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Abstract: In this paper, we aim to discuss several the basic arithmetic structure of Bianchi groups. In particularly, we study fundamental
domain and directed orbital graphs for the group PSL(2,O−1).
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1 Introduction

It is known that the study of the group PSL(2,C) := {T |T : C∞ −→ C∞, T (z) = az+b
cz+d , a,b,c,d ∈ C and ad− bc = 1}

consisting of all fractional linear transformations of the projective plane of points at infinity, with complex coefficients,
was one of the major topics of mathematics in the 19th century and played an important role in the development of
hyperbolic geometry. The group PSL(2,C) has a natural action on 3-dimensional hyperbolic space H3 which may be
described in geometric terms. An element T ∈ PSL(2,C) induces a biholomorphic map of the Riemann sphere C∪{∞}.
Jules Henri Poincare (1854-1912) observed that PSL(2,C) can be identified with the group of orientation preserving
isometries of H3. As in the study of the hyperbolic plane, the importance of finding discrete groups of hyperbolic
isometries of H3 was emphasized. Starting with an example by Emile Picard (1856-1941) and pursued by Luigi Bianchi
(1856-1928) one particularly interesting class of discrete subgroups of PSL(2,C) was considered. It is constructed in the
following arithmetic way: Denote by Od the ring of integers of an imaginary quadratic number field Q(

√
d) with d < 0

and square free. Then Od gives rise to a discrete group Γd := PSL(2,Od) < PSL(2,C) consisting of fractional linear
transformations with coefficients in Od . From [1,2] we can say that each subgroup τ of finite index in Γd operates
properly discontinuously on H3 and a fundamental domain for this τ action on hyperbolic 3-space in noncompact but of
finite volume. From various reasons, this class of arithmetically defined discrete groups of hyperbolic motions has gained
new vivid interest in recent years. Beside that the Bianchi groups Γd are also of interest in their own group theoretical
right. In [3,4], the structures of directed and undirected graphs were investigated. The relation between graphs and
permutation groups was examined. In [5], authors mentioned permutation groups, primitivity and their applications to
graph theory. In these papers [7,8,9,10] authors investigated some properties of suborbital graphs for the modular group,
Picard group, the simple groups and SL(3,Z) group. And also in [6], the author discussed suborbital graphs for the
normalizer of Γ0(N) in PSL(2,R) group.

This paper is devoted to a computer aided analysis of subgoups of small index in Γd , in particular, we will deal as
properties with subgroups of small index in Γd for d = −1,−2,−3,−5,−7. There is a fruitful interaction between
geometric-topological, group theoretical and arithmetic questions and methods.

2 The action of PSL(2,C) on H3

Consider the hyperbolic 3-space H3 = {(z, t) ∈C×R | t > 0}, that is, the unique connected, simply connected Riemann
manifold of dimension 3 with constant sectional curvature -1. A standard model for H3 is the upper half space model H3

with the metric coming from the line element ds =

√
dx2 +dy2 +dt2

t
with z = x+ iy. Every element

(
a b
c d

)
of PSL(2,C)
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acts on H3 as an orientation preserving isometry via the formula,(
a b
c d

)
· (z, t) =

( (az+b)(cz+d)+acy2

|cz+d|2 + |c|2y2 ,
y

|cz+d|2 + |c|2y2

)
where (z, t) ∈ H3. It is well-known that every orientation preserving isometry of H3 arises this way.The group of all
isometries of H3 is generated by PSL(2,C) and complex conjugation (z, t) 7→ (z, t), which is an orientation reversing
involution.
Indeed, the group PSL(2,C) acts transitively on the points of H3 so that the stabiliser of any point in H3 is conjugate to
the stabiliser of (0,0,1). Therefore H3 and its geometry can be obtained from SL(2,C) as its symmetric space as SU(2,C)
is a maximal compact subgroup. Likewise, the action on the sphere at infinity is transitive so that point stabilisers are

conjugate to ϒ =

{(
a b

0 a−1

)
| a 6= 0anda,b ∈C

}
. Any finite subgroup of PSL(2,C) must have a fixed point in H3 and

so be conjugate to a subgroup of SO(3,R). As such, it will either be cyclic, dihedral or conjugate to one of the regular
solids groups and isomorphic to A4, A5 or S4. The action of PSL(2,C) on H3 leads to an action of SL(2,C).

