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Abstract: In this paper, we show that the unified method is not only more general than the family of tanh function methods, also it

gives many more general solutions than the new members of thefamily of
(

G′

G

)

-expansion methods. Compared to other methods, the

significant contribution of the unified method is firstly to unify the family of tanh function methods and the family of
(

G′

G

)

-expansion

methods. Secondly, it gives many more solutions for NPDEs direct, concise and simple manner than the total of these two families. Also,
the unified method gives these abundant solutions without using tedious and complex algorithm on computer programs. Afterwards,
we demonstrate the effectiveness of the unified tanh method by seeking more exact solutions of the Lonngren wave equation.
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1 Introduction

Nonlinear partial differential equations (NPDEs) have been subjected of study in various branches of mathematical
physical sciences such as physics, biology, chemistry. Therefore, finding new methods and obtaining many more
solutions for NPDEs plays an important role in science.

In recent years, tanh method and
(

G′

G

)

-expansion method have been used many authors. The former isfirstly introduced

by Malfliet [1] and used in some paper[2−14] deriving different variations. The latter has been firstly introduced by
Wang and Zhang[15] and widely used in some papers[16−24]. Although compared and showed the merits and demerits
of these two methods and theirs variations in some papers[25−28], it is not enough to use only one type of these
methods to find more solutions so far. Namely, it can be neededto use more than one type method to have more solutions
for NPDEs. Therefore, we have considered to find a unificationfor these methods.

It is claimed that
(

G′

G

)

-expansion method introduced by Wang and Zhang[15] gives many solutions for NPDEs than the
family of tanh function methods. However, some authors as wehave mentioned above showed that the solutions of
(

G′

G

)

-expansion method and the modified extended tanh function method are exactly same[25−28]. The concrete

relation of these two methods was given in our article[29]. To convert the solutions of
(

G′

G

)

-expansion method to the
solutions of the modified extended tanh function and to indicate the relation of coefficients and auxillary equations, the
main point is to use transformation and trigonometric and hyperbolic identities. In our another article, we unified the
family of tanh function methods under one method called the unified method[30].
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Our main contribution in this paper is to propose the unified method as a unification also for the family of
(

G′

G

)

-expansion methods. Therefore, it has been noticed the unified method gives many more solution for NPDEs
without making too much effort on computer programs.

This paper is organized as follows. In section 2, we have presented description of the unified method. In section 3, we
have showed and proved that the unified method unifies the family of

(

G′

G

)

-expansion methods and gives many more
solutions than any members of the family of these methods. Insection 4, we have implemented the unified method to
solve the Lonngren wave equation to obtain new solutions which could not be attained before.

2 The unified method

We describe the unified method for finding travelling wave solutions of NPDEs in the following steps. Suppose that a
nonlinear partial differential equation(NPDE), say in twoindependent variablesx andt, is given by

P(u,ut ,ux,uxt,utt ,uxx, ...) = 0 (1)

whereu(x, t) is an unknown function,P is a polynomial in u = u(x, t) and its various partial derivatives, in which
highest order derivative and nonlinear terms are involved.

The summary of the unified method can be presented in the following six steps:

Step1: To find the travelling wave solutions of Eq.(1), using the wave variable

u(x, t) =U (ξ ) ,ξ = x− ct, (2)

where the constantc is generally termed the wave velocity. Substituting Eq. (2) into Eq. (1), it is obtained the
following ordinary differential equation(ODE) inξ (which illustrates a principal advantage of a travelling wave
solution, i.e., a PDE is reduced to an ODE).

P(U,cU′
,U ′

,cU′′
,c2U ′′

,U ′′
, ...) = 0 (3)

Step2: If necessary one integrates Eq.(3) as many times as possible and set the constants of integration to be zero for
simplicity.

Step3: Supposed the solution of nonlinear partial differentialequation can be expressed by an ansatz as follows:

u(ξ ) = a0+
M

∑
i=1

[

aiφ i +biφ−i] (4)

where φ = φ (ξ ) satisfies the Riccati differential equation

φ ′ (ξ ) = φ2 (ξ )+b, (5)

where φ ′ = dφ
dξ ,andai ,bi andb are constants. The general solution of Eq. (5) as follows:
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Family1: Whenb< 0, the solutions of Eq. (5)

φ (ξ ) =







































√

−(A2+B2)b−A
√
−bcosh(2

√
−b(ξ+ξ0))

Asinh(2
√
−b(ξ+ξ0))+B

−
√

−(A2+B2)b−A
√
−bcosh(2

√
−b(ξ+ξ0))

Asinh(2
√
−b(ξ+ξ0))+B√

−b+ −2A
√
−b

A+cosh(2
√
−b(ξ+ξ0))−sinh(2

√
−b(ξ+ξ0))

−
√
−b+ 2A

√
−b

A+cosh(2
√
−b(ξ+ξ0))+sinh(2

√
−b(ξ+ξ0))

(6)

whereA andB are two real arbitrary constants, andξ0 arbitrary constant.
Family2: Whenb> 0, the solutions of Eq. (5)

