3 Results

Theorem 1.Any finite algebraic extension fdi;(x) in Fq((X~1)) can be generated by a Pisot element.
To prove this theorem, we need the following results ( 4&1[0]).

Theorem 2.( Theorem 1.2, p 597 1R]) Let K be an arbitrary field. Then any finite separable extensioK ©f) which is
contained inK((X~1)) can be generated by a Pisot element.

Lemma 1.( Lemma 1.1, p 599,18)) If K is a perfect field, then any algebraic elementf X 1)) is separable over
K(X).

Lemma 2.LetK be an arbitrary field. IfK is finite, then it is perfect i.e. all finite extensionldis separable.

Proof. Assume that there is an algebraic elemeriKafhose minimal polynomidP is in Fo[XP], then we write
P(X) = ag+ apXP+agpX?p+ ... € Fq[XP].

If we setQ(X) = 0~ (ap) + 0 (ap)X + 0 1(azp)X?+ ... € K[X], whereo is the automorphism defined ovEr by
o . x— xP, we obtainP = QP, which contradict the fact thd is irreducible. &

Proof. ( Theoreml) As Fq is a finite field, then, by lemma, it is perfect. Using Lemma, any algebraic element of
F((X~1)) is separable ovef(X). Using Theoren?, the theorem is proved. O

Now we are ready to prove one of our results.

Theorem 3.Let by, ag, ..., an € Fg[X] be such thatag,bp) =1, | an |>| & | and & divides @1, forall 0 <i <n-—1. Let
p, where| p |> 1, be a root of the polynomial

boY™! — bpanY" — ... — boayY — ag. 4)
Let f € M* be the vector defined by
fao=p ,
:fnfl =p°—anp )
.fl =p"—anp"t— ... —amp.
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(i) Ifag# by, then f is periodic by D with period+ 1.
(i) Lethe M*, then Oh) = h if, and only if, h= f which is defined by a Pisot element fd} ith ay = by. Moreover,
the partial quotient vector@) = (ag, ... ,an).

Proof. (i) Letag # by. By (4) and 6),

an-1 a1 ao
fn=p= .
n=pP=ant 0 +...+ pn71 + bop"

As|p|>1land a,|>|a|,forall0<i<n-—1,we have thatp |=| a,|. Using againj p |> 1 and| a, |>| & |, for
all 0 <i<n-1, we conclude thdif,] = a,. Analogously, forall I< j <n-—1,

N W a3t L
fi=p anp So—ajpp=aj+ 0 +"'+pi*1+bopj
which implies tha{f;] = a;.
LetD(f)=(f{,...,f,), we have, for kKi <n-1,
f; —[f 1] fi 1— Qj+1 1
f_/ _ i+1 1+ — I+ + df/ —_ )
! f1— [fl] fi—ay andin fi—ay
ag o a; ag fi . .
On the other handy —a; = — = —— andfi;; —aj;1= — +...+ —— = — which give
h—a boo _ bofn i+1—ait+1 ) bop L p g
bo bg
fl = fi£ nd f = fn%. (6)
We have, for all I< i < n, asag dividesa;,
bo aji_1 ap | bo a; 1 ag g
fll=[fi=]=la+—+...+ —)=]=[bo(=+—+...+ -)] = bp—.
) =[fi =@+ o) ad) = o ) = Pn

We assume that, fordi <n-1,

; ; b b
DFL(F) = 00 = (£, i1 =2, Froinds .o )
() (180 nlla0 n—i+1 n)
We have, forall < j <n—i—1,
bo bo bg bofj bo bg bo 1
f20 [F20] = 20(f; — [fi]) = = andfr 2 — [f1-0] = 2 (f; — [f1]) = =
2 [Jao] aO(J (i) 5 % [1a0] ao(l [fa]) 5

and conclude that (i+1) (i+1)
i+ i+
o f 2 T bt bog
j-1 fl('+1)*[f1(|+l)] agp E

Besides, fon—i < j <n,

ii2) f_(i+1)7[f_(i+1) fiy
i+2) _ ] i e e = Hl e
fj—1 *W*(U*UJ])P*TP* fj-1.

