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Abstract: We will study trochoids and related curves using the repragion of these curves as mapping of the unit circle in the
complex plane. Points on the unit circle, or turns, an the@sun representing curves will be introduced and developeen we will
prove several results which illustrate properties of tmdh.
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1 Introduction

Back around 1920 a series of papers by W. F. Rig§&,B,9,10] appeared in thédmerican mathematical Monthly
describing various ways certain bounded closed curvekjdirg cardioids and roses, could be drawn. Rigge’s work
extended earlier work by R. E. Morits], and both described and built machines that would prodioeetrves under
discussion. Rigge’'s machine still exists in the care of thgsits Department at Creighton University in Omaha. The
basic kinds of curves studied by Moritz and Rigge are thoaé résult from harmonic motion along a line combined
with uniform angular motion of the line.

The recent paper by L. M. Hal¥] in the College Mathematics Journalksed the computer algebra systéftathematica

to study the kinds of curves produced by tBgirographdrawing sets, which also include cardoids and roses.
Mathematically , these curves are epitrochoids and hypoletiids, which are defined below. Many famous curves of
mathematics turn out to be achievable using 8pmrograph These include the ellipse, the deltoid, the astroid, the
cardoid, the nephroid, and the standard polar coordinaesrdsoing beyond th&pirograph many interesting curves
can be produced by using linear combinations of the epitigshand hypotrochoids. Such curves can be represented
parametrically using trigonometric functions, and can asilg graphed using a computer. The more recent results can
also be foundin{,2,3,11].

In this study, the curves will be studied as mappings of thieaircle in complex plane. Backgrounf from the paper of
W.B. Carver [1] will be given in Sectio, where we introduce the basic ideas and notation. Then,dtidBe3, we will
use the complex mapping approach to get new proofs of someeofesults of Hall 4]. Examples will be given to
illustrate most of the results.

2 Map equations and turns

A different approach to the straight line will illustrate theds to be used later in our treatment of curves. One of the
concepts is the idea of a rotation about the origin, which \iecall a turn.

Definition 1. A complex number of the formfe with absolute value unity, will be called a turn, and willuadly
represented by the letter t.
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A turn corresponds to a point on the unit circle or to a vecfamst length. Since/tt = 1, T = % i.e., the conjugate of a
turn is its reciprocal; and, converselyaf= %, then a andi are turns. The product of two or more turns is a turn, and if
is a turn thert" is a turn for any real n. The quotient of any number by its cgate is a turn.

Definition 2. By the reflex point of a line we shall mean the reflection of tigiroin the line. If the line goes through the
origin, the reflex point is the origin itself.

Definition 3. For the self-conjugate equation of the line-ey = cr, the turn c is called the clinant of the line.

The clinant gives the orientation of the line in somewhatdhme way as the slope gives the orientation of a line in the
Cartesian system.

The following are relations between the slapeof a line in the Cartesian system(s a real) and the clinart of the
same line in the conjugate systemig a turn):
i(c+1) m-i
m=

i
c= -, arctamm = —=log(—c).
1 et 5 g(—¢)

Definition 4. By the directed angley,» from a line/; to a line ¢, we shall mean any angle through which the lihenay
be turned to bring it into parallelism with the ling.

Y1—Y

Lemma 1. The clinant of the line through the points;,y:) and(Xo,y») is c= o
1—X2

Definition 5. The map equation of the straight line is an example of a kindepfesentation which can be used
advantageously in the study of certain other rational (unéal) curves.

Suppose the complex variabiés equated to a rational function of a variable ttrn

x=R(t) = ~ .~ (1)

whereP(t) andQ(t) are relatively prime polynomials. As the pointuns around the unit circle the poixtdescribes a
rational curve. Equatiorlf implies the conjugate equation

y=R(%), (2)

and equationsl) and @) together are parametric equations of the curve. There mayrh values of for whichQ(t) =0,
and such values dfwould not give points of the curve. Except for such values &t) andﬁ(%) are analytic functions
of t. Eliminatingt algebraically from {) and @), we obtain an equation of the form

f(X7 y) =0, )

and it can be shown that this equation will always be selfiogatte. It will be satisfied by all points obtained by giving
turn values in {) and @), but may sometimes be satisfied also by other points nohdiyehe parametric equations.