φ (ξ ) =







































√

(A2−B2)b−A
√

bcos(2
√

b(ξ+ξ0))
Asin(2

√
b(ξ+ξ0))+B

−
√

(A2−B2)b−A
√

bcos(2
√

b(ξ+ξ0))
Asin(2

√
b(ξ+ξ0))+B

i
√

b+ −2Ai
√

b
A+cos(2

√
b(ξ+ξ0))−i sin(2

√
b(ξ+ξ0))

−i
√

b+ 2Ai
√

b
A+cos(2

√
b(ξ+ξ0))+i sin(2

√
b(ξ+ξ0))

(7)

whereA andB are two real arbitrary constants, andξ0 arbitrary constant.
Family3: Whenb= 0, the solution of Eq. (5)

φ (ξ ) =−
1

ξ + ξ0
(8)

whereξ0 arbitrary constant.
Family4: The positive integerM can be accomplished by considering the homogeneous balancebetween the linear term

of the highest order with the nonlinear term of highest degree appearing in Eq. (3) as follows:

If it is defined the degree ofu(ξ ) asD [u(ξ )] = M, then the degree of other expressions is defined by

D

[

dqu
dξ q

]

= M+q,

D

[

ur
(

dqu
dξ q

)s]

= Mr + s(q+M) .

Therefore, it is found the value ofM in Eq. (4).
Step4: Substituting Eq.(4) and (5) into Eq.(3) and collecting all terms with the same degrees ofφ together, then setting

each coeffcients of terms withφ i (−M ≤ i ≤ M) to zero yield a set of algebraic equations forai ,bi ,c andb.

Step5: Substitutingai ,bi,c andb obtained in step 5 into (4) and using the general solutions of Eq.(5) in (6) ,(7) and (8),
it can be obtained the explicit solutions of Eq.(1) immediately depending on the value ofb.

3 Comparison of the methods

In mathematical literature, the family of tanh function methods and the family of
(

G′

G

)

-expansion methods have been
used widely to solve NPDEs over 20 years. Both of these methods were modified and developed in time.

(

G′

G

)

-expansion method has been modified and developed such as tanh function method in time and given new solutions
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for NPDEs if compared to modified extended tanh function method. The new approach of generalized
(

G′

G

)

-expansion

[31−36] and the(G′

G ,
1
G)-expansion method[37−44] are two of them.

We show that the unified method unifies the new approach of generalized
(

G′

G

)

-expansion method and the

(G′

G ,
1
G)-expansion method and it also gives many more solutions thanthese methods have.

3.1 Comparison between the new approach of generalized
(

G′

G

)

-expansion method and the unified

method

Theorem 1.The unified method gives many more solutions than the new approach of generalized
(

G′

G

)

-expansion method.

Proof. If we divide the auxillary equation of the new approach of generalized
(

G′

G

)

-expansion method

G′′ (ξ ) = AG2 (ξ )+BG(ξ )G′ (ξ )+C
(

G′ (ξ )
)2

by G2 (ξ ) and then use the simple equality

G′′ (ξ )
G(ξ )

=

(

G′ (ξ )
G(ξ )

)′
+

(

G′ (ξ )
G(ξ )

)2

,

we get
(

G′ (ξ )
G(ξ )

)′
+

(

G′ (ξ )
G(ξ )

)2

= A+B

(

G′ (ξ )
G(ξ )

)

+C

(

G′ (ξ )
G(ξ )

)2

. (9)

The last equation can be written as follows:

(

G′ (ξ )
G(ξ )

)′
= (C−1)

(

G′ (ξ )
G(ξ )

+
B

2(C−1)

)2

+
4A(C−1)−B2

4(C−1)
. (10)

As it can be seen that Eq. (10) is completely equal to equation

φ (ξ )′ = aφ (ξ )2+b (11)

when considered

φ (ξ ) =
G′ (ξ )
G(ξ )

+
B

2(C−1)
,a=C−1,b=

4A(C−1)−B2

4(C−1)
.

From here, it has been reached the connection between the Eq.s (10) and (11) that they are essentially the same equation.
To compensate the difference in the solutions in (6) and (7), it can be put to the coefficients

√
∓ab
a instead of∓b outside

of functions and
√
∓ab instead of∓b inside of functions. This operation converts all of the solutions of (5) to solutions

of (10).