We have obtained that, fordi <n-2,

i b b
D'*2(f) = (fla‘j,...,fwla‘j, i, fn)
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which implies thaD™1(f) = f andDX(f) # f, forall 1<k <n.
(i) Let ag=Dhgandf be given by §), thenD(f) = f by (6). Conversely assunig(h) = h, whereh € M*. Letb; = [hj],
forall 1< j <n, thus
|bn|>|bi|, forall1<i<n-1

Let f be defined by(5.5) usinga; = by,...,a, = by andag = by = 1. ThereforeD(f) = f, and moreover the
sequencdﬂéo, Hf), ey H.! is the same foh and f. As Dubois algorithm converged][ the unigueness of the limit
givesh = f. ¢

According to ( Theorem), the above theorem assure the following result.

Theorem 4.Over any formal power series field extension of degree 1), Fq[X][p], there is a vectofw, tp, ..., (n)
in (Fq[X][p])", which is periodic by the Dubois version of the Jacobi-Permdgorithm.

In the real case, Bouhamzg [characterized the vector of forfar, a?) which is 1-periodic by Jacobi-perron algorithm
of pre-period 2 Note that he uses a different form of Jacobi-Perron algariteee ¥]). He obtained also the following
results.

Theorem 5.There is no algebraic real, of degree, such that the vectafa, a?) is 2-purely periodic by J
Theorem 6There is no reabr such that the vectafa, a?) is 1- purely periodic by J

Remark.Theorenb is correct ifa > 1. Butif 0 < a < 1 then one uses a slightly different form which is givenih (
We give the analogous of these results in the case of formapseries.

Theorem 7. Let w € M*, the vector(w, w?) is purely 1-periodic by J if and only i is the inverse of a Pisot cubic
element v such thafv- Av— 1 = 0, where Ac Fq[X]\Fq.

Theorem 8.There is no vectofw, w?) which is purely 2-periodic by.J

RemarkThe proof of theoren and theoren is left as an exercise for the interested reader.

Theorem 9. Let w € M*. The vector(w, w?) is 3-purely periodic by J if and only if w is the inverse of a Pisabiz
element v such that Aw- ABv— B = 0, where AB € Fq[X]\Fq.

Proof. Let w € M*, the vector(w, w?) is purely 3-periodic by, then

J(w, w?) = <a),l - [ED : (7)

w w

P(w,w?) = @ ,{i} : (8)

and

s} [ o
w,0?) = :
" e |
w
Z(OJ,OJZ)
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then,

which gives

1
Letv= —, we setA=
w

A2 —ABV—-B=0

it is clear thatA, B € Fq[X]\Fy. Now, assume that is the root of the polynomiaP(Y) = AY3 — ABY? — B with A, B €
Fq[X]\Fg, such that v|> 1, it is clear thafv] = B and we havé\?(v— B) = B so,

v
A=y

e

_@Mi{v}

i v : (10)

v
I O B\
! (1 v e >
) v)

TV v R

(59)- ()

which implies thatA = [vi} .

P(God) = v .00, (12)
#(ow) = () - (&) @
This proves the Theorem. &

It is natural to conjecture that the same claim holds foreetiw, w?) which is (2n)-purely periodic byd.

Remark Take (w, w?) wherew is the root ofw® + X?w — X = 0, then it has a 3 periodic expansion. The difference
seems to be tha& andB can have common divisor.

Conjecture 2There is no vectofw, w?) which is (2n)-purely periodic byd.

We assume characterize the vedi@; w?) which is purely(2n+ 1)-purely periodic byd.
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Remark.Note that forn = 2, the conjecture?) is wrong for the real Jacobi-Perron algorithm : takeas the root of
2w? + w? 4 2w = 1 which gives a 4 periodic expansion.

4 An application

Letw=[X,X2--- X% ...] =X+ T e Fo((X™1)) be a root of the cubic polynomial

P(Y)=Y3-XY2-1.

We will show that the expansion of the vectot®) = (0%, %) by J is purely 1-periodic. We remark théw — X)w? = 1
which implies that

1

w = X + E,

thus(c] — © 0 = Jt(@© I . @ -

us[w] = X. We can applyd at w'® and denotev\V = J'(w'”). We havew'" = (E)’ w—X) = (E)’ F)' So,w\H =

w©. Hence, the expansion is purely 1-periodic.
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