Suppose that the map equation of a curveisR(t) = % and that; andt, are two distinct values of the tutnwith

Q(t1) # 0, and henc&(ty) # 0 whent; is sufficiently close tds; and let(xq,y1) and (X2, y2) be the two corresponding
points on the curve. The clinant of the secant line througkétpoints is

Yi—y2

yl - y2 tlftz
T ux
1 2 it

If now t; is fixed andt, is made to approach taking on only turn values, the clinant of the secant will rggeh the
clinant of the tangent to the curve at poim, y1), and the fractiong! =2 and {:=2 will approach limits, the values of
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the formal derivative®;y andD;x for t =t;. Thus provided:x # 0 whent =t;, the clinant of the tangent to the curve at
the point(xy,y1) is a value of the turht;

Dy

=~ Bix’ (4)

If either Dyy or Dyx is zero fort =ty, the other is also. For witk= R(t) we may writeDx = R (t). Theny = ﬁ(%) and
-, 1

Diy=R/'(Z)(—5).

y=R(D(-5)

Since—t% can not vanishD;y vanishes when and only whé({) = 0. ButR’(}) = 0 is the conjugate R (t) = DX,

and hencéy vanishes when and only whé&hx vanishes. This will occur only at certain singular pointshed curve,
and at such points the formuld)(is meaningless. Because of the relation

Dix
Dty: 7_tza
t
formula @) may be written
Dix
e S 5
C= Zbx’ ®)

a useful form which enables us to obtain the clinant of thgéahfrom the map equatiof)(without writing the conjugate
equation p).

3 Trochoids and Rosettes

Definition 6. If two tangent circles have their centers on the same sideso€Ebmmon tangent line, and one circle remains
fixed while the other is rolled around it without slipping, gdotrochoid is traced by any point on a diameter or extended
diameter of the rolling circle. If the tracing point is on tlircumference of the rolling circle, the curve traced is a
hypocycloid.

Definition 7. If two tangent circles have their centers on opposite sidéseocommon tangent line, and one circle remains
fixed while the other is rolled around it without slipping, a@pitrochoid is traced by any point on a diameter or extended
diameter of the rolling circle. If the tracing point is on tlercumference of the rolling circle, the curve traced is a

epicycloid.

The general terntrochoidwill be used to refer to either a hypotrochoid or an epitradhAssume the center of the fixed
circle is at the origin. If6 is the counterclockwise angle from the positive x-axis ®lthe joining the centers of the two
circles,n is the radius of the fixed circlen the radius of the rolling circlam the distance from the center of the rolling
circle to the tracing point, and the initial polar angle of the tracing point with respecthe ttenter of the fixed circle,

the parametric equations are easily derived.

Let us think about the fundamental period for the map eqodiio,n,m,r,al. We have

R PR rm ja
X+iy = [(n m)ée +ei(“m)e]e .

m
Fort =€?, because the period igh, to complete the curve requirestimes around the unit circle. But the map equation

maps the unit circle (once around) to a curve, and we carcefarore than one circuit. So, if tieperiod is greater than
21, the map equation will produce an incomplete curve. We waettame around the unit circle to give the complete

n—m

curve, so we have to substitute for the tura new turnf =1 m Hence,

mr\ .
h[t,n,mr,al = ((n—m)r+ nm) e,
T m
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and after the substitution, our new map equation for hypbioals is:
hymagt,n,m,r,a) = ((n— m)t%l + mTr) e
which will produce the complete curve aakes on unit circle values one time each.
Similarly, substituting = """, we define the epitrochoid map equation:
epmafit,n,mr,al = ((nwL mjtaim — rmt) e,
We will use the functionblymapandepmapto study trochoids from the map equation point of view.

For exampleh[1,3,2,1,0] doesn’t produce a complete curve as we see in Figure

Fig. 1: hymapf,3,2,1,0].