After taking the following hyperbolic and trigonometric identities into consideration and using the binomial expansion
and auxiliary transformation

G′ (ξ )
G(ξ )

= φ (ξ )+
B

2(1−C)
,

c© 2018 BISKA Bilisim Technology
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we can gain a general formula that gives a connection betweenthe coefficients of these two methods. Considering the
ansatz of the new approach of generalized

(

G′

G

)

-expansion method

u(ξ ) =
M

∑
i=0

ai

(

G′ (ξ )
G(ξ )

)i

and of the unified tanh method

u(ξ ) = A0+
M

∑
i=1

[

Aiφ i (ξ )+Biφ−i (ξ )
]

as follows:

u(ξ ) =
M

∑
i=0

ai

(

G′ (ξ )
G(ξ )

)i

=
M

∑
i=1

ai

(

φ (ξ )+
B

2(1−C)

)i

= A0+
M

∑
i=1

[

Aiφ i (ξ )+Biφ−i (ξ )
]

, (12)

so that gives

An =
M

∑
i=n

[

(

i
i −n

)(

B
2(1−C)

)i−n

ai

]

, Bn = 0. (13)

From here, the solutions obtained by the new approach of generalized
(

G′

G

)

-expansion method can be converted easily
to the some solutions of the unified method. However, the unified method gives many more solutions which can not be
obtained by the new approach of generalized

(

G′

G

)

-expansion method. Particularly, the solutions consist of the function-
type in (6) and (7).

3.2 Comparison between the(G′

G ,
1
G)-expansion method and the unified method

Theorem 2.The unified method gives many more solutions than the(G′

G ,
1
G)-expansion method.

Proof.The(G′

G ,
1
G)-expansion method, which can be thought of as an extension ofthe

(

G′

G

)

-expansion method, gives the
solutions as follows:

u(ξ ) =











∑M
i=0ai

(

A1cosh(kξ )+A2sinh(kξ )
A1 sinh(kξ )+A2cosh(kξ )+C

)i
+∑M

i=1bi
(A1cosh(kξ )+A2sinh(kξ ))i−1

(A1 sinh(kξ )+A2cosh(kξ )+C)i

∑M
i=0ai

(

A1 cos(kξ )−A2sin(kξ )
A1sin(kξ )+A2cos(kξ )+C

)i
+∑M

i=1bi
(A1sin(kξ )−A2cos(kξ ))i−1

(A1 sin(kξ )+A2cos(kξ )+C)i











. (14)

Using the hyperbolic and trigonometric identities



















cosh(x∓ y) = cosh(x)cosh(y)∓ sinh(x)sinh(y)
sinh(x∓ y) = sinh(x)cosh(y)∓ cosh(x)sinh(y)

cos(x∓ y) = cos(x)cos(y)± sin(x)sin(y)
sin(x∓ y) = sin(x)cos(y)∓ cos(x)sin(y)

, (15)

and takingA1 = cosh(ξ0) ,A2 = sinh(ξ0) such that tanh(ξ0) =
A2
A1

andA1 = cos(ξ0) ,A2 = sin(ξ0) such that tan(ξ0) =
A2
A1
,

respectively in (14), the solutions in (14) can be converted easily the solutions the first two of (6) and (7) as follows:

u(ξ ) =











∑M
i=0ai

(

cosh(k(ξ+ξ0))
sinh(k(ξ+ξ0)+C

)i
+∑M

i=1bi
(cosh(k(ξ+ξ0))

i−1

(sinh(k(ξ+ξ0)+C)i
= a0+∑M

i=1

(

ai coshi(k(ξ+ξ0))+bi coshi−1(k(ξ+ξ0))

(sinh(k(ξ+ξ0))+C)i

)

∑M
i=0ai

(

cos(k(ξ+ξ0))
sin(k(ξ+ξ0)+C

)i
+∑M

i=1bi
(cos(k(ξ+ξ0))

i−1

(sin(k(ξ+ξ0)+C)i
= a0+∑M

i=1

(

ai cosi(k(ξ+ξ0))+bi cosi−1(k(ξ+ξ0))

(sin(k(ξ+ξ0))+C)i

) (16)
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Considering the solution types the first two in (6) and (7) with (4), the solutions of the unified method

u(ξ ) =































A0+∑M
i=1



Ai

(

−
A
√
−bcosh(2

√
−b(ξ+ξ0))±

√

−(A2+B2)b

Asinh(2
√
−b(ξ+ξ0))+B

)i

+Bi

(

−
A
√
−bcosh(2

√
−b(ξ+ξ0))±

√

−(A2+B2)b

Asinh(2
√
−b(ξ+ξ0))+B

)−i




A0+∑M
i=1



Ai

(

−
A
√

bcos(2
√

b(ξ+ξ0))±
√

(A2−B2)b

Asin(2
√

b(ξ+ξ0))+B

)i

+Bi

(

−
A
√

bcos(2
√

b(ξ+ξ0))±
√

(A2−B2)b

Asin(2
√

b(ξ+ξ0))+B

)−i




(17)
are obtained. It can be noticed that (16) is the first two binomial expansion terms of the numerator ofthe first term in (17).

Therefore, we have proved that the(G′

G ,
1
G)-expansion method does not give different solutions. On thecontrary, it gives

limited solutions with too much effort. However, the unifiedmethod, as mentioned previous section, gives many more
solutions without needing unnecessary effort as other methods including the(G′

G ,
1
G)-expansion method.

4 The Lonngren wave equation as an illustrative example

The Lonngren wave equation is given by

∂ 2

∂ t2

(

uxx−αu+βu2)+uxx = 0. (18)

which describes electric signals in telegraph lines on the basis of the tunnel diode[45−47]. Note that in the book[48],
sufficient conditions of the blow-up for the corresponding initial-boundary-value problems were obtained.

