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Abstract: Communication is supposed to be continuous in a network design. It is important for a network to be tough so that
communication is not interrupted in case any damage. In this paper, it is investigated how to decide which graph model to choose,
when a selection is needed to make between different graphs to be used for a network model when all known vulnerability measures
are same. We introduce the concept of the average weakly edge domination number of a graph as a new vulnerability measure. We
establish relationships between the average weakly edge domination number and some other graph parameters, and the extreme values
of given measure among all graphs and average weakly edge domination number for some families of graphs. Also a polynomial time
algorithm with complexity O(n3) is given.
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1 Introduction

Vulnerability is the most important concept in any communication network. The resistance of a network after any
disruption is considered as vulnerability value. In a network, this disruption not only can take place on its centers also
sometimes on its links. In this case the vulnerability measures given on links (edges) take an important role while
constructing communication networks. A communication network can be modeled by a graph whose vertices represent
the stations and whose edges represent the lines of communication [4,10,17].

In graph theory, many graph measures have been used widely in the past to describe the stability of a graph. The best
known and most useful of the measures of how well a graph is connected is the connectivity, defined to be minimum
number of vertices in a set whose deletion results in a disconnected or trivial graph. This measure has been extensively
studied As the connectivity is a worst case measure, it does not always reflect what happens throughout the graph. For
example a tree and the the graph obtained by appending an end-vertex to a complete graph both have connectivity 1. In
this case we need another measure to decide which graph model is more stable than the other. This situation oriented
researchers to find new measures. In graph theory, many vulnerability measures have been used widely in the past to
describe the stability of a graph. Some of these measures are edge connectivity, Integrity, edge integrity, domination,
toughness [3,7,9,18]. Since networks can be modeled by graphs, vulnerability of networks are observed via graphs. For
this purpose, there has been great interest on vulnerability in graph theory and different kinds of measures have been
defined [1,6,11,12,13,15,16].

In this paper we investigate the average weakly edge domination number as a new measure of global connectedness.
Whereas lots of other global measures are computationally NP-hard, the average weakly edge domination number can be
computed in polynomial time by using the present algorithms, making it much more attractive for applications. For
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terminology and notation on graph theory not given here, the reader is referred to [5,14]. Throughout this paper, we only
consider finite, simple, undirected graphs without isolated vertices. A graph G = (V,E) is a set V of vertices and a subset
E of the unordered pairs of vertices, called edges. The rest of the paper is organized as follows: In Section 2, we present
the new vulnerability measure called Average Weakly Edge Domination Number and study the properties of this
measure under certain graph operations. In Section 3, we compute the values of Average Weakly Edge Domination
Number for well-known graph classes. Finally, in section 4, we present an algorithm with time complexity O(n3) that
computes the Average Weakly Edge Domination Number of any graph.

2 Average weakly edge domination number

In the case of networks are modeled by graphs, some vulnerability measurements of graphs are considered when making
decision between two graph design. The reason is to provide the continuity of communication on networks. Since the
continuity of communication is related to the robustness of graphs to be used in network models, there are many studies
in graph theory on the vulnerability and many measurements such as connectivity, integrity, and tenacity are defined. We
need a new vulnerability measurement to preference among graphs when the known vulnerability measurements are the
same.

In the case of the edge and vertex integrity values are same for the graphs Gl and G2 which have the same number of
edges and vertices. We need a new measure to determine which graph is preferred for the network model.

Definition 1. Let e1 = (u1,v1) and e2 = (u2,v2) be two edges of a graph G = (V,E). The number of edges neighbor
to these two edges is called Pair Weakly Edge Domination Number (PWEDN). If el and e2 have common vertex then
PWEDN is added by 1.

Definition 2. In a graph G, the sum of all pair weakly edge domination number computed respect to all edge pairs is
called Total Pair Weakly Edge Domination Number (T PWEDN); i.e.,

T PWEDN = ∑
ei,e j∈E(G)

PWEDN(ei,e j).

