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investigated. Existence conditions for the generalizedpmused radial epiderivative are established.

Keywords: Radial cone, generalized composed radial epiderivatateyaued optimization.

1 Introduction

In the last thirty years the notion of derivatives or epidatives has been formulated in different ways. (sg8,[7,8, 10,
13,19,23,24,25,28,31]). Aubin first introduced the notion of the contingent dative for set-valued map by using the
contingent conel]]. Corley established the sufficient and necessary optiynatinditions for set-valued optimization
problems by virtue of the concept of contingent and cirogésut derivative 13]. The contingent derivative play an
important role for set-valued optimization problems. Buwgcesary and sufficient optimality conditions do not caleci
unified under standart assumptions. To overcome the difficahother of differentiability concept which is based on
using epigraphs of set-valued maps was proposed Jahn amdZ&u

Kasimbeyli introduced ing4] the notion of the radial epiderivative of a nonconvex saitiéed map. This definition of the
radial epiderivative given by Kasimbeyli is different frahmat of Flores- Bazan7] and is similar to the definition of the
contingent epiderivative given by Jahn and Ra2®.[He derived the formulation of optimality conditions inetlsingle
valued and set-valued optimization without convexity aggtion and investigated relationships between this kind of
epiderivative and weak subdifferentials and directiordtives for real-valued nonconvex functions.

Kasimbeyli and Inceoglu introduced irq] the notion of generalized radial epiderivative for seleal maps and
investigated existence conditions for generalized raétierivative. They established the relationship betwien
radial epiderivative and the generalized radial epidékieaBy using the generalized radial epiderivative, Kasewii
and Inceoglu presented the necessary and sufficient ofiiiraahditions for set-valued optimization.

Recently, there has been an increasing interest in secatet-and higher-order optimality research for set-valueghm
[3,4,5,6,9,11,12,14,15,16,21,22,27,20,26,29,30,32]. Jahn et al. proposed the second-order epiderivativesring of
the second-order contingent sétl], introduced by Aubin and Frankowsk&][ They obtained the second-order
optimality conditions by using these dervatives in setsedl optimization.It can be seen that a second-order caeiing
set, introduced by Aubin and FrankowslZ, [and a second-order asymptotic contingent cone, intredby Penot3Q],
play a important role in establishing second-order opiitpalonditions. Li et al. proposed a generalized seconaiord
composed contingent epiderivative for a set-valued map ianelstigated some of its properties. By virtue of the
generalized second-order composed contingent epidedydiey also establised a unified second-order sufficiedt a
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necessary optimality conditions for set-valued optim@af29]. Isac and Khan employed the second-orer optimality
conditions in set-valued optimization problems, using akhihey introduced new kind of second-order tangent
epiderivative [L6].

Anh and Khanh introduced the higher-order radial sets amcesponding derivatives. They proposed their properties
and basic calculus rules. They established both necesadrgudficient higher-order conditions for weak efficiency in
set-valued vector optimization probled][ Anh and Khanh gived both necessary and sufficient higheéerconditions

for various kinds of proper solutions to nonsmooth vectdimjzation problem in terms of higher-order radial sets and
radial derivatives]. In [25], Inceoglu introduce the concepts of second-order ragiadegivative and second-order
generalized radial epiderivative for nonconvex set-vdloeps. They also investigate iB5 some of their properties
and give existence theorems for the second-order genedaliadial epiderivatives. In2p], Inceoglu propose
second-order optimality conditions by using second-orddial epiderivatives.It is wort noting that higher-ordadial
derivative or radial epiderivative by a higher-order radit, in general, is not a cone and a convex set. Therefares th
are some difficulties in studying higher-order optimalipnditions for set-valued optimization problems.

Motivated by this problem, we intend to give a new generdlizecond-order composed radial epiderivatives for
set-valued maps and investigate some of its properties.sByguhis concept, we give a unified second-order sufficient
and necessary optimality conditions for set-valued optatidon problems, which is a generalization of the corregpun

in [25). This paper is divided into two sections. In Section 2 ,weeghe second-order radial epiderivatives and prove the
existence conditions of one of them.