Using the wave variableξ = x− ct in Eq.(18), then integrating this equation and considering the integration constant to
be zero, we obtain

c2U ′′+
(

1−αc2)U +βc2U2 = 0. (19)

BalancingU2 andU ′′ givesM = 2.

The solutions of Eq.(19) can be written in the form as in (7)

U (ξ ) = a0+
2

∑
i=1

[

aiφ i +biφ−i]
, (20)

wherea0,a1,a2,b1 andb2 are constants which are unknowns to be determined later.

Substituting Eq.(20) and its derivatives into Eq.(19) and equating each coefficient ofφ to zero, we obtain a set of
nonlinear algebraic equations fora0,a1,a2,b1,b2 andc. Solving this system using Maple, we obtain

Set1:

c=∓
1√

α +4b
,b2 = 0= b1,a2 =−

6
β
,a1 = 0,a0 =−

6b
β

;

Set2:

c=∓
1√

α −4b
,b2 = 0= b1,a2 =−

6
β
,a1 = 0,a0 =−

2b
β

;

Set3:

c=∓
1√

α −4b
,b2 =−

6b2

β
,b1 = 0,a2 = 0= a1,a0 =−

2b
β

;
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Set4:

c=∓
1√

α +4b
,b2 =−

6b2

β
,b1 = 0,a2 = 0= a1,a0 =−

6b
β

;

Set5:

c=∓
1√

α −16b
,b2 =−

6b2

β
,b1 = 0,a2 =−

6
β
,a1 = 0,a0 =

4b
β

;

Set6:

c=∓
1√

α +16b
,b2 =−

6b2

β
,b1 = 0,a2 =−

6
β
,a1 = 0,a0 =−

12b
β

;

Using these values, we obtain following general solutions,respectively:

u1 (x, t) =−
6b
β

−
6
β





√

−(A2+B2)b−A
√
−bcosh

(

2
√
−b(x∓ t√

α+4b
+ ξ0)

)

Asinh
(

2
√
−b(x∓ t√

α+4b
+ ξ0)

)

+B





2

,

u2 (x, t) =−
6b
β

−
6
β





√

−(A2+B2)b+A
√
−bcosh

(

2
√
−b(x∓ t√

α+4b
+ ξ0)

)

Asinh
(

2
√
−b(x∓ t√

α+4b
+ ξ0)

)

+B





2

,

u3(x, t) =−
6b
β

−
6
β





√
−b+

−2A
√
−b

A+ cosh
(

2
√
−b(x∓ t√

α+4b
+ ξ0)

)

− sinh
(

2
√
−b(x∓ t√

α+4b
+ ξ0)

)





2

,

u4(x, t) =−
6b
β

−
6
β



−
√
−b+

2A
√
−b

A+ cosh
(

2
√
−b(x∓ t√

α+4b
+ ξ0)

)

+ sinh
(

2
√
−b(x∓ t√

α+4b
+ ξ0)

)





2

,

u5 (x, t) =−
2b
β

−
6
β





√

−(A2+B2)b−A
√
−bcosh

(

2
√
−b(x∓ t√

α−4b
+ ξ0)

)

Asinh
(

2
√
−b(x∓ t√

α−4b
+ ξ0)

)

+B





2

,

u6 (x, t) =−
2b
β

−
6
β





√

−(A2+B2)b+A
√
−bcosh

(

2
√
−b(x∓ t√

α−4b
+ ξ0)

)

Asinh
(

2
√
−b(x∓ t√

α−4b
+ ξ0)

)

+B





2

,

u7(x, t) =−
2b
β

−
6
β





√
−b+

−2A
√
−b

A+ cosh
(

2
√
−b(x∓ t√

α−4b
+ ξ0)

)

− sinh
(

2
√
−b(x∓ t√

α−4b
+ ξ0)

)





2

,

u8(x, t) =−
2b
β

−
6
β



−
√
−b+

2A
√
−b

A+ cosh
(

2
√
−b(x∓ t√

α+4b
+ ξ0)

)

+ sinh
(

2
√
−b(x∓ t√

α+4b
+ ξ0)

)





2

,

u9 (x, t) =−
2b
β

−
6b2

β





Asinh
(

2
√
−b(x∓ t√

α−4b
+ ξ0)

)

+B
√

−(A2+B2)b−A
√
−bcosh

(

2
√
−b(x∓ t√

α−4b
+ ξ0)

)





2

,

u10(x, t) =−
2b
β

−
6b2

β





Asinh
(

2
√
−b(x∓ t√

α−4b
+ ξ0)

)

+B
√

−(A2+B2)b+A
√
−bcosh

(

2
√
−b(x∓ t√

α−4b
+ ξ0)

)





2

,
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u11(x, t) =−
2b
β

−
6b2

β
1

(

√
−b+ −2A

√
−b

A+cosh
(

2
√
−b(x∓ t√

α−4b
+ξ0)