Lemma 1. The group SL(2,C) is generated by the elements ζ1 =

(
1 α

0 1

)
, ζ2 =

(
0 −1
1 0

)
where α ∈C. These generators

operate on H3 as follows (
1 α

0 1

)
(z,r) = (z+α,r),

(
0 −1
1 0

)
(z,r) =

( −z
|z|2 + r2 ,

r
|z|2 + r2

)
.

Proof. Suppose T =

(
a b
c d

)
∈ SL(2,C). If c 6= 0, we have

(
a b
c d

)
=

(
1 ac−1

0 1

)(
0 −1
1 0

)(
c 0
0 c−1

)(
1 dc−1

0 1

)

and for c = 0 we obtain the factorization (
a b

0 a−1

)
=

(
a 0
0 a−1

)(
1 a−1b
0 1

)
.

We thus conclude that the matrices ζ1,ζ2 together with the matrices Wη :=

(
η 0
0 η−1

)
, η ∈ C \ {0}, generate SL(2,C).

But the elements Wη may be represented as products of the matrices ζ1,ζ2 as is evident from the following formulas(
η 0
0 η−1

)
=

(
1 η2−η

0 1

)(
1 0

η−1 1

)(
1 1−η

0 1

)(
1 0
−1 1

)
,

(
1 0
β 1

)
=

(
0 −1
1 0

)(
1 −β

0 1

)(
0 −1
1 0

)(
−1 0
0 −1

)
,

(
−1 0
0 −1

)
=

(
0 −1
1 0

)(
0 −1
1 0

)
.

The first mathematical works on non-Euclidean geometry were published by N. Lobachevski (1829) and J. Bolyai
(1832). E. Beltrami (1868) introduced the upper space model, the unit ball model and the projective disc model of n
dimensional hyerbolic geometry, Milnor (1982). These models were well-known to the classical writers who used them
in their investigations on discontinuous groups, e.g. Bianchi (1952), Fricke (1914), Klein (1897), Humbert (1919), Picard
(1978), Poincare (1916). The upper-space model of three dimensional hyperbolic geometry is presented by Beardon
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(1983) and Magnus (1974).
The formulas of elementary hyperbolic geometry become particularly nice if we represent the points of hyperbolic
3-space by matrices in SL(2,C). It is know that the following formalism is due to H. Helling.

3 Bianchi groups and fundamental domain

Definition 1. A quadratic number field is a field F ⊂ C such that F has dimensional 2 as a vector space over Q. Such a
field takes the form F =Q(

√
n) = {p+q

√
n : p,q ∈Q and n > 1square-free}. If n is positive then F is a real quadratic

number field, and if n is negative then F is an imaginary quadratic number field.

The trace function of F is the additive homomorphism

tr : F −→Q, tr(α) = α +α.

The norm function of F is the multiplicative homomorphism

N : F∗ −→Q, N(α) = αα.

Specifically, N(p+q
√

n) = p2−q2n. The integers of the quadratic field F =Q(
√

n) are

OF = Z[g], g =


1+
√

n
2 if n≡ 1(mod4),
√

n if n≡ 2,3(mod4).

The discriminant of F is ∆F =

n if n≡ 1(mod4),

4n if n≡ 2,3(mod4).

Thus we see that every quadratic number field is of the form Q(
√

d), where d is any square free integer. For any natural
number m, define Od,m := Z+mωZ where

ω :=


1+
√

d
2 if d ≡ 3(mod4),
√

d if d 6≡ 3(mod4).

For simplicity, denote Od,1 by Od . We also define O1 := Z.

d ω N(p+qω) trace Elements o f norm 1
−1 i p2 +q2 2p ±1,±i
−2

√
−2 p2 +2q2 2p ±1

−3 1+
√
−3

2 p2 + pq+q2 2p ±1,±ω,±ω2

−5
√
−5 p2 +5q2 2p ±1

−7 1+
√
−7

2 p2 + pq+2q2 2p ±1

Let d is rational number. We examine Q(
√

d) = {p+q
√

d : p,q∈Q} ⊂C. Clearly if
√

d ∈Q or d = 1, then Q(
√

d) =Q.
For d = −1, Q(

√
−1) = Q(i) = {p+ q

√
−1 : p,q ∈ Q} is called Gaussian numbers. Also we may say that rational

numbers within the root can be arranged. For instance, Q(
√

1
12 ) =Q( 1

2

√
1
3 ) =Q(

√
3
32 ) =Q(

√
3).

