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Abstract: In this paper, we show that the unified method is not only memeegal than the family of tanh function methods, also it

gives many more general solutions than the new members &dintigy of <%> -expansion methods. Compared to other methods, the

significant contribution of the unified method is firstly toifyrthe family of tanh function methods and the family é%’)-expansion

methods. Secondly, it gives many more solutions for NPDEetliconcise and simple manner than the total of these miliés. Also,
the unified method gives these abundant solutions withdogusdious and complex algorithm on computer programserixfards,
we demonstrate the effectiveness of the unified tanh metheedking more exact solutions of the Lonngren wave equation

Keywords: The tanh function method,(%)-expansion method, the new approach of generalié%b)-expansion method, The
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1 Introduction

Nonlinear partial differential equations (NPDES) haverbeebjected of study in various branches of mathematical
physical sciences such as physics, biology, chemistryrefbee, finding new methods and obtaining many more
solutions for NPDEs plays an important role in science.

In recent years, tanh method aé%)—expansion method have been used many authors. The forfivstlisintroduced

by Malfliet [1] and used in some pap& — 14] deriving different variations. The latter has been firstiroduced by
Wang and Zhan{l5 and widely used in some papét$— 24]. Although compared and showed the merits and demerits
of these two methods and theirs variations in some paj2&rs 28], it is not enough to use only one type of these
methods to find more solutions so far. Namely, it can be netxlege more than one type method to have more solutions
for NPDEs. Therefore, we have considered to find a unificdiothese methods.

Itis claimed that| % -expansion method introduced by Wang and Zh@rijjgives many solutions for NPDEs than the
family of tanh function methods. However, some authors ashaxe mentioned above showed that the solutions of
(%)-expansion method and the modified extended tanh functiahadeare exactly sam5—28]. The concrete
relation of these two methods was given in our arti@8. To convert the solutions % -expansion method to the
solutions of the modified extended tanh function and to iadiche relation of coefficients and auxillary equations, th
main point is to use transformation and trigonometric angenlgolic identities. In our another article, we unified the

family of tanh function methods under one method called thifad method30].
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Our main contribution in this paper is to propose the unifiedthnd as a unification also for the family of

(%)—expansion methods. Therefore, it has been noticed theednifiethod gives many more solution for NPDEs

without making too much effort on computer programs.

This paper is organized as follows. In section 2, we haveegntesl description of the unified method. In section 3, we
have showed and proved that the unified method unifies thdyfarhi % -expansion methods and gives many more
solutions than any members of the family of these methodsettion 4, we have implemented the unified method to
solve the Lonngren wave equation to obtain new solutiongkvbould not be attained before.

2 The unified method

We describe the unified method for finding travelling waveuohs of NPDEs in the following steps. Suppose that a
nonlinear partial differential equation(NPDE), say in timdependent variablesandt, is given by

P(U,LJI,UX,Uxt,Utt,Uxx,...) =0 (1)

whereu(x,t) is an unknown functionP is a polynomial in u = u(xt) and its various partial derivatives, in which
highest order derivative and nonlinear terms are involved.

The summary of the unified method can be presented in thenfioigpsix steps:

Step1: To find the travelling wave solutions of Efj)( using the wave variable
U(X,t):U(E),E:X—Ct, (2)

where the constarttis generally termed the wave velocity. Substituting E3).ifito Eq. (), it is obtained the
following ordinary differential equation(ODE) i& (which illustrates a principal advantage of a travellingrea
solution, i.e., a PDE is reduced to an ODE).

P(U,cU’,U’,cU” cU”,U”,..) =0 ()
Step?2: If necessary one integrates E8).6s many times as possible and set the constants of intagtatibe zero for

simplicity.
Step3: Supposed the solution of nonlinear partial differerggiation can be expressed by an ansatz as follows:

M . .
U@ =2+ [ag b7 (4)

where @ = ¢ (&) satisfies the Riccati differential equation

@ (&)= (§)+b, (5)

where ¢ = g—?,anda; ,bi andb are constants. The general solution of Ex).gs follows:
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Family 1: Whenb < 0, the solutions of Eq 5]