)

−sinh
(

2
√
−b(x∓ t√

α−4b
+ξ0)

)

)2 ,

u12(x, t) =−
2b
β

−
6b2

β
1

(

−
√
−b+ 2A

√
−b

A+cosh
(

2
√
−b(x∓ t√

α+4b
+ξ0)

)

+sinh
(

2
√
−b(x∓ t√

α+4b
+ξ0)

)

)2 ,

u13(x, t) =−
6b
β

−
6b2

β





Asinh
(

2
√
−b(x∓ t√

α+4b
+ ξ0)

)

+B
√

−(A2+B2)b−A
√
−bcosh

(

2
√
−b(x∓ t√

α+4b
+ ξ0)

)





2

,

u14(x, t) =−
6b
β

−
6b2

β





Asinh
(

2
√
−b(x∓ t√

α+4b
+ ξ0)

)

+B
√

−(A2+B2)b+A
√
−bcosh

(

2
√
−b(x∓ t√

α+4b
+ ξ0)

)





2

,

u15(x, t) =−
6b
β

−
6b2

β
1

(

√
−b+ −2A

√
−b

A+cosh
(

2
√
−b(x∓ t√

α+4b
+ξ0)

)

−sinh
(

2
√
−b(x∓ t√

α+4b
+ξ0)

)

)2 ,

u16(x, t) =−
6b
β

−
6b2

β
1

(

−
√
−b+ 2A

√
−b

A+cosh
(

2
√
−b(x∓ t√

α+4b
+ξ0)

)

+sinh
(

2
√
−b(x∓ t√

α+4b
+ξ0)

)

)2 ,

u17(x, t) =
4b
β

−
6
β





√

−(A2+B2)b−A
√
−bcosh

(

2
√
−b(x∓ t√

α−16b
+ ξ0)

)

Asinh
(

2
√
−b(x∓ t√

α−16b
+ ξ0)

)

+B





2

−
6b2

β





Asinh
(

2
√
−b(x∓ t√

α−16b
+ ξ0)

)

+B
√

−(A2+B2)b−A
√
−bcosh

(

2
√
−b(x∓ t√

α−16b
+ ξ0)

)





2

,

u18(x, t) =
4b
β

−
6
β





√

−(A2+B2)b+A
√
−bcosh

(

2
√
−b(x∓ t√

α−16b
+ ξ0)

)

Asinh
(

2
√
−b(x∓ t√

α−16b
+ ξ0)

)

+B





2

−
6b2

β





Asinh
(

2
√
−b(x∓ t√

α−16b
+ ξ0)

)

+B
√

−(A2+B2)b+A
√
−bcosh

(

2
√
−b(x∓ t√

α−16b
+ ξ0)

)





2

,

u19(x, t) =
4b
β

−
6
β





√
−b+

−2A
√
−b

A+ cosh
(

2
√
−b(x∓ t√

α−16b
+ ξ0)

)

− sinh
(

2
√
−b(x∓ t√

α−16b
+ ξ0)

)





2

−
6b2

β
1

(

√
−b+ −2A

√
−b

A+cosh
(

2
√
−b(x∓ t√

α−16b
+ξ0)

)

−sinh
(

2
√
−b(x∓ t√

α−16b
+ξ0)

)

)2
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u20(x, t) =
4b
β

−
6
β



−
√
−b+

2A
√
−b

A+ cosh
(

2
√
−b(x∓ t√

α+4b
+ ξ0)

)

+ sinh
(

2
√
−b(x∓ t√

α+4b
+ ξ0)

)





2

−
6b2

β
1

(

−
√
−b+ 2A

√
−b

A+cosh
(

2
√
−b(x∓ t√

α+4b
+ξ0)

)

+sinh
(

2
√
−b(x∓ t√

α+4b
+ξ0)

)

)2

u21(x, t) =−
12b
β

−
6
β





√

−(A2+B2)b−A
√
−bcosh

(

2
√
−b(x∓ t√

α+16b
+ ξ0)

)

Asinh
(

2
√
−b(x∓ t√

α+16b
+ ξ0)

)

+B





2

−
6b2

β





Asinh
(

2
√
−b(x∓ t√

α+16b
+ ξ0)

)

+B
√

−(A2+B2)b−A
√
−bcosh

(

2
√
−b(x∓ t√

α+16b
+ ξ0)

)





2

,

u22(x, t) =−
12b
β

−
6
β





√

−(A2+B2)b+A
√
−bcosh

(

2
√
−b(x∓ t√

α+16b
+ ξ0)

)

Asinh
(

2
√
−b(x∓ t√

α+16b
+ ξ0)

)

+B





2

−
6b2

β





Asinh
(

2
√
−b(x∓ t√

α+16b
+ ξ0)

)

+B
√

−(A2+B2)b+A
√
−bcosh

(

2
√
−b(x∓ t√

α+16b
+ ξ0)

)





2

,

u23(x, t) =−
12b
β

−
6
β





√
−b+

−2A
√
−b

A+ cosh
(

2
√
−b(x∓ t√

α+16b
+ ξ0)