Definition 3. In a graph G with n vertices, the number obtained via division of T PWEDN by the number of maximum
edges paired to n vertices is called Average Weakly Edge Domination Number (AWEDN); i.e.,

AWEDN =
T PWEDN(

m
2

) ,

where m =

(
n
2

)
.

To visualize the efficiency of this measure we present two different graphs G1 and G2 with the same number of vertices
and edges, and the same values of edge and vertex integrity in Figure 1. We need to compare AWEDN values to make a
choice between two graphs. To calculate the AWEDN values, first we need to calculate the PWEDN values of all edge
pairs, then find the T PWEDN values. Since graphs Gl and G2 both have 8 vertices, they are compared to the complete
graph with 8 vertices. AWEDN values can be found via the division of T PWEDN values by 378 which is the number of
pairs can be constructed by 28 edges since the complete graph with 8 vertices has 28 edges. The AWEDN values of graphs
Gl and G2 are calculated as

AWEDN(G1) =
54(
28
2

) ≈ 0.14286
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and
AWEDN(G2) =

64(
28
2

) ≈ 0.16931.

G1 G2

Fig. 1: The graphs G1 and G2 with 8 vertices.

In a graph G, the AWEDN being at large shows that relation between vertices is intense, and this leads graph is
invulnerable. In the case of a corruption in any line between two vertices, continuity of communication over different
lines is more possible in the graph which has greater AWEDN value. Therefore, the graph with greater AWEDN value is
more preferable when to make a choice between two graph models. It is enough to set the PWEDN value at least two to
increase the resistance of the graph against a possible corruption on edges.

Theorem 1. Let G = (V,E) be a graph and u,v ∈V . If we add e = (u,v) to the graph G to get the new graph G+ e, then
the T PWEDN value increases at least the rate of deg(u)deg(v)+deg(u)+deg(v).

Proof. If the edge e = (u,v) is added to the graph G, then the number of edge pairs in G and PWEDN values in the
actual pairs increase. PWEDN values in the actual pairs increase by one or remain stable. Those pairs whose PWEDN
values increase are the ones formed by the edges emerging from extreme vertex of the added edge e. Let deg(u) = m and
deg(v) = n. The number of pairs formed by the edges emerging from u and v is mn. By joining vertices u and v, PWEDN
value of mn many pairs is increased by 1. Therefore, T PWEDN value is also increased by 1. The add-on edge e = (u,v)
leads new pairs as much as the number of edges in G. Although it is hard to express PWEDN values of these new pairs
exactly, it is obvious that the edges which adjacent to end vertex increases T PWEDN the at least m+n. As a result, when
an edge e = (u,v) is added on a graph G, T PWEDN value increases at least by deg(u)deg(v)+deg(u)+deg(v).

Corollary 1. To make the increasing value of T PWEDN and AWEDN maximum by adding an edge on a graph G=(V,E),
non-edge connected and having the greatest vertex value vertices must be connected.

Theorem 2. Let G = (V,E) be a graph. If H is a spanning subgraph of G, then AWEDN(H)< AWEDN(G).

Proof. If H is a spanning subgraph of G, then by the definition, vertices number of G and H are equal. Since the edge
number of H is lesser than edge number of G and by Theorem 1, T PWEDN(H) < T PWEDN(G)⇒ AWEDN(H) <

AWEDN(G).

Theorem 3. Let Gl and G2 be two graphs with same number of vertices and have same diameter. If |E(Gl)| > |E(G2)|,
then AWEDN(Gl)> AWEDN(G2).

Proof.In the case of Gl and G2 have the same amount of vertices, AWEDN value determines the relationship intensity
amongst the edges. Hence, the proof is straightforward.

Graphs G1 and G2 in Figure 2 have the same amount of vertices. Graph G1 has 4 edges and T PWEDN(G1) = 18 whilst
Graph G2 has 5 edges and T PWEDN(G2) = 15. In spite of G1 has the lesser amount of edges, it has greater T PWEDN
value, there by greater AWEDN value. The reason is that their diameters are not equal. Diameter of G1 is 2 and diameter
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of G2 is 3. Since G1 has lesser diameter, relation between its vertices is more intense. T PWEDN value is increased by the
intensity of the relation between the edges. Edges of two graphs with same amount of vertices and same diameter have
similar relationship. In the graph which has more edges has greater T PWEDN value and thereby has greater AWEDN
value. Therefore, amongst the two graphs with same amount of vertices and same diameter, the one with more edges has
the greater AWEDN value.