\/— (A2+B2)b—Ay/=bcost(2v/=b(£+&))
Asinh(2/~b(§+&))+B
—/- (A2+Bz)b—A\/jocosl"(2\/jo(E+Eo))
Asinh(2/~b(§+&))+B (6)

- —2AV-b
b+ A+cosh(2y/~b(&+&p)) —sinh(2v/~b(€+&p))

/b 2AV/-b
b+ A+cosh(2v/=b(&+&o) ) +sinh(2v/—b(+&))

whereA andB are two real arbitrary constants, afigarbitrary constant.
Family2: Whenb > 0, the solutions of Eq 5]

\/(A2—B2)b-AvBcos 2/B(E +£0))

Asin(2vb(§+&))+B

—\/(r2-B2)b-AvBeos( 2VB(¢ +&o))
Q&)= Asin(2x/5(5+fo))+5f @
_ —2Aivb
ivb+ - cos(2v/b(& +£0) )i Sin(2VB(E + o) )
N 2Aivb
ivb+ Atcos(2vb(E+&0)) +isin(2vb(E+&o))

whereA andB are two real arbitrary constants, afigarbitrary constant.
Family 3: Whenb = 0, the solution of Eq.%)

— 8
&+ ®)
whereé arbitrary constant.

Family 4: The positive intege can be accomplished by considering the homogeneous bddahgeen the linear term
of the highest order with the nonlinear term of highest degqgpearing in Eq.3) as follows:

If it is defined the degree af(&) asD [u(&)] = M, then the degree of other expressions is defined by

dqu
D[d_fq] —M+q

D [u’ (%)S] =Mr+s(q+M).

Therefore, it is found the value ®f in Eq. @).

Step4: Substituting Eq4) and &) into Eq.@) and collecting all terms with the same degreegadbgether, then setting

each coeffcients of terms wil (—M < i < M) to zero yield a set of algebraic equations i, c andb.

Step5: Substitutings;, b, c andb obtained in step 5 into4) and using the general solutions of E5).in (6) ,(7) and @),
it can be obtained the explicit solutions of Ef).immediately depending on the valuetof

3 Comparison of the methods

In mathematical literature, the family of tanh function meds and the family o % -expansion methods have been
used widely to solve NPDESs over 20 years. Both of these msthvde modified and developed in time.

(

G/

G

)-expansion method has been modified and developed suchhefsitantion method in time and given new solutions
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for NPDEs if compared to modified extended tanh function metffhe new approach of generalizé%)-expansion

[31—36] and th %', é)-expansion metho[B7 — 44 are two of them.

We show that the unified method unifies the new approach of rgkred (%)-expansion method and the

(%, é)-expansion method and it also gives many more solutionsttiese methods have.

3.1 Comparison between the new approach of genera(%fal-expansion method and the unified
method

Theorem 1.The unified method gives many more solutions than the newagipof generalizeé%) -expansion method.

Proof. If we divide the auxillary equation of the new approach ofgaﬁzed(%)—expansion method

G" (&) = AG?(£) +BG(&)G (&) +C(G (8))?

by G? (&) and then use the simple equality

G'(§) _ (G’(E))'+ (G’(f)){

G(¢&) G(¢&) G(¢)
we get
G (&), (G &)\ _ G (&) G(§))?
(Ge) + (&) =8(&e) re(Se) ©
The last equation can be written as follows:
G\ _ ~ .(GE B \? 4A(C-1)-B?
(56) = 9(& *2em) + e 4o
As it can be seen that EqL@) is completely equal to equation
P(&) =ap(§)*+b (11)
h idered
when considere (E)fG'(E)jL 5 aicilbi‘lA(C*l)*Bz
Pe)=GE T2c—y? TP T Tac

From here, it has been reached the connection between thélBpand (1) that they are essentially the same equation.
To compensate the difference in the solutionsGnand (7), it can be put to the coefficien q;ab instead off¥b outside

of functions and/Fab instead offb inside of functions This operation converts all of the solutions &j o solutions

of (10).