)

− sinh
(

2
√
−b(x∓ t√

α+16b
+ ξ0)

)





2

−
6b2

β
1

(

√
−b+ −2A

√
−b

A+cosh
(

2
√
−b(x∓ t√

α+16b
+ξ0)

)

−sinh
(

2
√
−b(x∓ t√

α+16b
+ξ0)

)

)2

u24(x, t) =−
12b
β

−
6
β



−
√
−b+

2A
√
−b

A+ cosh
(

2
√
−b(x∓ t√

α+4b
+ ξ0)

)

+ sinh
(

2
√
−b(x∓ t√

α+4b
+ ξ0)

)





2

−
6b2

β
1

(

−
√
−b+ 2A

√
−b

A+cosh
(

2
√
−b(x∓ t√

α+4b
+ξ0)

)

+sinh
(

2
√
−b(x∓ t√

α+4b
+ξ0)

)

)2

whereb< 0 andA andB are two real arbitrary constants;

u25(x, t) =−
6b
β

−
6
β





√

(A2−B2)b−A
√

bcos
(

2
√

b(x∓ t√
α+4b

+ ξ0)
)

Asin
(

2
√

b(x∓ t√
α+4b

+ ξ0)
)

+B





2

,
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u26(x, t) =−
6b
β

−
6
β





√

(A2−B2)b+A
√

bcos
(

2
√

b(x∓ t√
α+4b

+ ξ0)
)

Asin
(

2
√

b(x∓ t√
α+4b

+ ξ0)
)

+B





2

,

u27(x, t) =−
6b
β

−
6
β



i
√

b+
−2Ai

√
b

A+ cos
(

2
√

b(x∓ t√
α+4b

+ ξ0)
)

− i sin
(

2
√

b(x∓ t√
α+4b

+ ξ0)
)





2

,

u28(x, t) =−
6b
β

−
6
β



−i
√

b+
2Ai

√
b

A+ cos
(

2
√

b(x∓ t√
α+4b

+ ξ0)
)

+ i sin
(

2
√

b(x∓ t√
α+4b

+ ξ0)
)





2

,

u29(x, t) =−
2b
β

−
6
β





√

(A2−B2)b+A
√

bcos
(

2
√

b(x∓ t√
α−4b

+ ξ0)
)

Asin
(

2
√

b(x∓ t√
α−4b

+ ξ0)
)

+B





2

,

u30(x, t) =−
2b
β

−
6
β





√

(A2−B2)b−A
√

bcos
(

2
√

b(x∓ t√
α−4b

+ ξ0)
)

Asin
(

2
√

b(x∓ t√
α−4b

+ ξ0)
)

+B





2

,

u31(x, t) =−
2b
β

−
6
β



i
√

b+
−2Ai

√
b

A+ cos
(

2
√

b(x∓ t√
α−4b

+ ξ0)
)

− i sin
(

2
√

b(x∓ t√
α−4b

+ ξ0)
)





2

,

u32(x, t) =−
2b
β

−
6
β



−i
√

b+
2Ai

√
b

A+ cos
(

2
√

b(x∓ t√
α+4b

+ ξ0)
)

+ i sin
(

2
√

b(x∓ t√
α+4b

+ ξ0)
)





2

,

u33(x, t) =−
2b
β

−
6b2

β





Asin
(

2
√

b(x∓ t√
α−4b

+ ξ0)
)

+B
√

(A2−B2)b−A
√

bcos
(

2
√

b(x∓ t√
α−4b

+ ξ0)
)





2

,

u34(x, t) =−
2b
β

−
6b2

β





Asin
(

2
√

b(x∓ t√
α−4b

+ ξ0)
)

+B
√

(A2−B2)b+A
√

bcos
(

2
√

b(x∓ t√
α−4b

+ ξ0)
)





2

,

u35(x, t) =−
2b
β

−
6b2

β

(

i
√

b+ −2Ai
√

b

A+cos
(

2
√

b(x∓ t√
α−4b

+ξ0)
)

−i sin
(

2
√

b(x∓ t√
α−4b

+ξ0)
)

)2 ,

u36(x, t) =−
2b
β

−
6b2

β

(

−i
√

b+ 2Ai
√

b

A+cos
(

2
√

b(x∓ t√
α+4b

+ξ0)
)

+i sin
(

2
√

b(x∓ t√
α+4b

+ξ0)
)

)2 ,

u37(x, t) =−
6b
β

−
6b2

β





Asin
(

2
√

b(x∓ t√
α+4b

+ ξ0)
)

+B
√

(A2−B2)b−A
√

bcos
(

2
√

b(x∓ t√
α+4b

+ ξ0)
)





2

,

u38(x, t) =−
6b
β

−
6b2

β





Asin
(

2
√

b(x∓ t√
α+4b

+ ξ0)
)

+B
√

(A2−B2)b+A
√

bcos
(

2
√

b(x∓ t√
α+4b

+ ξ0)
)