Definition 2. Let d < 0, square free integer and let Od denote the ring of integers in Q(
√

d). The groups Γd = PSL(2,Od)
are called as the Bianchi groups. When d = −1,−2,−3,−7,−11 the rings Od have an Euclidean algorithm and the Γd
groups are known as the Euclidean Bianchi groups.

Theorem 1. Let K be an imaginary quadratic field of discriminant ∆K < 0, and let Od be its ring of integers. Then the
group PSL(2,Od) has following properties:

(i)PSL(2,Od) is a discrete subgroup of PSL(2,C).
(ii)PSL(2,Od) has finite covolume, but is not cocompact.
(iii)PSL(2,Od) is a geometrically finite group.
(iv)PSL(2,Od) is finitely presented.
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We fix an imaginary quadratic number field K may construct now a fundamental domain FK ⊂ H3 for group PSL(2,Od)
where Od is the ring of integers in K.

Lemma 2. The fundamental domain FQ(i) for PSL(2,O−1) is described by

FQ(i) = {z+ t j ∈H3 | 0≤ |Rez| ≤ 1
2
, 0≤ Imz≤ 1

2
, zz+ t2 ≥ 1}.

FQ(i) is a hyperbolic pyramid with one vertex at ∞ and the other four vertices in the points P1 = − 1
2 +

√
3

2 j,

P2 =
1
2 +

√
3

2 j, P3 =
1
2 +

1
2 i+

√
2

2 j and P4 =− 1
2 +

1
2 i+

√
2

2 j.

For PSL(2,O−1), the Picard group, the region exterior to all isometric spheres, is the region exterior to all unit spheres
whose centres lie on the integral lattice in C. The stabiliser PSL(2,O−1)∞ is an extension of the translation subgroup by a
rotation of order 2 about the origin. We thus obtain the fundamental region shown in figure.

Fig. 1: Fundamental domain for Γ−1

The Bianchi group Γd defined by Γd := PSL(2,Od) = SL(2,Od)/{±I} is a discrete subgroup of PSL(2,C) viewed as the
group of orientation preserving isometries of the 3-dimensional hyperbolic space H3

. Hence Γd acts properly
discontinuously on H3

. Fundamental domains for this action can analyze for small values of d.

Lemma 3. The fundamental domain FQ(
√
−3) for PSL(2,O−3) is described by

FQ(
√
−3) = {z+ t j ∈H3 | 0≤ |Rez|,

√
3

3
Rez≤ Imz, Imz≤

√
3

3
(1−Rez)}

∪{z ∈ C | 0≤ Imz≤ 1
2
,−
√

3
3

Rez≤ Imz≤
√

3
3

Rez}.

The picture of FQ(
√
−3) is closed quadrangle with corners in the points Q1 = 0, Q2 = 1

2 −
√
−3
6 , Q3 = 1

2 +
√
−3
6 and

Q4 =
√
−3
3 .

Now, we give examples about generator of Bianchi groups. We note that in here Γ ab
d commutator factor group of Γd .
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Example 1. (I) The group Γ−1 is generated by the matrices

A =

(
1 1
0 1

)
, B =

(
0 −1
1 0

)
, C =

(
1 i
0 1

)
, E =

(
−i 0
0 i

)

where i =
√
−1. A presentation of Γ−1 is given by the following relations

B2 = (AB)3 = ACA−1C−1 = (AE)2 = I,

E2 = (CE)2 = (BE)2 = (CBE)3 = I

and we have Γ ab
−1 = Z2

2. (II) The group Γ−2 is generated by the matrices

A =

(
1 1
0 1

)
, B =

(
0 −1
1 0

)
, C =

(
1 ω

0 1

)
.

where ω =
√
−2. A presentation of Γ−2 is given by the following relations

B2 = (AB)3 = ACA−1C−1 = (BC−1BC)2 = I

and again we can compute Γ ab
−2 = Z×Z2. (III) The group Γ−3 is generated by the matrices

A =

(
1 1
0 1

)
, B =

(
0 −1
1 0

)
, C =

(
1 ω

0 1

)
.