After taking the following hyperbolic and trigonometriceintities into consideration and using the binomial expamsi
and auxiliary transformation

(© 2018 BISKA Bilisim Technology
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we can gain a general formula that gives a connection bettfeenoefficients of these two methods. Considering the
ansatz of the new approach of generali{%) -expansion method

=52 (58)

and of the unified tanh method

as follows:

u(é) =iiai (GG/((EE)))I =i£a; ((p(f)+ 2(1BC>)i =Ao+_£[Ai(pi (&) +Bip™ (8)]. (12)

5[4 o) s

From here, the solutions obtained by the new approach ofrgkared (%)-expansion method can be converted easily
to the some solutions of the unified methétbwever, the unified method gives many more solutions whashrmot be
obtained by the new approach of generali{%)—expansion methodParticularly, the solutions consist of the function-

type in 6) and (7).

so that gives

3.2 Comparison between tl(l%, é)-expansion method and the unified method

Theorem 2.The unified method gives many more solutions tham%u%)-expansion method.

Proof. The (& G , G) expansion method, which can be thought of as an extenS|th<€fG ) expansion method, gives the
solutions as follows:

M &< A; cosh(ké)+A;sinh(ké) ) n Alcosl'(k.f)+A25|nr‘(kE))' 1
u(é) = 2i=0 Aq sinh(k§ ) +Az cost{ké)+C Zu 1 'Alslnr’(ké)+A2cosf(kE)+C) (14)
M ( Aq cogké)—Agsin(ké) ) T  (Agsin(ké)—Agcogké)) ~t ’
2i=08 Aqsin(k§)+Azcogké)+C z., ' (Aq sin(ké )+ A, cogké)+C)!

Using the hyperbolic and trigonometric identities

cosh(xFy) = cosh(x) cosh(y) F sinh(x) sinh(y)

sinh(xFy) = sinh(x) cosh(y) F cosh(x) sinh(y)
Ccos(XFY) = cos(x) cos(y) =+ sin(x) sin(y)
sin(xFy) = sin(x) cos(y) F cos(x) sin(y)

(15)

)

and takingA; = cosh(&y) , Az = sinh(&y) such that tantég) = 22 2 andAq = cos(p) , A2 = sin(&p) such that tago) = A ,
respectively in {4), the solutions in14) can be converted easny the solutions the first twasdhhd (7) as follows:

M o (_coshk(&+é&) b (costk(&+&0) ™ _ M (@ cost(k(¢+&o))+h cost (k(&+&p))
u(é) = 2i=od (Smwk(ﬂg‘o)w) +z| b (sinh(k(&+&)+C)' ao+z,:1( ~ (sinh(k(§+&9))+C)' ) (16)
ZM &( cosk(£+¢p)) ) +Z , coS(k(EJrfo))' ! —ap+7y! (acoé(k(5+fo))+bicoéfl(k(€+§0)))
I=0 \ sin(k(§+&0)+C i=1b (sin(k(& +&)+C)" =1 (sin(k(¢ +0))+C)'
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Considering the solution types the first two 8) &nd (7) with (4), the solutions of the unified method

M AV=bcosh(2v/=B(¢+&o))+/— (A2+B2)b i AV=bcos(2v/=b(¢+&))+y/— (A2+B2)b B
AO+Zi:1 Al - +Bi| —

Asinh(2y/~b(¢ +&9))+B Asinh(2y/=b(¢+&))+B

£)= | )
u(é) A0+z=\4:1 <A| (_A\/BCOS(Z\/B(§+§0))L/(A2Bz)b) B <_A\/Bcos(2\/5(f+fo))i\/m> )

Asin(2vb(E+0))+B Asin(2vb(£+&))+B

7)
are obtained. It can be noticed th&é) is the first two binomial expansion terms of the numeratdheffirst term in £7).

Therefore, we have proved that th%, é)—expansion method does not give different solutions. Orctirgrary, it gives

limited solutions with too much effort. However, the unifietbthod, as mentioned previous section, gives many more

solutions without needing unnecessary effort as other ogstincluding th %, é)-expansion method.

4 The Lonngren wave equation as an illustrative example

The Lonngren wave equation is given by
92 2
e (Ux — QU+ BU?) + Uy = 0. (18)

which describes electric signals in telegraph lines on #msbof the tunnel diodel5— 47]. Note that in the book4§],
sufficient conditions of the blow-up for the correspondinigial-boundary-value problems were obtained.