G1 G2

Fig. 2: The graphs G1 and G2 with 5 vertices.

Theorem 4. Let G = (V,E) be a simple, connected graph with n vertices. The AWEDN value of G is bounded by

1
3
≤ AWEDN(G)≤ 8(n−2)

n+1

for n≥ 3.

Proof. For n = 3, a connected graph with minimum edges is the path graph P3 and AWEDN(P3) =
1
3

. AWEDN value
reaches to the maximum for the complete graph with nvertices. Therefore, for any graph G having more than 2 edges

1
3
≤ AWEDN(G)≤ 8(n−2)

n+1
.

Theorem 5. Let G1 and G2 be two different graphs with same diameter and same amount of vertices. If average degree of
G1 is greater than the average vertex degree of G2, then AWEDN(G1)> AWEDN(G2).

Proof. In a graph G = (V,E), all edges has two extreme vertices and while calculating the vertex degree all edges are
counted exactly twice. Hence the number of edges can be found by

|E|= 1
2 ∑

v∈V
deg(v).

Since the average vertex degree is

d(G) =
1
|V | ∑v∈V

d(V ),

the summation ∑v∈V d(V ) = d(G)|V |. Therefore,

|E|= 1
2 ∑

v∈V
d(V ) =

1
2

d(G)|V |.

Since the graphs G1 and G2 have the same amount of vertices and d(G1) > d(G2), the number of edges of G1 is greater
than the number of edges of G2. Therefore, AWEDN(G1)> AWEDN(G2).
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Theorem 6. Let G1 = (V1,E1) and G2 = (V2,E2) are different two simple connected graphs. If |V1| = |V2|, diam(G1) =

diam(G2), and δ (G1)> δ (G2), then AWEDN(G1)> AWEDN(G2).

Proof.In any graph, the sum of vertex degree is equal to 2 times of number of edges. The order in minimum vertex degrees
δ (G1)> δ (G2) implies that the |E1|> |E2|. Therefore, by the Theorem 3, AWEDN(G1)> AWEDN(G2).

Definition 4. [8] Let G = (V,E) be a connected graph and e1 = (u1,v1) and e2 = (u2,v2) are two distinct edges of G. The
distance between e1 and e2 is defined as

ed(e1,e2) = min{d(u1,u2),d(u1,v2),d(v1,u2),d(v1,v2)}.

Definition 5. [8] G = (V,E) be a connected graph with n vertices. The average edge distance of G can be defined as

µ
′(G) =

∑ei,e j∈E ed(ei,e j)(
n
2

) .

Lemma 1. Let G = (V,E) be a graph and e1 = (u1,v1),e2 = (u2,v2) ∈ E. If ed(e1,e2)≥ 2, then PWEDN(G) = 0; and if
ed(e1,e2)< 2, then PWEDN(G)≥ 1.

Proof. By the definition of edge distance, there is n dominating edge in the case of ed(e1,e2)≥ 2, therefore PWEDN(G) =

0. If ed(e1,e2)< 2, then there exists at least one edge that dominating e1 and e2. Hence, PWEDN(G)≥ 1 in this case.

Theorem 7. Let G1 and G2 be two graphs with same number of vertices and have same diameter. If µ ′(G1) < µ ′(G2),
then AWEDN(G1)> AWEDN(G2).

Proof. The average edge distance of G1 is lesser than the average edge distance of G2 means that the sum of the distances
between edges is also lesser. Since the number of vertices are the same, the number of edges of G1 is greater than
the number of edges of G2. Since these two graphs have the same diameter, by the Theorem 3, we can conclude that
AWEDN(G1)> AWEDN(G2).