Where ω =− 1
2 +

√
−3
2 . A presentation of Γ−3 is given by the following relations

B2 = (AB)3 = ACA−1C−1 = (ACBC−2B)2 = I,

(ACBC−1B)3 = A−2C−1BCBC−1BC−1BCB = I

and then one may finds Γ ab
−3 = Z3. (IV) The group Γ−7 is generated by the matrices

A =

(
1 1
0 1

)
, B =

(
0 −1
1 0

)
, C =

(
1 ω

0 1

)

Where ω = 1+
√
−7

2 . A presentation of Γ−7 is given by the the following relations

B2 = (AB)3 = ACA−1C−1 = (BAC−1BC)2 = I

and one computes Γ ab
−7 = Z⊕Z2.

4 Congruence subgroups and digraphs

It is known that number theoretic interest in the Bianchi groups has centered primarily on the congruence subgroups and
the congruence subgroup property. There has also been a considerable amount of work on quadratic forms with entries in
Od and their relation to Γd . If σ is an ideal in Od then the principal congruence subgroup modσ , Γd(σ) consists of those
transformations in Γd corresponding to matrices in SL(2,Od) congruent to ±Imodσ .

Γd(σ) = {±T : T ∈ SL(2,Od),T ≡ Imodσ}.

Γd(σ) can also be described as the kernel of the natural this map ψ : SL(2,Od) −→ SL(2,Od/σ) modulo ±I. Thus each
principal congruence subgroup is normal and of finite index. A congruence subgroup is a subgroup which contains a
principal congruence subgroup. Notice that in the Euclidean cases each ideal is principal and a formula in M. Newman
allows us to compute the index of a principal congruence subgroup. Namely if α ∈ Od , d ∈ {−1,−2,−3,−7,−11} then

c© 2018 BISKA Bilisim Technology



JACM 3, No. 1, 63-71 (2018) / www.ntmsci.com/jacm 68

|Γd : Γd(α)|= ρ|α|3 ∏p|α(1− 1
p2 ) where p runs over the primes dividing α and ρ = 1 if α|2 or ρ = 1

2 otherwise.
Now we say some subgroup

W0 :=

{(
a b
c −a

)
∈ SL(2,C)

∣∣∣ a ∈ C, b,c ∈ R

}
,

W1 :=

{(
a −b
−c −a

)
∈ SL(2,C)

∣∣∣ a ∈ C, b,c ∈ R

}
,

W2 :=

{(
a bi
ci −a

)
∈ SL(2,C)

∣∣∣ a ∈ C, b,c ∈ R

}
.

The group SL(2,C) acts on W0 by ω 7→MωM−1 for ω ∈W0, M ∈ SL(2,C). Similarly, the group SL(2,C) acts on W1 and
W2. The full congruence subgroup is

Γ (σ) :=

{(
α β

γ δ

)
∈ SL(2,Od)

∣∣∣ (α β

γ δ

)
≡

(
1 0
0 1

)
mod σ

}

where σ is a non zero ideal in the ring of integers Od . Note that ∞ is a cusp of Γ (σ).
Another subgroup is

Γ0(σ) :=

{(
α β

γ δ

)
∈ SL(2,Od)

∣∣∣ γ ≡ 0 mod σ

}
.

Some of the groups Bianchi are subgroups of discrete groups which can be generated by hyperbolic reflections. The
relationship of the Bianchi to reflection groups is studied in Shvartsman (1987), Shaikheev (1987), Vinberg (1987) and
Ruzmanov (1990).

We can give applications for PSL(2,O−1), hence we will obtain an extension of suborbital graphs.

Theorem 2. PSL(2,O−1) acts transitively on Σ :=Q(
√
−1)∪{∞}. We represent ∞ as ± ε

0 where ε is 1 or i.

Proof. We can show that the orbit containing ∞ is Σ . If x
y ∈ Σ , then as (x,y) = 1, there exist α,β ∈ Z[i] with αy−βx = 1.

Then the element

(
α x
β y

)
of PSL(2,O−1) sends 0 to x

y .

Lemma 4. The stabilizer of 0 in PSL(2,O−1) is the set

PSL(2,O−1)0 := Γ−1,0 =

{(
1 0
λ 1

) ∣∣∣ λ ∈ Z[i]

}
.