Using the wave variablé = x— ct in Eq.(1L8), then integrating this equation and considering the raign constant to

be zero, we obtain
V" + (1-ac?)U + BcU? =0. (19)

BalancingU? andU” givesM = 2.

The solutions of Eq19) can be written in the form as irr)
2 . .
U(E)=a0+Z[a;<p'+bi<p*'}, (20)
i=
whereag, a;, a, b, andb, are constants which are unknowns to be determined later.

Substituting EqZ0) and its derivatives into EdLO) and equating each coefficient gfto zero, we obtain a set of
nonlinear algebraic equations fag, a1, a», by, by andc. Solving this system using Maple, we obtain

Setl: . i .
C=F———bp=0=byap= —~.a =08 = ——;

a2 0 e mpa=0a=—g

Set2: . A .
cC=F———.bp=0=bj,ao=—=,y=0,0p0= ——;

a2 L& =—p 8 =0 5

Set3: ,

! 6b 2
C= 7,b :——,b :O,a :O:a7 = ——

TVa—a 2T Bt U™ 130 =~

(© 2018 BISKA Bilisim Technology
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Set4: )
1 6b 6b
C= 77b :——,b :07a :Oza, = ——
jF\/a+4b 2 B 1 2 1,30 5
Set5: ,
1 éb 6 ap
=F——p=—— b =0a=——,a1=0,80= —;
T ate 2 g T 0e=pa=0a=g
Set6:

—ﬂF;b——G—bzb—Oa——ga—an——@-
NCET G T A B

Using these values, we obtain following general solutioespectively:

s (x t)——G—bfﬁ \/f(A2+BZ)b—A\/—_bcosh(2\/f_b(X¢\/ﬁ+fo)) 2
PRI B Asinh(Z\/—_b(X$m+fo))+B ’
o B8 /= (R B9)b+ AV boosh(2y/ b(xF i + &) ?
U (Xt)=———— :
i BB Asinh(Z\/f_b(x:F\/ﬁJrfo))jLB
2
) =~ - 5 [ VB —_— ~2A/b — |
A+ COSh(Z\/_b(X¢ 7ot Eo)) smh(zx/_b(x; =t Eo))
2
b b
u4(x,t):—%—g —V—b+ = t ZA\/__ = t ;
A+ COSh(Z\/_b(XjF Tt Eo)) + Slnh(Z\/_b(x$ Lt go))
i t)——z—b—g \/—(A_Z—i—Bz)b—A\/—_bcosh(Z\/—_b(xx\/ﬁ_'_fo)) 2
ST T B Asinh(Z\/—_t)(X:F\/ﬁ+Eo>)+B :
X t)f,z_b,é \/f(A2+BZ)b+A\/f_bcosh(2\/f_b(x¢\/ﬁ+fo)) 2
oV B B Asinh(Z\/—_b(X$ﬁ+fo))+B ’
2
b — —b
A+COSh(2\/_b(X¢\/m+Eo)) S|nh(2\/_b(x¢ a74b+50))
2
b —b
Ug(X,t)Z—%—g —V~b+ = t ZA\/__ = t ;
A+ COSh(Z\/_b(XjF Tt Eo)) + Slnh(Z\/_b(x$ Lt go))

. 2
2b  6b? ASInh(Z\/ —b(xF g+ Eo)) +B

Ug(Xt) = ——— — ,
BB\ V=(R+B9b-AV=bcosh(2v=B(xF oy + &)

2
2b  6h? Asinh(Zx/fb(wﬁHo)) +B
ulO(th):____ ,

BB\ /=A+B9b+ A\/—_bcosh(z\/—_b(sz e Eo))