Substituting = 11/2, we get the equation
2

t
for which one full period is produced as shown in Fig@reMap equations are simpler than parametric equations. It is
easier to study many of the properties of trochoids and fiveinfs using these map equations.

hymaiit,3,2,1,0] = t* +

Theorem 1.If (n,m) = 1, then

(i) hymapgt;xn,xmr,al = x hymap;n,m,r,al.
(i) epmaft;xn,xmr,a =x epmaft;n,mr,al.

Proof. Suppose andm are relatively prime. Then,

hymajit; xn, xmr,a] = [x(n— m)tam + mer]eia = x[(n—m)tam + ?]ei"’1 = x hymapt;n,mr,aJ.

Similarly, we can show (ii).

A classical result regarding trochoids is that any hypdtoid can be expressed in terms of an epitrochoid and vicgaver
This is sometimes referred to as the Bernoulli - Euler- Gatitbdouble generation theorem, and can be proved using the
hymap and epmap functions.

Theorem 2.(The B-E-G Theorem) Let n and m be nonzero integers, and r heeno. Then

(i) epmap[t,n,m,ra]=r hymapl[,n,n+m,%,a], wherer =t~ #m. and

(i) hymap[t,n,m,ral=r epmapx[,n,m-n,%,a] wherer =tm,

(© 2018 BISKA Bilisim Technology



NTMSCI 6, No. 2, 6-18 (2018) yww.ntmsci.com BISKA 10

Fig. 2: hymaplt,3,2,1,0].

Proof. (i) Letepmafit,n,mr,a] = ((n+m)tn+£m —rmt)e?. Lett =t mm. Thent =1~ "m". We get
epmapt,n,mr,al = [(n+m)tn% —rmt)e?

1 m i
=r[(n+m) Tt — mt|e?

1

=r[(n— (n+m))t+ (n-+m)e?

L
t

1
— r[n_ (n_ m)Tn](J';Tm) + m
T

]eia

1
=rhymagrt,n,m+n, ?,a]

(i) Let hymagt,n,mr,a=[(n— m)t%w + M andr = tam. Thent = 1" . We get

hymapit,n,m r,a) = [(n— m)ta-m + ?]eia

(n—m), m m

_ em _ ia
=r[ ot t]e'
_ r[n+(m_n) . (m_n)t%‘]eia
t r
n+(m—n) 1 nemon

=repmagt,n,m—n,1/ra

The B-E-G theorem comes into play in the design of the rotagiree, where the bore is in the shape of an epitrochoid,
and the rotor is determined using the equivalent hypotriochbhe center of the rotor traces out a circle, which

corresponds to the driveshaft. A nice Mathematica animaten be made of a working rotary engine, complete with
rotating driveshatft.
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To illustrate the B-E-G Theorem, we shall plot the graphéiyhapt,7,3,1/2,0] and /2 epmaprt,7,—4,2,0], where
we use part (i) witmh =7, m=3,r = 1/2, anda = 0. The plots will be identical.

Fig. 3: 2hymaypt,7,3,1/2,0] = epmaprt, 7,—4,2,0].

Theorem 3.(The Complement Theorem)(if, m) = 1, then
1
hymapgt,n,m,r,a] = r hymagdt,n,n—m, ?,a]

m
wherer =tm-n,

Proof.Usingt = tmn, we gett = T'm . Then

hymarit,n,mr,a) = [(n— m)tem + ?]eia

(n—m)

tim 4 —|e?

n—(n—-m) (n—m)i
+ m
t tm-n

=r[(n—(n— m))-[n—n(;Tm) _(-my

=r|

m.
t

1
:rhymam,n,n—m,F,a]

For examplehymayit,7,1,1,0] and hymapt,7,6,1,0] both produce the following graph, the curve being traced out
counterclockwise whem = 1 and clockwise whem = 6. Such congruences follow from the Complement theorem
because the radius of the two rolling circles sunmtoAnother connection between epitrochoids and hypotrats)oi
which can be proved either by appealing to the definitionsyoaplying the Complement and B-E-G theorems, is that
epmayit,n,m,r,a] = hymagt,n,—m,r,a]. Usingt = 1~*

epmapi,n,mr,a) = [(n+ mjtarm — rmt]e®
n—(n—-m)

=[(n— (—m)t "Cm 4 r(—m)t]e?
(—Tm)]eia

= [(n— (~m)) T+~
= hymagrt,n,—m,r,a].