3 Results

In this section, we present the AWEDN value for certain graph classes. First, we consider the basic graph classes like Path
Graphs (Pn), Cycle Graphs (Cn), Complete Graphs (Kn), Complete Bipartite Graphs (Km,n), and Wheel Graphs (Wm,n).
The basic definitions and theorems on these special classes can be found in [2].

Theorem 8. For n≥ 3, AWEDN(Pn) =
8(2n−5)

n(n−2)(n2−1)
.

Proof. For n = 3, P3 involves only one edge pair. Since these edges are adjacent, then AWEDN(P3) = T PWEDN(P3) = 1.

Let us now consider the case n > 3. Since Pn has n−1 many edges, any edge pair in Pn the AWEDN(Pn) is either 0 or 1.
We may obtain this result as

AWEDN(Pn) =

{
0, if ed(ei,e j)≥ 2
1, otherwise.

by using the Lemma 1.

In Pn there exist two edges that is incident to the end vertices, and there exist two other edges that are one or zero edge
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distant to those. Hence, the total of the PWEDN of those two including the later two is equal to 4. There exist two
adjacent edges of the edges incident to end vertices, and each of them has the edge distance of 0 or 1 to three more edges.
For these two edges, the total of PWEDN is equal to 6. n− 5 many edges other than those four edges have the edge
distance of 0 or 1 to four more edges, and those have the total of PWEDN as 4(n−5).

If any edge pair is counted, then

T PWEDN(Pn) =
4+6+4(n−5)

2
= 2n−5.

Therefore,

AWEDN(Pn) =
2n−5(

m
2

) =
8(2n−5)

n(n−2)(n2−1)
,

where m =

(
n
2

)
.

Theorem 9. For n≥ 3, AWEDN(Cn) =
16

(n−2)(n2−1)
.

Proof. In Cn there exist four distinct edges that are at the distance of zero or one to any other edges. Hence, for all edge
pairs the PWEDN is equal to 4, and the T PWEDN is equal to 4n. Since the each neighborhood is counted twice,

T PWEDN(Cn) = 2n.

Therefore,

AWEDN(Cn) =
2n(
m
2

) =
16

(n−2)(n2−1)
,

where m =

(
n
2

)
.

Theorem 10. For n≥ 3, AWEDN(K1,n−1) =
4(n−2)
n(n+1)

.

Proof. In K1,n−1, the central vertex is adjacent to the rest. This concludes that all edges are adjacent and at the distance of
0. Since any edge in K1,n−1 is adjacent to other n−2 edges, the PWEDN is n−2 for any edge pairs. Therefore,

AWEDN(K1,n−1) =

(
n−1

2

)
(n−2)(

m
2

) =
4(n−2)
n(n+1)

,

where m =

(
n
2

)
.

Theorem 11. AWEDN(W1,n−1) =
4(n2 +16)

n(n−2)(n+1)
.

Proof. The edge pairs in W1,n−1 are considered in four cases:

•PWEDN value of the edges in outer cycle:

Since the outer cycle of W1,n−1 involves n− 1 many edges, the number of edge pairs is equal to
(

n−1
2

)
. The

T PWEDN value of the outer cycle of W1,n−1 can be computed like the T PWEDN of Cn. Moreover, in W1,n−1, the
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central vertex is adjacent to all vertices in the outer cycle. Therefore, the PWEDN value is added by 1 for all edge
pairs and the total of the PWEDN is equal to 2(n−1)+(n+1) = 3(n−1).
•PWEDN value of the edges in C3:

The number of the edge pairs in C3 is equal to 2(n− 1). To obtain C3 on W1,n−1, we need to choose two pairs from
the inner part and one pair from the outer cycle. Since there exists n−1 many edges on the outer cycle, we can obtain
n−1 many C3. There exists only three distinct edge pairs on C3. Two of them are the pairs that are composed by the
edges on the outer cycle, the other one is the pair that is composed by the two edges in the inner part. Since the pairs
composed by the edges in inner part is studied in next case, we only consider the former two in this case. Since we
have (n−1) many C3, the number of the edge pairs is 2(n−1). For any edge pairs in C3, the PWEDN value is equal
to 3. Hence, the total of the PWEDN value is equal to 6(n−1).
•PWEDN value of the edges in the inner part:

There exist n− 1 many edges adjacent to the inner vertex of W1,n−1. Hence, the number of edge pairs in equal to(
n−2

2

)
. Any two of these edges are adjacent to the rest n−3 many edges. Since these two edges are also adjacent,

the PWEDN value is equal to n− 2. Since n− 1 many of the edge pairs are edges of C3 with an edge on the outer

cycle, the total of the PWEDN value is equal to
(

n−1
2

)
(n−2)+(n−1).