2

,
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u39(x, t) =−
6b
β

−
6b2

β

(

i
√

b+ −2Ai
√

b

A+cos
(

2
√

b(x∓ t√
α+4b

+ξ0)
)

−i sin
(

2
√

b(x∓ t√
α+4b

+ξ0)
)

)2 ,

u40(x, t) =−
6b
β

−
6b2

β

(

−i
√

b+ 2Ai
√

b

A+cos
(

2
√

b(x∓ t√
α+4b

+ξ0)
)

+i sin
(

2
√

b(x∓ t√
α+4b

+ξ0)
)

)2 ,

u41(x, t) =
4b
β

−
6
β





√

(A2−B2)b−A
√

bcos
(

2
√

b(x∓ t√
α−16b

+ ξ0)
)

Asin
(

2
√

b(x∓ t√
α−16b

+ ξ0)
)

+B





2

−
6b2

β





Asin
(

2
√

b(x∓ t√
α−16b

+ ξ0)
)

+B
√

(A2−B2)b−A
√

bcos
(

2
√

b(x∓ t√
α−16b

+ ξ0)
)





2

,

u42(x, t) =
4b
β

−
6
β





√

(A2−B2)b+A
√

bcos
(

2
√

b(x∓ t√
α−16b

+ ξ0)
)

Asin
(

2
√

b(x∓ t√
α−16b

+ ξ0)
)

+B





2

−
6b2

β





Asin
(

2
√

b(x∓ t√
α−16b

+ ξ0)
)

+B
√

(A2−B2)b+A
√

bcos
(

2
√

b(x∓ t√
α−16b

+ ξ0)
)





2

,

u43(x, t) =
4b
β

−
6
β



i
√

b+
−2Ai

√
b

A+ cos
(

2
√

b(x∓ t√
α−16b

+ ξ0)
)

− i sin
(

2
√

b(x∓ t√
α−16b

+ ξ0)
)





2

−
6b2

β

(

i
√

b+ −2Ai
√

b

A+cos
(

2
√

b(x∓ t√
α−16b

+ξ0)
)

−i sin
(

2
√

b(x∓ t√
α−16b

+ξ0)
)

)2 ,

u44(x, t) =
4b
β

−
6
β



−i
√

b+
2Ai

√
b

A+ cos
(

2
√

b(x∓ t√
α+4b

+ ξ0)
)

+ i sin
(

2
√

b(x∓ t√
α+4b

+ ξ0)
)





2

−
6b2

β

(

−i
√

b+ 2Ai
√

b

A+cos
(

2
√

b(x∓ t√
α+4b

+ξ0)
)

+i sin
(

2
√

b(x∓ t√
α+4b

+ξ0)
)

)2 ,
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u45(x, t) =−
12b
β

−
6
β





√

(A2−B2)b−A
√

bcos
(

2
√

b(x∓ t√
α+16b

+ ξ0)
)

Asin
(

2
√

b(x∓ t√
α+16b

+ ξ0)
)

+B





2

−
6b2

β





Asin
(

2
√

b(x∓ t√
α+16b

+ ξ0)
)

+B
√

(A2−B2)b−A
√

bcos
(

2
√

b(x∓ t√
α+16b

+ ξ0)
)





2

,

u46(x, t) =−
12b
β

−
6
β





√

(A2−B2)b+A
√

bcos
(

2
√

b(x∓ t√
α+16b

+ ξ0)
)

Asin
(

2
√

b(x∓ t√
α+16b

+ ξ0)
)

+B





2

−
6b2

β





Asin
(

2
√

b(x∓ t√
α+16b

+ ξ0)
)

+B
√

(A2−B2)b+A
√

bcos
(

2
√

b(x∓ t√
α+16b

+ ξ0)
)





2

,

u47(x, t) =−
12b
β

−
6
β



i
√

b+
−2Ai

√
b

A+ cos
(

2
√

b(x∓ t√
α+16b

+ ξ0)
)

− i sin
(

2
√

b(x∓ t√
α+16b

+ ξ0)
)





2

−
6b2

β

(

i
√

b+ −2Ai
√

b

A+cos
(

2
√

b(x∓ t√
α+16b

+ξ0)
)

−i sin
(

2
√

b(x∓ t√
α+16b

+ξ0)
)

)2 ,

u48(x, t) =−
12b
β

−
6
β



−i
√

b+
2Ai

√
b

A+ cos
(

2
√

b(x∓ t√
α+4b

+ ξ0)
)

+ i sin
(

2
√

b(x∓ t√
α+4b

+ ξ0)
)





2

−
6b2

β

(

−i
√

b+ 2Ai
√

b

A+cos
(

2
√

b(x∓ t√
α+4b

+ξ0)
)

+i sin
(

2
√

b(x∓ t√
α+4b

+ξ0)
)

)2 ,

whereb> 0 andA andB are two real arbitrary constants;

u49(x, t) =−
6

β
(

x∓ t√
α + ξ0

)2 ,

whereb= 0.