We now look at the idea of multiple points of trochoidsn#old point of a trochoid is a point that is traced over exgaatl
times during one fundamental period. A rose withetals has an-fold point at(0, 0). The next theorem gives a necessary
and sufficient condition for the hypotrochoid with seconduamentn to have am-fold point at(0,0). We shall call this
kind of hypotrochoid, as well as any other curve witfpetals” and am-fold point at(0,0) a rosette. First, however, we
need a theorem.

(© 2018 BISKA Bilisim Technology
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Fig. 4: hymaplt,7,1,1,0] and hymap|7,6,1,0].

Theorem 4.The graphs of hymdpn,m, —r,a+ mr/n] and hymaft,n,m,r,a] are congruent.

Proof. A proof based on the definitions is possible here, but gedor&asoning is more intuitive. It is easier to picture
what is going on ifm < n, but the lemma remains true if mn > n. Geometricallyt is the counterclockwise angle
through which the center of the rolling circle has moved, sueed from the starting, angée and nri/n is thet-increment
corresponding to half of one revolution of the rolling ceéclThus, whert = mrt/n, the position of the rolling circle in
hymaypt,n,m,r,a] is: center at angléa+ mr/n) and tracing point diametrically opposite its starting pevith respect to
the rolling circle. But this is the same as the starting pasifor hymagt,n,m, —r,a+ mrt/n].

Theorem 5.(The Rosette Theorem I)(ii,m) = 1, hymapt,n,m,r,a] is a rosette with n-fold point &0, 0) if and only if
r= (=),

m
Proof. (=) Suppose hymap[t,m,n,r,a] is a rosette with n-fold poir(0ad). Then

rm

eia
ol

hymapit,n,m r,a) = [(n— m)tm +

and there are exactlyturnst such that

which is equivalent to

tn%_ mr
T m-n
Because is a turn,
t" = ftmom| = 1,
mr

1= l,

m-—n

n—m

r==+ .

(<) Suppose = £, Thenrm = &(n—m).
Case 1. Supposem=n—m.

(© 2018 BISKA Bilisim Technology
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hymagit,nm ] = hymagt,nm ="
= (- e+ (e
= [(n— m)[t=" + T])é
~(n-mt e

1
n

The curve passes through (0,0) whea [(—1)"™]
of them in one circuit of the unit circle.
Case 2. Supposem = —(n—m). In the same way,

and because these a8 root of either 1 or—1, there are exactly n

hymapt,n,m,r,a] = [(n—m)]

1
n

The curve passes through (0,0) whea [1"™a, ann'" root of unity, of which there are exactly n in one circuit oéth

unit circle.

To illustrate the Theorem, here is the graptglt,12 1,11 0] (Figure5). The theorem conditions for a 12-fold point at
(0,0) are satisfied.

Fig. 5: hymap[t,12,1,11,0].

Definiton8. For a rosette with map equation hymammr.aj(or epmag,n,mr,al), Iif
hymapt,n,mr,a] = hymapt,,n,m,r,a] = 0 and there are no other zeros betwegnand 1, then that part of the
rosette corresponding values of t betwagrand 1, is a petal. A petal angle is the angle between the tangentpeta
at the origin.

In other words, a petal is one loop of the rosette. By the sytnyyiéa = 0, every kind of petal intersection will occur on
either the x-axis or the line with polar angle If a# 0, the intersections are rotated by the argle

Theorem 6.(Petal Angle Theorem) The petal angle of a rosette is

a = [Re{1log(—(—1) ")} .

(© 2018 BISKA Bilisim Technology
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Proof. From Rosette Theoremd,= "= or rm = n—m. Thus, in the hypocycloid map equation, we get

hymapgt,n,m,r,a] = ((n— m)t%r + ?1)eia =[(n— m)[t%l + %]eia

Lett = t"M. Thentam = g™, Using this assumption above, we get

hymagt,n,m,r,al = (n—m)[t"+ 1€® = (n—m)T™ (14 1")e?.