2 Preliminaries

Throughout this paper, L&, ||.||x) and(Y,|.|ly) real normed spaces a®be a nonempty subset &f. LetC C Y a
pointed, closed and convex cone with apex at the origin anshampty interioiintC, and letY be partially ordered by
C. LetF : S=2 Y be a set-valued map. Let a péiky) € graph(F) be given. In this section, we recall the concept of the
radial epiderivative and the generalized radial epidéxieantroduced by KasimbeylPH], and Kasimbeyli and Inceoglu
[25], respectively, together with some standart notions.

Definition 1. Let U be a nonempty subset of a real normed sf@cé.||,), and letze cl (U) (closure of U) be a given
element. The closed radial conélR z) of U atze cl (U) is the set of all £ Z such that there arg,, > 0 and a sequence
(Zn) ey C Z With rIlln Zn =z so thaz+ Anzy € U, foralln e N.

Note that the closed radial cone can equivalently be alsoel®fis the following definition.

Definition 2. Let U be a nonempty subset of a real normed sf@cé.||,), and letze cl (U) (closure of U) be a given
element. The closed radial conélR z) of U atze cl (U) is the set of all £ Z such that there arg,, > 0 and a sequence
(Zn) ey C U with r!mn A(zn—2) =z

It follows from these definitions that
R(U,Z) =cl (Cone(U 72)) )

where cone denotes the conic hull of a set, which is the setatmne containing —z

Definition 3. Let F: X = Y be a set-valued map.

(i) The set
graph(F) ={(xy) e XxY|yeF (x)}

is called the graph of F
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(i) The set
dom(F) = {xe X | F (x) # 0}

is called the domain of F. F is said to be proper if d@#) # 0;
(i) LetY be partially ordered by a proper, convex, and pointeted8C Y. The set

epi(F)={(x,y) e XxY|yeF (x)+C}
is called the epigraph of F.
Now we give the definition of the radial epiderivative givenKasimbeyli without convexity and boundedne24][

Definition 4. Let F: S= Y be a set-valued map. Let a pdiy) € graph(F) be given. A single-valued mapB(Xy) :
X —Y whose epigraph equals the radial cone to the epigraph of (.5} i.e.

epi(DrF (xy)) = R(epi(F), (x.Y)).,
is called radial epiderivative of F afx,y).

Definition 5. Let F: X = Y be a set valued map and ledy) € graph(F). A set valued map RF (X,y) : X =Y whose
graph coincides with the contingent cone to graph of Fxay), that is

graph(DrF (x,y)) = R(graph(F), (x.y)),
is called radial derivative of F afx,y) [7, 31].
To give the definition of the generalized radial epideriative recall the minimality concept.

Definition 6. Let (Y, ||.||y) be a real normed space partially ordered by a convex coreYC Let D be a subset of Y and
letyeD.

(i) The elemeny is said to be a minimal element of DD N ({y} —C) = {y}.

(i) Letthe ordering cone have a nonempty interior(iDf. The elemeny is said to be a weakly minimal element of D,
if DN ({y} —int(C)) = 0. The set of all minimal, weakly minimal elements of D witlpezs to the ordering cone C
is denoted by MigD,C), w— min(D,C), respectively.

Definition 7. A set valued map §F (x,y) : S— {x} =2 Y is called the generalized radial epiderivative of F(aty); if
DgrF (%9) (x) = Min{y € Y | (x.y) € R(epi(F), (%,¥))}, Vx € X )
where MinD is the set of all minimal elements of Z5] Definition 8.