(© 2018 BISKA Bilisim Technology
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2b  6b? 1
b =g g .
v—b+ t 72A\/jf) :
A+cosl(2\/jb(X$ 7o h +<'o)) —smh(z\/jo(xx \/ﬁ+€0)>
2b  6b? 1
=g g .
—V/~b+ /b :
A+°°S'(2ij(x¥m+ﬁo))+smh(2¢jb(x¢\/mﬂfo))
2
y (x t) 6b 6b2 Asinh(Z\/ 7b(XZF \/ﬁ) + EO)) +B
13(Xt) =—— — — 7
B B \/m—m/—bcosh(zx/—b(xx \/ﬁJrfo))
™ 2
Uz4(X,t) 6b  6b ASInh(Z —b(x=F \/ﬁ) + EO)) +B
1a(Xt) = —— — — 7
B B \/m+Av—bCOSh(2\/—b(x$ \/ﬁ—i_fo))
6b  6b? 1
S .
V-b+ _—2A/h :
A+cosi(2\/jb(x¥ T +Eo)) 7S|nh(2\/fb(x¢ ﬁ+50)>
6b  6b? 1
ulG(th)__F_? -
—V-=b+ t 2A/=b :
A+cost<2ﬂ(x1 erEo))Jrsmh(zﬂ(x;WJrgo))
2
b8 V= (R B%)b— AvV=bcosh( 2v/=B(xF i1 + &)
U7(Xt) = — — =
B B Asinh(Z\/ —b(xF —Fileb + EO)) +B
2
6b? ( ASinh(z\/—b(X¥\/ﬁb+fo)) +B )
B\ /=(A¥B?)b- A\/—bcosh(Z\/—b(sz - fo))
2
26 v/~ (A7 B9)b+ AV —Bcosh( 2vB(xF =g + &)
Uig(Xt) = - — = V
B B Asinh(Z\/ —b(xF —Fileb + EO)) +B
2
6b? AS‘”“(Z\/ —b(xF =L + Eo)) +B
B\ V= R+ B?)b+ AVBcosh( 2y =B(xF 7zt + &) )
2
Upg (X, t) = ﬂ)—ﬁ b+ *ZA\/fb-
BT e T— e ——
6b? 1
B 2
v/—b —2AV-b
( + A+cost<2\/jb(xiﬁ+£o))7sinh(2\/fb(x¢\/ﬁ+go)) )

(© 2018 BISKA Bilisim Technology
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2
Ugo(X I)Z@—E —\/—_b ZA\/__b
B B At cosh(zx/—_b(x1 et 50)) n sinh(Z\/—_b(X$ et 50))
6b? 1
B 2
/= 2AV—b
< Vbt Accosh{ 2v/=B(xF =t &) ) +sinh( 2y =B(xF L&) ) )
Uan (x.) 126 6 [ V—(A2+B?) b—Aﬂcosh(ZJTb(x¢ Jﬁb n Eo)) 2
2 9 =85 — p
' B B Asinh(z\/—_b(sz \/ﬁb + fo)) +B
6 Asinh(z\/—_b(xx\/ﬁb+fo)) B 2
B\ .= (A24+B2)b— A\/—_bcosh(Z\/—_b(sz \/ain + fo)) 7
boa () = 126 v/~ (R + B?)b+ AvV=beosh( 2V =B(xF -t + &) 2
2 (X,1) = ——= — =
B B Asinh(z\/—_b(sz \/ﬁb + fo)) +B
o Asinh(z\/__b(x;ﬁbﬂo)) B 2
B\ V= A+ B+ AVBcosh(2v=BixF g + &) )
2
Upz (X t)if@fﬁ \/jt)+ 72A\/7_b
B B A+ cosh(Zﬂ(x:F NG Eo)) - sinh(z\/—_b(xzp st fo))
6b? 1
B 2
— —2AV-b
(\/_b+ A+Cosf<2\/jb(x1\/ﬁ+&'o))7sinh(2\/jb(x¢\/ﬁ+{0)) )
2
baixt) =~ 22 (/7B 2AV=D
: B B A+ cosh(Z\/—_b(x:F it Eo)) + sinh(z\/fb(xzp s+ Eo))
6b? 1

2
B 20/B
< A+cos(2\/fb(x¢ﬁ+fo))+sinh(2\/fb(x¥\/ﬁ+50)>

a-+4i

whereb < 0 andA andB are two real arbitrary constants;

