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Abstract: We will study trochoids and related curves using the representation of these curves as mapping of the unit circle in the
complex plane. Points on the unit circle, or turns, an their uses in representing curves will be introduced and developed. Then we will
prove several results which illustrate properties of trochoids.
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1 Introduction

Back around 1920 a series of papers by W. F. Rigge [6,7,8,9,10] appeared in theAmerican mathematical Monthly
describing various ways certain bounded closed curves, including cardioids and roses, could be drawn. Rigge’s work
extended earlier work by R. E. Moritz [5], and both described and built machines that would produce the curves under
discussion. Rigge’s machine still exists in the care of the Physics Department at Creighton University in Omaha. The
basic kinds of curves studied by Moritz and Rigge are those that result from harmonic motion along a line combined
with uniform angular motion of the line.

The recent paper by L. M. Hall [4] in the College Mathematics Journalused the computer algebra systemMathematica
to study the kinds of curves produced by theSpirograph drawing sets, which also include cardoids and roses.
Mathematically , these curves are epitrochoids and hypoctrochoids, which are defined below. Many famous curves of
mathematics turn out to be achievable using theSpirograph. These include the ellipse, the deltoid, the astroid, the
cardoid, the nephroid, and the standard polar coordinate roses. Going beyond theSpirograph, many interesting curves
can be produced by using linear combinations of the epitrochoids and hypotrochoids. Such curves can be represented
parametrically using trigonometric functions, and can be easily graphed using a computer. The more recent results can
also be found in [1,2,3,11].

In this study, the curves will be studied as mappings of the unit circle in complex plane. Backgrounf from the paper of
W.B. Carver [1] will be given in Section2, where we introduce the basic ideas and notation. Then, in Section 3, we will
use the complex mapping approach to get new proofs of some of the results of Hall [4]. Examples will be given to
illustrate most of the results.

2 Map equations and turns

A different approach to the straight line will illustrate methods to be used later in our treatment of curves. One of the
concepts is the idea of a rotation about the origin, which we will call a turn.

Definition 1. A complex number of the form eiθ , with absolute value unity, will be called a turn, and will usually
represented by the letter t.
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A turn corresponds to a point on the unit circle or to a vector of unit length. Since
√

tt = 1, t = 1
t , i.e., the conjugate of a

turn is its reciprocal; and, conversely, ifa= 1
a, then a anda are turns. The product of two or more turns is a turn, and ift

is a turn thentn is a turn for any real n. The quotient of any number by its conjugate is a turn.

Definition 2. By the reflex point of a line we shall mean the reflection of the origin in the line. If the line goes through the
origin, the reflex point is the origin itself.

Definition 3. For the self-conjugate equation of the line cx+ y= cr, the turn c is called the clinant of the line.

The clinant gives the orientation of the line in somewhat thesame way as the slope gives the orientation of a line in the
Cartesian system.

The following are relations between the slopem of a line in the Cartesian system(m is a real) and the clinantc of the
same line in the conjugate system (c is a turn):

m=
i(c+1)
c−1

, c=
m+ i
m− i

, arctanm=
i
2

log(−c).

Definition 4. By the directed angleφ12 from a lineℓ1 to a lineℓ2 we shall mean any angle through which the lineℓ1 may
be turned to bring it into parallelism with the lineℓ2.

Lemma 1.The clinant of the line through the points(x1,y1) and(x2,y2) is c=−y1− y2

x1− x2
.

Definition 5. The map equation of the straight line is an example of a kind ofrepresentation which can be used
advantageously in the study of certain other rational (unicursal) curves.

Suppose the complex variablex is equated to a rational function of a variable turnt,

x= R(t) =
P(t)
Q(t)

, (1)

whereP(t) andQ(t) are relatively prime polynomials. As the pointt runs around the unit circle the pointx describes a
rational curve. Equation (1) implies the conjugate equation

y= R(
1
t
), (2)

and equations (1) and (2) together are parametric equations of the curve. There may be turn values oft for whichQ(t) = 0,
and such values oft would not give points of the curve. Except for such values oft, R(t) andR(1

t ) are analytic functions
of t. Eliminatingt algebraically from (1) and (2), we obtain an equation of the form

f (x,y) = 0, (3)

and it can be shown that this equation will always be self-conjugate. It will be satisfied by all points obtained by givingt
turn values in (1) and (2), but may sometimes be satisfied also by other points not given by the parametric equations.

Suppose that the map equation of a curve isx = R(t) = P(t)
Q(t) and thatt1 andt2 are two distinct values of the turnt, with

Q(t1) 6= 0, and henceQ(t2) 6= 0 whent2 is sufficiently close tot1; and let(x1,y1) and(x2,y2) be the two corresponding
points on the curve. The clinant of the secant line through these points is

c=−y1− y2

x1− x2
=−

y1−y2
t1−t2
x1−x2
t1−t2

If now t1 is fixed andt2 is made to approacht1 taking on only turn values, the clinant of the secant will approach the
clinant of the tangent to the curve at point(x1,y1), and the fractionsy1−y2

t1−t2
and x1−x2

t1−t2
will approach limits, the values of
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the formal derivativesDty andDtx for t = t1. Thus providedDtx 6= 0 whent = t1, the clinant of the tangent to the curve at
the point(x1,y1) is a value of the turnt ti

c=−Dty
Dtx

. (4)

If eitherDty or Dtx is zero fort = t1, the other is also. For withx= R(t) we may writeDtx= R′(t). Theny= R(1
t ) and

Dty= R ′(
1
t
)(− 1

t2 ).

