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Abstract: Very recently, by applying the so-called Beta integral moetio the Henrici’s triple product formula for the generaliz
hypergeometric series, Choi, et al.[Commun. Korean Matie. 38(2013), No.2, pp. 297-301] have obtained an intergsgduction
formula for the Srivastava’s triple hypergeometric sefi€3 [x,y, 7. The aim of this short note is to provide a unified reductiamrfala
for the Srivastava’s triple hypergeometric series fromaliras many new reduction formulas (including the one obtaineChoi, et
al.) as desired can be deduced. A few interesing specias tese also been given.
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1 Introduction
Let C be the set otomplex numbers, then for
ajeC(j=1,...,p) and BjeC\Z; (Zg:=2U{0}={0,-1,-2,..}),

the generalized hypergeometric function yFq with p numerator parametes,, ..., a, and g denominator parameters
B1, ..., By is defined by (see, for exampld, [Chapter 4]; see alsd , pp. 71-72]):

°

of |l

ay,...,0p; © ] l(aj)nzn
qu[B B,Z]%7@qu(al,...,O!p;Bl,...,ﬁq;z) W
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(p,quo::NU{O}:{O,l,Z,...}; p<g+1;psqand|z < o;
p=g+landjz <1;p=qg+1,|7=1andd(w) >0),

where
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and(A )y is the Pochhammer symbol defined (foe C), in terms of the familiar Gamma functidn, by
F(A+n 1 (n=0)
(A=A ©
rA) AA+1)---(A+n=1) (neN).

On the other hand, in the course of study of triple hypergadoseries, Srivastavef| [12, p.43]) defined a unification
of Lauricella’s 14 triple hypergeometric seri€s, ..., Fi4 (cf. [12, pp. 41-43]) and the additional Srivastava’s triple
hypergeometric serigda, Hg, Hc as a general triple hypergeometric sef€d)[x,y, 2 (cf. [9, p. 428]; see alsolp, p.
44-45)) by

g Gy (O G G RN O TG EN I, X0y P .
¥z l(e) (@) (@): (@) : ;) ;Y] = oM™ P o @
where, for convenience,

A B B B’ c c c/

[Il(aj)m+n+p D(bj)mn [Il(b'j)nw D(b'j/)p+m D(CJ )m D(C/j)n [II(CIJ )p

Vmin Imen i Norm hi)m [T (0 [T (R

JI:II(eJ)er +pJI:II(91)m+ JI:II(QJ) +pJ|:L(gj)p+ JI:II( i) JI:L( i) JI:II( i)p

and,(a) abbreviates the array éfparametersy, ..., aa, with similar interpretations fotb), (b’), (b”), and so on.

Very recently by employing the well known, very useful andenesting Henrici’s triple product formula for the
hypergeometric seried] viz.

- - - 3c-1, 3c+1%; 4\ 2
oF1| _ 'X| oFt| . "wx|oF1| . 'w¥x| =2F — (6)
6c; 6c; 6¢; 1 ) 1 1.\9
6c,2c,2c+3,2c+5,4c—3,4¢,4c+ 3 ;

wherew = exp(%), together with the Beta integral method [5], Choi, et al.d&fabished the following interesting result
for the reducibility of Srivastava’s triple hypergeometeries given by

1 1 d d 1 d 2.
X—2,3%+2 3, 3+3 3+5

' ' 1w, W% =5F10
d:—;—;—: 6c; 6c; 6¢C; 1 2 1 1 ee,;1e, 2
6C,2C,2C+§,2C+§,4C7§,4C,4C+§,g,§+§,§+§;

where w = exp(Z8).