(x0) 6b 6 (V(A2—B?)b— A\/Bcos(Z\/B(x¢ o — fo)) 2
u X, = = — — 7
25 B B Asin (2\/5(x$ =t Eo)) B
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6b 6(«/(A2Bz)b+A\/BCOS(2\/5(x¢\/ﬁ+EO)))2

U (Xt) = ——— =
“ BB Asin(2¢5(x1ﬁ+fo))+8

2
6b 6 (. —2AivDb
up7(xt) = —— — = | ivb+ ,
276t B B ( A+cos(2\/5(xzp¢ﬁ+fo)) isin(Z\/B(x:F\/ﬁJrfo)))
2
6b 6 . 2Aivb
Upg(x,t) = —— — = | —ivb+ ;
28l B B( A+COS(2\/5(X$m+€o))+isin(2\/ﬁ(X$m+Eo))>
) b 6 «/(AZ,BZ)bJrA\/Bcos(Z\/t_)(x;ﬁjLEo)) ?
U (X, 1) = —— — = ,
“ B B Asin(&/B(x; Jﬁﬁrfo)) +B
) b 6 \/(Az_BZ)b—A\/Bcos(Z\/B(szﬁjLEO)) ?
Uso(X,t) = ——— = ,
% B B Asin(Z\/t_)(XHF L 4b+§0))+B
2
2b 6 (. —2Aivb
us(x,t)=—=—— | ivb+ ,
6y B B ( A+cos(2\/5(xzpﬁ+fo)) isin(Z\/B(x:F\/ﬁJrfo)))
2
20 6 [ . 2Aivb
usa(x,t) = —=— = | —ivb+ :
a2l BB ( A+cos(2\/5(x:F\/ﬁ+Eo))+isin(2\/5(x:F\/ﬁ+Eo))>
U3z (X t):7@76_b2 ASin(Z\/B(X:F atf4b+50>)+B 2
’ BB\ V(F=B2b- Avbcos(2vb(xF g +&)) )
Uza (X,t) = 260’ Asin(Z\/B(x$ =l EO)) +B 2
’ B B «/(AZfBZ)quA\/t_)cos(Z\/B(x:F a§4b+50)) ’
2
u35(xat):7%b7 ob 2
i —2Aivb
P <I\/5+ A+c05(2\/5(x1\/ﬁ+50)>7i sin(z\/B(xx\/ﬁJr{o)) )
2
U35(X,t):—2—b— &b 5
i 2Aivb
B < Wb+ A+cos<2\/5(x¢\/ﬁ+fo)>+isin(&/ﬁ(x; erfo)))
r (kD) 6b  6b2 ASin(Z\/B(X¢\/ﬁ+Eo))+B 2
37 (X)) = —— — — :
B B\ /(A -Bb- A\/Bcos(Z\/E(x$ ot 50))

2

Asin(zx/t_)(x¢ t +Eo)) 4B )

a-+4b

usg(X,t) = B B ( V(AZ_B?)b Bz)b+A\/t_)cos(2\/5(x:F Jﬁ +Eo))

(© 2018 BISKA Bilisim Technology
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6b 6b?
U39(X,t):*F* -
i —2Aivb
B (I\/5+ A+cos(2¢5(x¢\/ﬁ+{o))isin(zﬁ(x;t\/ﬁ+.{0)>)
2
U40(X7t):*%b* o 5
i 2Aivb
P < b+ A+COS(2\/5(XI\/ﬁ+EO))+iSin(Z\/B(XI\/ﬁ+§O)>)
1) W 6 \/(AZ,Bz)b—A\/Bcos(Z\/t_)(x:F\/ﬁbjLEO)) 2
Usr (X t) = — — =
41 B B Asin (2\/6(X$ \/ﬁb + EO)) +B
6b2 Asin (2\/6(X$ \/ﬁb + EO)) 1B 2
B\ /(A2—B?)b- AVBcos(Zﬁ(x; — Eo)) ;
) 4 6 «/(AZ—BZ)bJrA\/Bcos(Z\/t_)(x:F\/ﬁbijo)) ?
Uso (Xt) = — — =
42 B B Asin (2\/6(sz L 50)) +B
6b2 Asin (2\/5(x$ S raaT e fo)) 4B 2
B\ \/(A2—B? bJrA\/BCOS(Z\/B(X:F T— Eo)) ;
2
U43(X t)iﬁ)fg i\/t_)Jr _ZAi\/B
; B B A+ cos(Z\/t_)(x:F \/ﬁb + Eo)) —isin (2\/5(x¢ = fo))
6b?
2
i —2Aivb
B <|\/5+ Actcos( 2vB(eF b o) ) —isin(2vB0 i +4o) ) )
2
U44(X'E):£)—E —ivb+ 2Aivb
) B B A+ COS(Z\/B(X:F ﬁ) + fo)) +isin (2\/5(x; m + Eo))
6b?
_ .
i 2Aivb
B < ivb+ A+c05<2\/5(x1m+fo)>+isin(2\/5(x¢\/ﬁJr{O)))
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1% 6 (MA\/BCOS(Z\/B(X:F \/ﬁb + Eo)) ) i