•PWEDN value of the vertices that do not share a common edge:
All edges in the inner part of W1,n−1 are adjacent. Therefore, the edges of the edge pairs is chosen either both from the
outer cycle or one edge from the inner part and the other is from the outer cycle. That is, at least one of the edge pairs
that composed by the edges which do not have a common vertex is on the outer cycle. Any edge on the outer cycle
is adjacent to two edges on the outer cycle and two edges in the inner part.Hence, any edge on the outer cycle do not
have a common vertex with 2(n−1)−5 many edges. Since we have already studied the PWEDN value of the edges
in outer cycle, the number of the edge pairs in this case turns to be equal to 2(n−1)−5− (n−4) = n−3.
The number of the edge pairs of composed by the one of the n−1 many edges on outer cycle and one of the n−1 many
edges from the inner part that do not have a common vertex is equal to (n− 1)(n− 3). an edge on the outer cycle is
on two distinct C4 with two distinct edges in the inner part since they do not share common vertices, and the PWEDN
value of these edge pairs are equal to 3. The PWEDN value of the edge pairs composed by the rest n− 5 edges is
equal to 2 because one of the vertices of the edge in inner part is adjacent to the vertices on the outer cycle. Therefore,
PWEDN value of the vertices that do not share a common edge is equal to (n−1)(6+2(n−5)) = 2(n−1)(n−2).

There exist
(

2(n−1)
2

)
edge pairs in W1,n−1. Hence,

AWEDN(W1,n−1) =

3(n−1)+6(n−1)+
(

n−1
2

)
(n−2)+(n−1)+2(n−1)(n−2)(
m
2

) =
4(n2 +16)

n(n−2)(n+1)
,

where m =

(
n
2

)
.

Theorem 12. For m,n≥ 2, AWEDN(Km,n) =
4mn(m+n−2)

(m+n)(m+n−1)(m+n+1)
.

Proof. In Km,n = (V1 supV2,E), there exist
(

mn
2

)
many edge pairs and we study them in three cases:

•The edge pairs sharing a common vertex in V1: In this case, we have m
(

n
2

)
many edge pairs. The PWEDN value is

equal to n− 1 for these edge pairs. Any vertex in V1 is adjacent to all vertices in V2, hence there exist n many edges
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adjacent to a vertex in V1. The edge pair composed by two of these are adjacent to n−2 many edges and since these
two edges are adjacent the PWEDN value is equal to n− 1. Therefore, the total of the PWEDN value is equal to

m
(

n
2

)
(n−1).

•The edge pairs sharing a common vertex in V2: In this case, we have n
(

m
2

)
many edge pairs. The total of the PWEDN

value can be calculated by following the same fashion of the former case as n
(

m
2

)
(m−1).

•The edge pairs sharing no common vertex: The edge pairs sharing no common vertex are in C4. There exist 2
(

m
2

)(
n
2

)
many edge pairs composed by such edges. Hence, the total of the PWEDN value is equal to 4

(
m
2

)(
n
2

)
.

T PWEDN value for these three cases is equal to m
(

n
2

)
(n−1)+n

(
m
2

)
(m−1)+4

(
m
2

)(
n
2

)
. Hence,

AWEDN(Km,n) =

m
(

n
2

)
(n−1)+n

(
m
2

)
(m−1)+4

(
m
2

)(
n
2

)
(

k
2

)

=

mn
2
(m+n−2)2

(m+n)(m+n−1)(m+n−2)(m+n+1)
8

=
4mn(m+n−2)

(m+n)(m+n−1)(m+n+1)
,

where k =
(

m+n
2

)
.