The aim of this short note is to provide a unified reductiomfola for the Srivastava'’s triple hypergeometric serieafro
which as many as new reduction formulas (including the ortained by Choi, et al.) desired can be obtained. A few
interesting special cases are also be given.
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2 Main theorem

Theorem 1. For all finite x, the following interesting reduction fornaufor the Srivastava'’s triple hypergeometric function
(3)[x,y,7 holds true

el ——i— 1 —; — —; 3c—31 3c+%, 4 44,1 d, 2 ax\ 3
F()[ wawx:|_5|:lo|: 4, C*71 3 313 313 (_) 7

d:—;—;—:6c; 6c; 6C; 6c, 2c,2c+ 3,2c+3,4c— 1, 4c,4c+ 3, . §+3,§+5 \ 9
_ (€
wherew = exp(42).
Proof. In order to establish our theorem, we proceed as followst Birall replacing< by xt in (6) we have
- - 3c—13c+ axt
Fi|  'xt|oFi|  ‘awxt|oF|  wi|= z — 9
% lec: |2 6 0 1[Gc; 2|_7[6c,20,2c+§,2c+3,4c 14c4c+13; ( 9 > ©)

Now multiplying the left-hand side o] by x-1(1—x)®9-1, where we suppose temporarily tiRe(e) > Re(d) > 0
and integrating the resulting equation with respedtfimm 0 to 1, denoting it bys;, then expressing eagffr; involved

as series, changing the order of integration and summatiminich is easily seen to be justified due to the uniform
convergence of the involved series, we have

o o0 00 Xm+n+pwnw2p

%= nEOnZO pZO (Gc)m(GC)n(GC) pm!n! p!

/1td+m+n+pfl(1 o t)e—dfldt.

Evaluating the beta integral and interpreting the resuis thbtained with the help of the definitionBf%[x,y, 7], we get

rdre—d) _g|d: === = —;
_ E 10
1 r(e eff76c6c6cxwxwx (10)
Again, multiplying the right-hand side of (9) by ~1(1—t)®9-! and as above, integrating the resulting equation with

respect ta from O to 1, denoting it by, then expressmgl% as series and proceeding as above, we have, after some
simplification

5, - HAr(e-d ¢ (8c—2)n (Bc+3), X (11)3” (d)an
I (e &o (60)n(20)n (2c+3),, (2c+35), (4c—3) ,(40)n (4c+3), N \9/  (E)an
Using
_aan (9 a+1 a+2
(@)an =3 (3)n< 3 )n< 3 ).
and after some simplification, summing up the series, we have
_ 1141 3
S, — r(dr(e-d) x5 Fio 130 4 3c+4,3d, d+3,3d+3, X . (11)
(e 6c, 2C Zc+3,20+3,4c 4c+1 4c+3,3e,3e+3,3e+3, 9

Finally equating 10) and (L1), we get the desired resuB)( This completes the proof of our main theorem.

The above restriction on the parametgi@nde may now be removed by appeal to analytic continuation.

3 Special cases

In this section, we shall mention a few very interesting saases of our main resuly;
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(1) In (8), if we takex = 1, we get a known reduction formula due to Choi, et al.[2, §,29).(2.1)]

(2) In (8), if we takex = % we get the following result.

d: —; ;1 —; — —:11 1
F(3) ’ ’ ’ ’ ' - “w _wz _ F 12
[e —;—;—16c; 6c; 6c;2 2 2 5P (12)
where .
1 1d d 1 d_ 2.
A= 3—3z,3C+3 3,33 313 (Z)
6c,2c,2c+3,2c+2,4c— 1 4c4c+1 8 641 642\ 9
(3) In(8), if we takex = %, we get the following result.
di: —;—;—:1 —; —; =11 1
F(S) ’ ’ ’ ’ r - = - 2 _ F 13
e::f;7;7:60;60;60;4’4w’4w sF10 (13)
where .
1 1d d, 1 d, 2.
L= 3071, 3C+Z’ 3, 3+3 3+5 (1—) '
6c,2c,2c+3,2c+2,4c— 1 4c4c+1 8 641 642, \ 9

Similarly other results can also be obtained.

Remark. For other results, we refer[1,3,5,8,9-13].

Concluding remark

In this paper, we have obtained a unified reduction formularfe Srivastava’s triple hypergeometric series, by apglyi
the so - called beta integral method to the Henrici's trigleduct formula for the generalized hypergeometric seBaxe

our reduction formula is valid for all finite, therefore, froour main result, we can obtain, as many as reduction fosnula
as desired. The results presented here may be useful irrdppéithematics, physics and engineering.
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