Tnfm

We want to find the petal angle of the hypocycloid. Using thiiniteon of petal angles, we need consecutive turns where
1 . ..

hymapgt,n,mr,a] = 0. That means"+ 1= 0, andt = (—1)7. Differentiating, we get

D:hymap= (n—m)[mr™ %+ (m—n)r™ ("],

and
D;hymap= (n—m)[mtX "+ (m—n)r"1-Me2,

Hence, we can obtain the clinant of the tangent from the magtem,

Dihymap  (n—m)[mri ™+ (m—n)r"1-MeR ™ "[(m—n)t" +m|

" 12D;hymap  t2(n— m)[mr™ 1+ (m—n)t™(jga (T (m—n)T "+ m)’

Since this is to be evaluated whafe= —1 and7™" = —1,

Becausa = (—1)%,

The inclination anglep = } |Og(,(,1)’—,?“)_ Therefore

0 =2| ¢|= 2/ log(~(~1) )| = ilog(~(-1) ") |= [Refilog(~(~1) ")}

Theorem 7.(Petal Angle Sum Theorem) The sum of all the petal anglesdfdbhoid hymafp,n,m,r,a] is

na = |n—2m|m.

ProofCase 1.If n= 2k, then
na = 2k|Re{iIog(—(—1)7T2km)}|
= 2k|Re{ilog(¢"'(€™) %)}
— 2KRe{~ (1 T }|

m
= 2kmj1— —
m1- |
= 112k — 2m|
= mjn—2m|

Cese 2Ilf n=2k+1, then

(© 2018 BISKA Bilisim Technology
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na = (2k+ 1)|Refilog(—(~1)%1)}|
— (2k+ 1)|Relilog(e™(e™) 371 } |

2m
= (2k+1)|Re{—m(1— mﬂ
2m
=|(2k+1) - (1 55|
2m

= mi(2k+1) — (2K + D]

= mjn—2m|

Theorem 8.(The Rose Theorem) (i, m) = 1, the hypotrochoid hymdin, m,r,a] is a rose if and only if

and either m:[g]+1 or m:n—[g]—l

where[3] denotes the greatest integer3n

Proof. (=) Supposéhymait,n,m,r,a] is a rose. Thetymapt,n,m,r,a] is a rosette, and = +™=". The sum of the
petal angles of a rose 1sor 271. That means — 2mis +1 or +2.
Case 1. Supposeis odd. Ther{J] = ”%1 Sincenis odd,n— 2mmust be equal t&-1. Suppos@ — 2m= 1. Then

n—1 n—1 n
mefnfolfnf[E]fl
Supposen—2m= —1. Then
n+1 n-—-1 n
m== 2 Fiks

Case 2. Suppose is even. Thenj] = 3. Since n is evem — 2mmust be equal te-2.

Supposen— 2m= 2. Then

Supposen—2m= —2. Then

(«=) Suppose = i(n;mm). Then the curve is a rosette.
Case 1.Supposeais odd andn= [J] + 1. Then[]] = ”;21 andm= &21 The sum of the petal angles of the rosette is

[n—2m|m=|n— (n+1)|m
=T

Case 2. Supposeis odd andn=n—[J] — 1. Then[]] ”%1 andm= ”%1 The sum of the petal angles of rosette is

In—2mjr=|n— (n—1)|mr=TL.

The sum of the petal anglesssin case(i) and case (ii). Therefore, the curve has no doubie pndhymapt,n,m,r,0] is
arose.
Case 3. Suppose is even andn= [J] + 1. Then[J] = 3 andm= "52. The sum of the petal angles of the rosette is

(© 2018 BISKA Bilisim Technology
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In—2m|m=|n— (n+2)|m=2m.
Case 4. Supposen is even andn=n—[J] — 1. Then[J] = § andm= “52. The sum of the petal angles of the rosette is
In—2m|mT=|n— (n—2)|mr= 2.

The sum of the petal angles isrth case(iii) and case (iv). Therefore, the curve has no dopbint anchymapt,n,m,r, 0]
is a rose.