Theorem 13. AWEDN(Kn) =
8(n−2)

n+1
.

Proof. In Kn, there exist
((n

2

)
2

)
many edge pairs and we study them in two cases:

•Edge pairs composed by adjacent edges: In a complete graph Kn, any edge is adjacent to 2(n− 1) many edges. The

number of the edge pairs composed by the adjacent edges is equal to
(

n
2

)
(n−2). The PWEDN value is equal to n−1

for adjacent edges and the total of the PWEDN values for all adjacent edges is equal to
(

n
2

)
(n−2)(n−1).

•Edge pairs composed by nonadjacent edges: If we remove any two vertices of a complete graph Kn, then we obtain
the complete graph Kn−2. To calculate the number of the nonadjacent edges, we choose any edges and conclude that
the edges in the subgraph obtained by vertex removing are nonadjacent to former ones. Hence, the number of the

nonadjacent edges is equal to

(
n
2

)(
n−2

2

)
2

. PWEDN value for the edge pairs formed by nonadjacent edges is then

equal to 2
(

n
2

)(
n−2

2

)
.
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Hence,

AWEDN(Kn) =

(
n
2

)
(n−2)(n−1)+

(
n
2

)(
n−2

2

)
4

2((n
2

)
2

) =
8(n−2)
(n+1)

.

For the rest of this section, we present AWEDN number for (n,k)−Banana Tree (Bn,k) and Binary Trees (B−tree).

Theorem 14.

AWEDN(Bn,k) =

n(k−1)+n(n−1)+n(k−2)
(

k−1
2

)
(n−1)

(
n
2

)
(

m
2

) ,

where m =

(
nk+1

2

)
.

Proof. For the Banana tree Bn,k we have five cases for edge pairs:

•PWEDN value of edge pairs composed by the edges in same star graph is equal to 1. Since there exist n many edges
coming out the root vertex and there exist k−1 many edges in k-star graph, we have n(k−1) many edges pairs in this
case. Hence T PWEDN is equal to n(k−1) for this case.
•There exist n(n− 1)(k− 1) many edge pairs composed by an edge coming out the root vertex and an edge in the

different star graph. The distance between the edges in these pairs is equal to 1. Hence, T PWEDN is equal to n(n−1)
for this case.

•There exist n
(

k−1
2

)
many edge pairs in each star graphs and the PWEDN value for any edge pairs is equal to k−2.

Therefore, the T PWEDN value is equal to n(k−1)
(

k−1
2

)
.

•There exist
(

n
2

)
many edge pairs composed by edges coming out the root vertex and for any this kind of edge pairs

have the PWEDN value as n−1. Hence, the T PWEDN is equal to (n−1)
(

n
2

)
for this case.

•There exist (k− 1)2
(

n
2

)
many edge pairs composed by edges belonging to different star graphs. Since the distance

is great and equal to 2 for these edge pairs, the PWEDN value is equal to 0. Hence, the T PWEDN is equal to
n(k−1)+n = nk for this case.

Hence,

AWEDN(Bn,k) =

n(k−1)+n(n−1)+n(k−2)
(

k−1
2

)
(n−1)

(
n
2

)
(

m
2

) ,

where m =

(
nk+1

2

)
.

Theorem 15. For a B-tree with height n,

AWEDN(B− tree) =
10.2n−23(

m
2

) ,
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where m =

(
2n+1−1

2

)
.

Proof. There exist 2h many vertices on B-tree at each height h. When we pass to next height, 2h+1 many vertex added
since we add two vertices to each vertex. Therefore, for a B-tree with height n, there exist 2n+1− 2 edges. For a binary
tree, the PWEDN value is equal to 0,1, or 2. The edge pairs in K1,3 star graph have the PWEDN value as 2. In each
branching, there emerge the vertex number many K1,3. Hence, for h ≤ 2, there exist 21 + 22 + . . .2n−1 = 2n− 2 many

K1,3. Since the number of edge pairs in this case is equal to
(

3
2

)
(2n−2), the T PWEDN value is equal to 2

(
3
2

)
(2n−2).