Ugs(X,t) —=
45 B B Asin (2\/6(x1 NCEsTa Eo)) +B
o’ Asin(Z\/B(x$ S S Eo)) B 2
B\ /(A2—B?)b- AJBcos(Zﬁ(x; — Eo)) ;
wg(xt) = — 128 (X BB+ AvBeos(2VBOcF b +0)) |
46\ X)) = ——F75 T 4
B B Asin (2\/6(@ e 50)) +B
o Asin(Z\/B(x$ S S Eo)) B 2
B\ \/(A2—B? bJrA\/t_)COS(Z\/B(X:F \/ﬁb N Eo)) ;
2
U47(X,t)—*%*— ivb+ —2Aivb
B B A+ cos(Z\/t_)(x:F \/ﬁb + Eo)) —isin (2\/5(x¢ it fo))
6b?
_ .
i —2Aivb
B <|\/5+ A+cos<2\/5(x¢\/ﬁb+fo)>7isin(2\/5(x¢\/ﬁ+{o)) )
\/_ 2
12b 6 2Aivb
Usg(x,t) = ——— — — | —ivb+
BB ( A+ cos(2vB(xF it + &) ) +isin(2vB(xF kg + &) )
6b?
_ N
i 2Aivb
B < ivb+ A+cos(2\/6(x1m+§0))+isin(2\/6(x¢mﬂgo)))

whereb > 0 andA andB are two real arbitrary constants;

6

t 2
B (X:F 7zt Eo)

U49(X,t) =

whereb = 0.

As it can be seen easily that unified method gives more thami@ians for the Lonngren wave equation when taking
into account the positiveness or negativeness of values.

5 Conclusions

There are plenty of methods to solve nonlinear partial thffiéial equations. The most used ones are the family of tanh
function methods and the family c(f%)-expansion methods.The main difficulty is if needed to haeeasolutions, it

must have applied to some of them separately. Particulaiggusome members cQ‘%)-expansion method could be
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tedious and exhaustive algorithm at computer. In this studing the unified method, we have aimed to unify and
develop new and effective method to solve and have abunddutions for NPDEs without being needed these two
methods.

The advantages of the unified method, firstly it produces nmoge solutions than the other methods give. Namely, it
gives not only the solutions of the other methods but also egact solutions not obtained using other methods.
Secondly, it unifies the merits of all the methods in one methithout needing extra effort. Lastly, it has simple
algorithm to apply on computer. Unlike the others, it reduti®e process on computer as much as sometimes even
calculated by hand.

To summarize briefly, the main and significant contributiofithe method we construct in this paper are as follows:

(i) Using the unified method, it can be obtained many moret&wois than total number of solutions of other methods by
one method.

(ii) The unified method gives maximum different type solagawith minimum effort. On the other hand, it is claimed
that "new solutions” have been found using some of the abogthoas; however, as mentioned in some articles
[25—29], these "new solutions” are derived by extending some trigoetoic or hyperbolic identities. Namely, they
are disguised versions of the same solutions.

(i) The unified method makes easier solving process at egerprogram. When using the unified method, it is not
needed complex algorithm on computer programs. On the tided, it is essential to use complex algorithm for
some members of t}"((%)-expansion method.

The computations throughout this work were performed bpgiMaple.
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