As it can be seen easily that unified method gives more than 49 solutions for the Lonngren wave equation when taking
into account the positiveness or negativeness of values.

5 Conclusions

There are plenty of methods to solve nonlinear partial differential equations. The most used ones are the family of tanh
function methods and the family of

(

G′

G

)

-expansion methods.The main difficulty is if needed to have more solutions, it

must have applied to some of them separately. Particulary, using some members of
(

G′

G

)

-expansion method could be
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tedious and exhaustive algorithm at computer. In this study, using the unified method, we have aimed to unify and
develop new and effective method to solve and have abundant solutions for NPDEs without being needed these two
methods.

The advantages of the unified method, firstly it produces manymore solutions than the other methods give. Namely, it
gives not only the solutions of the other methods but also newexact solutions not obtained using other methods.
Secondly, it unifies the merits of all the methods in one method without needing extra effort. Lastly, it has simple
algorithm to apply on computer. Unlike the others, it reduces the process on computer as much as sometimes even
calculated by hand.

To summarize briefly, the main and significant contributionsof the method we construct in this paper are as follows:

(i) Using the unified method, it can be obtained many more solutions than total number of solutions of other methods by
one method.

(ii) The unified method gives maximum different type solutions with minimum effort. On the other hand, it is claimed
that ”new solutions” have been found using some of the above methods; however, as mentioned in some articles
[25−29], these ”new solutions” are derived by extending some trigonometric or hyperbolic identities. Namely, they
are disguised versions of the same solutions.

(iii) The unified method makes easier solving process at computer program. When using the unified method, it is not
needed complex algorithm on computer programs. On the otherhand, it is essential to use complex algorithm for
some members of the(G′

G )-expansion method.

The computations throughout this work were performed by using Maple.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors have contributed to all parts of the article. Allauthors read and approved the final manuscript.

References

[1] W. Malfliet, Solitary wave solutions of nonlinear wave equations, Am. J. Phys. 60 (7) (1992) 650–654.

[2] W. Malfliet, W. Hereman, The tanh method. I: Exact solutions of nonlinear evolution and wave equations, Phys. Scr. 54 (1996)

563-568.

[3] W. Malfliet, W. Hereman, The tanh method. II: Perturbation technique for conservative systems, Phys. Scr. 54 (1996) 569-575.

[4] W. Hereman, W. Malfliet, in: The tanh method: a tool to solve nonlinear partial differential equations with symbolic software,

Proceedings 9th World Multi-Conference on Systemics, Cybernetics and Informatics, Orlando, FL, (2005), 165-168.

[5] A. M. Wazwaz, The tanh method for travelling wave solutions of nonlinear equations, Appl. Math. Comput. 154 (3) (2004) 713-

723.

[6] A. M. Wazwaz, The tanh method: exact solutions of the Sine-Gordon and the Sinh-Gordon equations, Appl. Math. Comput.49

(2005) 565-574.

[7] A. M. Wazwaz, The tanh and the sine-cosine methods for a reliable treatment of the modified equal width equation and itsvariants,

Comm. Nonlinear Sci. Numer. Simul. 11 (2) (2006) 148-160.

c© 2018 BISKA Bilisim Technology

www.ntmsci.com


198 S. Akcagil and T. Aydemir: A new application of the unified method

[8] A. M. Wazwaz, The tanh and the sine–cosine methods for compact and noncompact solutions of the nonlinear Klein–Gordon

equation, Appl. Math. Comput. 167 (2) (2005) 1179-1195.

[9] A. M. Wazwaz, The tanh method: solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd–

Bullough equations, Chaos, Solitons Fractals 25 (1) (2005)55-63.

[10] A. M. Wazwaz, The tanh method for generalized forms of nonlinear heat conduction and Burgers–Fisher equations, Appl.

Math.Comput. 169 (2005) 321-338.

[11] A. M. Wazwaz, Travelling wave solutions of generalizedforms of Burgers, Burgers–KdV and Burgers–Huxley equations, Appl.

Math.Comput. 169 (2005) 639-656.

[12] A.M. Wazwaz, The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations, Appl.

Math.Comput.,184, (2007), 1002-1014.

[13] A.M. Wazwaz, New solitary wave solutions to the modifiedforms of Degasperis–Procesi and Camass–Holm equations, Appl.

Math.Comput., 186, (2007), 130-141.

[14] S.A. Khuri, A complex tanh-function method applied to nonlinear equations of Schrodinger type, Chaos, Solitons and Fractals 20

(2004), 1037-1040.

[15] M.Wang, X.Li, J.Zhang, The
(

G′

G

)

expansion method and travelling wave solutions of nonlinear evolution equations in

mathematical physics, Physics Letter A 372 (2008), 417-423.

[16] A.Bekir, Application of the
(

G′

G

)

expansion method for nonlinear evolution equations, Physics Letter A 372 (2008) 3400-3406.

[17] J.Zhang, X.Wei, A generalized
(

G′

G

)

expansion method and its applications, Physics Letter A 372(2008), 3653-3658.
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