Proof. The stabilizer of a point in Σ is a infinite cyclic group. As the action is transitive, stabilizer of any two points

are conjugate. Hence it is enough to examine the stabilizer of 0 in PSL(2,O−1). T

(
0
1

)
=

(
a b
c d

)(
0
1

)
=

(
0
1

)
and so(

b
d

)
=

(
0
1

)
. Then b = 0, d = 1 and as detT = 1, a = 1. Therefore c = λ ∈ Z[i]. Thus T =

(
1 0
λ 1

)
. Indeed this shows

that the set PSL(2,O−1)0 is equal to
〈(1 0

1 1

)〉
.

Definition 3.PSL(2,O−1)
0(N) := Γ 0

−1(N) = {T ∈ PSL(2,O−1) |b≡ 0(modN), N ∈ Z[i]}
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It is clear that Γ−1,0 < Γ 0
−1(N)< Γ−1. We may use an equivalence relation ≈ induced on Σ by Γ−1.

Now let
r
s
,

x
y
∈ Σ . Corresponding to these, there are two matrices

S1 :=

(
? r
? s

)
, S2 :=

(
? x
? y

)

in Γ−1 for which S1(0) =
r
s

, S2(0) =
x
y

. Therefore
r
s
≈ x

y
if and only if

S−1
1 S2 =

(
s −r
? ?

)(
? x
? y

)
=

(
? sx− ry
? ?

)
∈ Γ

0
−1(N).

So sx− ry≡ 0(modN).

Definition 4. Let G be a graph and a sequence v1,v2, ...,vk of different vertices. Then form v1 −→ v2 −→ ...−→ vk −→ v1,
where k > 2 and k positive integer, is called a directed circuit in G.

Definition 5. Let (Γ−1,Σ) be transitive permutation group. Then Γ−1 acts on Σ ×Σ by Θ : Γ−1× (Σ ×Σ) −→ Σ ×Σ ,
Θ(T,(α1,α2)) = (T (α1),T (α2)), where T ∈ Γ−1 and α1,α2 ∈ Σ . The orbits of this action are called suborbitals of Γ−1.

Now we investigate the suborbital directed graphs or digraphs for the action Γ−1 on Σ . We say that the subgraph of vertices
form the block

[∞] :=
[1

0

]
=
{x

y
∈ Σ

∣∣∣ x≡ 1(modN), y≡ 0(modN)
}

is denoted by Fu,N := F( 1
0 ,

u
N ) where (u,N) = 1.

Theorem 3. There is an edge
r
s
−→ x

y
in Fu,N if and only if there exists a unit ε ∈ Z[i] such that x ≡ ±εur (modN),

y≡±εus(modN) and ry− sx = εN.

Proof. Suppose that there exists an edge
r
s
−→ x

y
∈ Fu,N . Hence there exist some T ∈ Γ−1 such that sends the pair (∞, u

N )

to the pair ( r
s ,

x
y ). Clearly T (∞) = r

s and T ( u
N ) =

x
y . For T (z) = az+b

cz+d we have that a
c = r

s and au+bN
cu+dN = x

y . Then there exist
the units ε0,ε1 ∈ Z[i] such that a = ε0r, c = ε0s and au + bN = ε1x, cu + dN = ε1y. So, we can write(

a b
c d

)(
1 u
0 N

)
=

(
ε0r ε1x
ε0s ε1y

)
. Finally, taking with ε = ε0ε1, we get that x ≡±εur (modN), y≡±εus(modN). And also

from the determinant ry− sx = εN is achieved.

Conversely, we can take the plus sign. Therefore there exist b,d ∈Z[i] such that x = εur+bN, y = εus+dN. If we choose

a= εr and c= εs, then we find x = au+bN and y= cu+dN. So T (∞, u
N ) =

(
a b
c d

)(
1 u
0 N

)
=

(
εr x
εs y

)
. As ε(ry−sx) =N

we have ad−bc = 1 and T ∈ Γ−1. Hence
r
s
−→ x

y
in Fu,N . Similarly, minus sign case may shown.

Theorem 4. Fu,N contains directed hyperbolic triangles if and only if there exists a unit ε ∈ Z[i] such that ε2u2−εu+1≡
0(modN) and ε2u2 + εu+1≡ 0(modN).