Notice that for somex € S— {x} the set{yeY |(x,y) € R(epi(F),(X,y))} may be empty. In this case we have
DgrF (Zy) (X) =0

3 Generalized composed radial epiderivatives
In this section we introduce a generalized composed ragidéevative for set-valued maps, and give some of progerti

of its and existence theorems. The following concept exdencharacterization of Definitiohgiven by Kasimbeyli and
Inceoglu R5].
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Definition 8. Let F: S=2 Y be a set-valued map aridy) € graphF, and (u,v) € X x Y. The generalized second-order
composed radial epiderivative of F & y) in the direction(u, V) is the set-valued mapa;}F (Xy,u,v) : X =Y defined
by

DgicF (X¥,0,V) =Min{y €Y | (xy) € R(R(epiF, (x¥)), (&)} @

Proposition 1.R(R(S,z),w) = clcone(cong(S— Z) —w).

Proof.LetK = cong(S— 2), then
R(K,w) = clcong(K — w)

R(K,w) =R(clK,w) = R(R(S,Z) ,w).

Lemmal.Let F: S=2 Y be a set-valued map ard,y) € graphF, and(u,v) € X x Y. Then we have the following
statement:

R(R(epiF, (x,y)),(U,)) +{0x} x C = R(R(epiF, (x.y)) , (U,V))

Proof.We need to prove that
R(R(epiF, (X)), (U, V) + {0x } x C C R(R(epiF, (x,y)), (u,V)).
For every(x,y) € R(R(epiF, (X¥)), (T;V)) + {Ox} x C, there exis(R,y) € R(R(epiF, (X,¥)), (4;V)) andc € C such that
(%y) = (%,¥)+ (0x,¢) = (X, y+c)

Since(X,¥) € R(R(epiF, (X,Y)), (u,V)), by the definiton of radial cone, by the definition of radiahepthere are sequence
(Xn,¥n) = (X,¥) andt, > 0 such thafu, V) +t, (X1, Yn) € R(epiF, (X,¥)), Vn € N. Moreover¥n € N, there exist sequences
(XK, ¥K) = (I,V) +t (Xn,Yn) @ndty > o such thatX;y) +t (XK, yK) € epiF, vk € N. Then we have

y+thyke F ()?th,'fxﬁ) +C, VnkeN. (3)
SinceC is a cone and € C, together with(3), we have
Y+t (yﬁ +tnc) =yt +titace F ()?th,'ﬁxﬁ) +C, VnkeN,

that is, (X,y) + t&(xK,Y&+1toc) € epiF Vnk € N. Since (x{,y&) — (U,V) + th(X),Yn) as k — oo. Thus
(U,V) +th (Xn,Yn+ €) € R(epiF, (X,y)), Vn € N. Simultaneously(X,yn +¢) — (X,¥+ ) since(Xn,yn) — (X,¥) asn — o,
thatis,(x,y) = (X,¥+c¢) € R(R(epiF, (X,y)), (u,v)). This completes the proof.

Now, we define a strictly positive homogeneous and subagditiap and then show under appropriate assumption that
the generalized second-order composed radial epidemvatstrictly positive homogeneous and subadditiv@25).

Definition 9. Amap F: S==Y is called

(a) strictly positive homogeneous if(Bx) = aF (x) for all a > 0 and all xe X.
(b) subadditive
F (x¢)+F (x2) CF (x14x2) +C.

If the properties a) holds wittr > 0 and b) holdsF is called sublinear][Q].

Theorem 1. Let for every xe X, the generalized composed radial epiderivativérCB(Z)T,lI\ﬂ (X) # 0. Then
DSrCF (x,y,u,V) is strictly positive homogeneous. Moreover, {[RRepiF, (x,¥)), (u,V)) is a convex cone and the set

G(x) ={ye Y| (xy) € R(R(epiF, (X.y)), (0,V))} (4)
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fulfills the domination property for all ¢ X, then IZS,CF (X,y,Uu,V) is subadditive.
Proof. Firstly, we prove the strictly positive homogenity. For gvg > 0 vex € X, we have
Ds,cF (X y,u,v) (AX) =Min{y €Y | (Ax,y) € R(R(epiF, (X,¥)),(0,V))}
=Min{AueY | (Ax,Au) € R(R(epiF (X,Y)),(u,v))}
=AMin{ueY | (x,u) € R(R(epiF (X,y)), (u,v))}
= ADZcF (%, Y,u,v) (X).