Theorem 9.(The Rosette Theorem I1)(Iih,m) = 1, the curve defined by
dmagt,n,m,ry,rp,a) = epmaft,n,m,ry,a — hymapgt,n,m,r,, a
is a rosette of n petals if and only|ify +ra| = 2.

Proof. First, we will combine the map equations.

mry . .
dmagt,n,m,ry,rp,a) = ((n+mjt— rlmt%') —((n=m)t+ té )e
m
mry .
= (2mt—rymt'm — t";'%' )ed
m

= [tm (—ZI% + rlt%] +r2)]eia.

m

LettY™ = r. Then we get the complete equation:

—m (rit2 — 21"+ 1,))€R.

dmagt,n,m,ry,rp,a = [Tnim

For convenience, we will writdmapg1) instead ofdmagt,n,m,rq,r»,a] in the rest of the proof.

(=) If dmapT) is a rosette of petals, then there are exactiyurnst for whichdmagt) = 0. If dmagt) =0, then
M — 1+v/1-—r1r2
I '
So for one sign choice, but not both}| = 1. There are three cases:

(i) rro<1:1"= %(1i VvI=rir;) > 0andris real.

Lett"=1. Then

1
—(1£+/1-rrp)=1

r
1£v1-riro=rq
1—riro= (r1, 1)2

r2—ry(2—ry) =0.
Thereforery =00rry =2—r,. I1f ry =0, thent" = % sorp, =2 andifry =2—ry, thenry +r, = 2.

If T" = —1 similar work gives; +r, = —2.

(i) If rirp=1,thent" = % and|t"|=1.1fry = +1, thenr, = +1 andry +ry, = +2.

(i) Supposeriro > 1. Thent" = %ii—vrlrrf’l and|t"|]? = [—i But, to be a turn, we neqéﬂ =1.Thenr,=r, or
ri = —ry. The case; = —r» is impossible becauser; > 1 fails. Sodmagt) = 0 in this case only if; =rp = +1.
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Fig. 6: dmap]t,6,1,1,1,0]=epmap[t,6,1,1,0]-hymap]t,6,1,1,0]

(<) lfri+r2=2,thendmaft) = 755 (1" —1)(r1t"—r2), andifr; +-ro = -2, thendmap 1) = =55 (1" +1)(ra 1" +r2).

In either case, the only solution dmag1) which is a turn ist" = +1, and the origin has an n-fold point.

Let's considedmapt,6,1,1,1, 0] = epmajit,6,1,1,0] — hymapt,1,1,1,0]. After we combine the map equations, we
will get

-1
dmapt,6,1,1,1,0] = t—s(—2te+t32+ 1).

Becausan = 1, this is already in the conjugate form. When we look at thepfgrof thedmapthe roots are double roots
and the curve to “bounce back” @, 0) instead of “passing through”.

Corollary 1. If (n,m) = 1, the curve defined by
dmagt,n,m,r,al = epmafit,n,m,r,a] — hymapgt,n,m,r.a
is a rosette with 2n— fold point at the origin if and only ifr| > 1.

Actually, the rosettes in Rosette Theorem Il include thasdrosette Theorem I, and thus also include roses. The
relationship is given in the following corollary. A similagsult holds with—2 in place of 2

Corollary 2.
dmagr,n,m,0,2,a] =

n
hymapt,n,m, - +1,al.

2m
(n—m)
4 Conclusion

Mathematical modelling regarding to algebraic curves mglstudied subject. In this study, trochoids and relatedesu
using the representation of these curves as mapping of theirtate in the complex plane is given. First we define the
map equation of these curves with the self-conjugate oglatiThen, we give the conditions for trochoids to be coneplet
Since map equations are simpler than parametric equati@nitroduce the basic results on trochoids and epitroghoid
by using their map equations. A classical result regardinghioids is that any hypotrochoid can be expressed in tefms o
an epitrochoid and viceversa. To obtain this result, we @tboe Bernoulli - Euler- Goldbach double generation theorem
on map equations. We also present a connection betweendmitds and hypotrochoids by applying the Complement
and B-E-G theorems, is th&pmajit,n,mr,a] = hymapgt,n,—m,r,aj. We also present the relationships between the
hypotrochoids and rosettas by using map equations.
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