Proof. We suppose that Fu,N contains a directed hyperbolic triangle. Since the transitive action, the form of the directed
hyperbolic triangle can written like this

1
0
−→ u

N
−→ r

N
−→ 1

0
.

As the edge condition in above the theorem, we have to be provided for the second edge u
N −→

r
N , that is u− r = ε

and r ≡ ±εu2 (modN). Then we have εr ≡ ±ε2u2 (modN). Therefore ∓ε2u2 + εr ≡ 0(modN) and εu− εr = ε2 = ±1
are obtained. Hence there are two cases. The first case is −ε2u2 + εr ≡ 0(modN) and εr = εu− 1. The second case is
ε2u2+εr≡ 0(modN) and εr = εu+1. Finally we may say that for ε ∈Z[i] these equations ε2u2−εu+1≡ 0(modN) and
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ε2u2+εu+1≡ 0(modN) are satisfied. Conversely, we can solve these equations only with special conditions. Let ε ∈Z[i]
be a unit such that ε2u2− εu+1≡ 0(modN). Above the theorem implies that there is a directed hyperbolic triangle

1
0
−→ u

N
−→

u− 1
ε

N
−→ 1

0

in Fu,N . Similarly, we can find another directed hyperbolic triangle for ε2u2 + εu+1≡ 0(modN), in this case

1
0
−→ u

N
−→

u+ 1
ε

N
−→ 1

0

in Fu,N .

Now we get example for first equation.

Example 2. Let N = 1+6i. If we take u = 2+ i, then this equation (3+4i)ε2− (2+ i)ε +1≡ 0mod(1+6i) is achieved
for ε = i. Hence we get this directed hyperbolic triangle as

1
0
−→ 2+ i

1+6i
−→ 2

1+6i
−→ 1

0

in F2+i,1+6i. And also, it is clear that (2+ i,1+6i) = 1 and ry− sx = εN.
Similarly, let N = i. Again we choose u =−1, then ε2+ε +1≡ 0mod(i) is held if and only if ε =−i. So, directed triangle
is

∞−→ i−→ 1+ i−→ ∞

in F−1,i.

Fig. 2: Circuits in F2+i,1+6i and F−1,i
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Corollary 1. The transformation ψ :=

(
−εu ε2u2∓εu+1

εN
−εN εu∓1

)
which is defined by means of the congruence ε2u2∓ εu+1≡

0(modN) is an elliptic element of order 3. Obviously that detψ = 1, ψ3 = I and tr(ψ) =∓1. Moreover, it is easily seen

that ψ

(
1
0

)
=

(
u
N

)
, ψ2

(
1
0

)
:= ψ

(
u
N

)
=

(
u∓ 1

ε

N

)
, ψ3

(
1
0

)
:= ψ

(
u∓ 1

κ

N

)
=

(
1
0

)
.

Corollary 2. The transformation η :=

(
−εu ε2u2±εu−1

εN
−εN εu±1

)
has detη =−1 and tr(η)=±1. Furthermore, η

(
1
0

)
=

(
u
N

)
,

η

(
u
N

)
=

(
u∓ 1

ε

N

)
, η2

(
u
N

)
=

(
u∓ 1

2ε

N

)
, η3

(
u
N

)
=

(
u∓ 2

3ε

N

)
, η4

(
u
N

)
=

(
u∓ 3

5ε

N

)
,..., ηn

(
u
N

)
=

(
u∓ Fn

Fn+1ε

N

)
,

where n ≥ 0 positive integer and Fn Fibonacci numbers. It is known that F0 = 0, F1 = 1 and Fn+2 = Fn +Fn+1. That is,
two directed paths

1
0
−→ u

N
−→

u∓ 1
ε

N
−→

u∓ 1
2ε

N
−→

u∓ 2
3ε

N
−→

u∓ 3
5ε

N
...−→

u∓ Fn
Fn+1ε

N
are obtained.

Example 3. Let N = 41 and u = 7. We consider first case. If we take ε =−1 then we have this directed path

1
0
−→ 7

41
−→ 7+1

41
−→

7+ 1
2

41
−→

7+ 2
3

41
−→

7+ 3
5

41
...−→

7+
√

5−1
2

41
.
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