For everyx, x; € X andy; € DZF (X¥,0,V) (x1)., 2 € D3cF (X¥:0,V) (), let (x.y1) € R(R(epiF, (X ¥)), (G4,V)) and
(X2,¥2) € R(R(epiF, (x,¥)), (u,v)). SinceR(R(epiF, (x,y)), (u,V)) is a closed and convex cone, we have

2 00y1) 3 02.y2) € R(R(ePIF (K9] (G.7).

that is,
(X1 +X2,y1+Y2) € R(R(epiF, (x,y)), (U,V)).

Thus, we have
Dgrc (X y.u \7) (Xl) + DgrcF (X Y, U,V) (XZ) C G(Xl + XZ)

It follows from the domination property and definition of teneralized second-order composed radial epiderivétate t
G(x1+X2) C MInG (X +X2) +C = Dj,cF (XY, 0, V) (X1 + X2) +C.
Therefore, we have
DGicF (X ¥,U.V) (xa) + DgecF (XY 0,V) (Xp) € DgcF (X, UV (x1.+ %) +C.
Definition 10. Let Y be a partially ordered by a pointed, closed, and conmmedCC Y wiht apex at origin and a
nonempty interior intC).

(@) The con& is Daniell, if any decreasing sequenceYithaving a lower bound, converges to its infimum.
(b) A subset oD of Y is said to be minorized, if there isyee Y so thatD  {y} +C.
(c) The domination property is said to be hold for a suisef Y if D C min(D,C) +C [2§].

Now we need to establish an existence theorem for the géretalecond-order radial epiderivative.

Theorem 2.Let F: S=Y be a set-valued mapge S,y € F (X), and(u,v) € X x Y. Additionally, let C be Daniell and let
C be a closed pointed convex cone. Let for everys«

G(x) = {yeY|(xy) € R(R(epiF.(xY)). (U,))}
be minorized. Then for all % S the generalized second-order composed radial epidd,v'fyﬁ%rcF (X,y,0,V) is exists.

Proof. Since the radial cone is always closed in a normed space ftheveryx € S the setG (x) is and closed and
minorized. From the existence theorems of minimal elemgsets proposition 3.16. page in Luc) r\(fimx) is nonempty,
i.e. DZcF (XY, 0,V) is well defined.

Theorem 3.Let F: S=2 Y be a set-valued magx,y) € graph(F), and(u,v) € X x Y. If the generalized second-order
composed radial epiderivativeéQF (X,¥,Uu,V) exists and the set

G(x) ={ye Y| (xy) € R(R(epiF, (X.¥)). (0:%))}
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fulfills the domination property for all € X, then
epi(D§cF (%.¥,U,V)) = R(R(epiF, (XY)), (U, V).

Proof. For every(x,y) € epi(DércF (X,y,U,V)) there existy € DS,CF (Xx,y,u,Vv) () andc € C, such thaty = y+ c. Since
y € D3cF (X,Y,0,V) (x), it follows from definition of theD3,.F that(x,y) € R(R(epiF, (X.y)), (U,V)). Then we get

(x.y) = (%,Y) + (0x,¢) € R(R(epiF, (X)) , (u,V)) +{0x } x C =R(R(epiF, (x,y)), (u,V)),
which implies
epi(DgcF (X¥,U,V)) € R(R(epiF, (X,Y)), (4,V)).
Conversely, suppose théat y) € R(R(epiF, (X,y)), (1, V)), theny € G(x). By the domination property, there exists some
y € MinG(x), such thay € {y} +C. By the definition oﬂDS,CF, we have
MinG (x) = D§cF (X VU, ) (X).

Thusy € D3 .F (XY, 0,V) (x) +C, that is,(x,y) € epi(D3F (X,y,0,V)). Then we can conclude that

epi(DgcF (%.Y,1,V)) = R(R(epiF, (X Y)) . (U,1)).

4 Conclusion

In this article, we introduce a new second-order radial @pidtive by taking radial epiderivative of a radial epidative.
We obtain the some properties of these second-order rgzldgieative.
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