Following the similar way, we may find the number of edge pairs whose PWEDN value is equal to 1 as

1+4+2222 +2322 +2422 + . . .+2n−122 = 1+4+16+32+ . . .+2n+1

= 5+4
(
1+2+22 + . . .+2n−3)

= 5+24
(

2n−2−1
2−1

)
= 2n+2−11.

Therefore, the T PWEDN value is equal to 2
(

3
2

)
(2n−2)+2n+2−11 = 10.2n−23. Hence,

AWEDN(B− tree) =
10.2n−23(

m
2

) ,

where m =

(
2n+1−1

2

)
.

4 The Algorithm

In this section, we present an algorithm in PASCAL codes to find the AWEDN of a graph G. In the definition block of the
algorithm, n is defined as the number of vertices and m is defined as the number of edges. The algorithm firstly construct
the distance matrix by using the Warshall-Floyd algorithm, then by using the distance matrix, it calculates the T PWEDN
value. At the last step, it divides the T PWEDN value by the number of edge pairs to obtain AWEDN value. The time
complexity of the algorithm is O(n3).

uses crt,graph;

type

koor=record

x,y :longint;

end;

const

n= ; m=;

var

E : array[1..m] of koor;

d ,A : array[1..n,1..n] of longint;

ED : array[1..m,1..m] of longint ;

TPWEDN : longint;

k , i , j ,q,u1,u2,v1,v2,enk,r,t : byte;
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AWEDN ,c ,t1 :real;

begin

q:=0;

for i:=1 to n do begin

for j:=1 to n do begin

readln(A[i,j]);

if( A[i,j]=1) and (i<j) then begin

q:=q+1;

E[q].x:=i;

E[q].y:=j;

end;

end;

end;

\{ Warshall - Floyd \}

for i:=1 to n do

for j:=1 to n do

if A[i,j]>0 then d[i,j]:=A[i,j]

else if i=j then d[i,j]:=0 else d[i,j]:=10000;

for k:=1 to n do begin

for i:=1 to n do begin

for j:=1 to n do begin

if d[i,j]>d[i,k]+d[k,j] then d[i,j]:=d[i,k]+d[k,j];

end;

end;

end;

for r:=1 to q do begin

ED[r,r]:=50000;

u1:=E[r].x;

v1:=E[r].y;

for t:=r+1 to q do begin

u2:=E[t].x;

v2:=E[t].y;

enk:=D[u1,u2];

if (u1=u2) or (u1=v2) or (v1=u2) or (v1=v2) then begin

ED[r,t]:=0 ; ED[t,r]:=0;

end;

if (ED[r,t]<>50000) or (Ed[r,t]<>0) then begin

if enk >= D[u1,v2] then enk:=D[u1,v2];

if enk >= D[v1,u2] then enk:=D[v1,u2] ;

if enk >= D[v1,v2] then enk:=D[v1,v2];

ED[r,t]:=enk; ED[t,r]:=enk;

end;

end;

end;

TPWEDN:=0;

for i:=1 to (q-1) do begin
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for j:=i+1 to q do begin

if ED[i,j]=0 then TPWEDN:=TPWEDN+1;

for k:=1 to q do begin

if (ED[i,k]=0) and (ED[j,k]=0) then TPWEDN:= TPWEDN +1;

end;

end;

end;

writeln(TPWEDN);

t1:=(n*(n-1))/2; c:=(t1*(t1-1))/2;

AWEDN:= TPWEDN /c;

writeln(Average Edge Domination Number=,AWEDN);

end.

5 Conclusion

In this study we present a new measure for vulnerability instead of well known measures. The main advantage of this
measure is that it can be computed in a polynomial runtime. In any graph, the least PWEDN value indicates the graph
has the highest rate of resistance to corruption on the edge pairs. In the case of PWEDN value is 2, even though one
of the edges is off-line, shows that there is an alternative line; therefore it increases the continuity of the communication
amongst the edges. Hence, AWEDN value can be used to make a choice between two graph models as to be used to design
an invulnerable graph model.
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