Since− 1
t2

can not vanish,Dty vanishes when and only whenR ′(1
t ) = 0. But R ′(1

t ) = 0 is the conjugate ofR′(t) = Dtx,
and henceDty vanishes when and only whenDtx vanishes. This will occur only at certain singular points ofthe curve,
and at such points the formula (4) is meaningless. Because of the relation

Dty=−Dtx
t2 ,

formula (4) may be written

c=
Dtx

t2Dtx
, (5)

a useful form which enables us to obtain the clinant of the tangent from the map equation (1) without writing the conjugate
equation (2).

3 Trochoids and Rosettes

Definition 6. If two tangent circles have their centers on the same side of the common tangent line, and one circle remains
fixed while the other is rolled around it without slipping, a hypotrochoid is traced by any point on a diameter or extended
diameter of the rolling circle. If the tracing point is on thecircumference of the rolling circle, the curve traced is a
hypocycloid.

Definition 7. If two tangent circles have their centers on opposite sides of the common tangent line, and one circle remains
fixed while the other is rolled around it without slipping, anepitrochoid is traced by any point on a diameter or extended
diameter of the rolling circle. If the tracing point is on thecircumference of the rolling circle, the curve traced is a
epicycloid.

The general termtrochoidwill be used to refer to either a hypotrochoid or an epitrochoid. Assume the center of the fixed
circle is at the origin. Ifθ is the counterclockwise angle from the positive x-axis to the line joining the centers of the two
circles,n is the radius of the fixed circle,m the radius of the rolling circle,rm the distance from the center of the rolling
circle to the tracing point, anda the initial polar angle of the tracing point with respect to the center of the fixed circle,
the parametric equations are easily derived.

Let us think about the fundamental period for the map equation h[τ,n,m, r,a]. We have

x+ iy =

[

(n−m)eiθ +
rm

ei( n−m
m )θ

]

eia.

Forτ = eiθ , because the period is 2πm, to complete the curve requiresm times around the unit circle. But the map equation
maps the unit circle (once around) to a curve, and we can’t force more than one circuit. So, if theθ period is greater than
2π , the map equation will produce an incomplete curve. We want one time around the unit circle to give the complete
curve, so we have to substitute for the turnτ a new turn,t = τ

n−m
m . Hence,

h[τ,n,m, r,a] =

(

(n−m)τ +
mr

τ
n−m

m

)

eia,
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and after the substitution, our new map equation for hypotrochoids is:

hymap[t,n,m, r,a] =
(

(n−m)t
m

n−m +
mr
r

)

eia,

which will produce the complete curve ast takes on unit circle values one time each.

Similarly, substitutingt = τ n+m
n , we define the epitrochoid map equation:

epmap[t,n,m, r,a] =
(

(n+m)t
m

n+m − rmt
)

eia.

We will use the functionshymapandepmapto study trochoids from the map equation point of view.

For example,h[τ,3,2,1,0] doesn’t produce a complete curve as we see in Figure3.

-1 1 2 3

-2

-1.5

-1

-0.5

0.5

1

Fig. 1: hymap[τ,3,2,1,0].

Substitutingt = τ1/2, we get the equation

hymap[t,3,2,1,0] = t2+
2
t

for which one full period is produced as shown in Figure2. Map equations are simpler than parametric equations. It is
easier to study many of the properties of trochoids and theirproofs using these map equations.

Theorem 1.If (n,m) = 1, then

(i) hymap[t;xn,xm, r,a] = x hymap[t;n,m, r,a].
(ii) epmap[t;xn,xm, r,a] = x epmap[t;n,m, r,a].

Proof.Supposen andmare relatively prime. Then,

hymap[t;xn,xm, r,a] = [x(n−m)t
m

n−m +
xmr

t
]eia = x[(n−m)t

m
n−m +

mr
t
]eia = x hymap[t;n,m, r,a].

Similarly, we can show (ii).

A classical result regarding trochoids is that any hypotrochoid can be expressed in terms of an epitrochoid and vice-versa.
This is sometimes referred to as the Bernoulli - Euler- Goldbach double generation theorem, and can be proved using the
hymap and epmap functions.

Theorem 2.(The B-E-G Theorem) Let n and m be nonzero integers, and r be nonzero. Then

(i) epmap[t,n,m,r,a] = r hymap[τ,n,n+m,1r ,a], whereτ = t−
m

n+m . and

(ii) hymap[t,n,m,r,a] = r epmap[τ,n,m-n,1r ,a] whereτ = t
m

m−n .
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Fig. 2: hymap[t,3,2,1,0].

Proof. (i) Let epmap[t,n,m, r,a] = ((n+m)t
m

n+m − rmt)eia. Let τ = t−
m

n+m . Thent = τ−
n+m

m . We get

epmap[t,n,m, r,a] = [(n+m)t
m

n+m − rmt]eia

= r[(n+m)
1
r

t
m

n+m −mt]eia

= r[(n− (n+m))t+
1
r

t
n−(n+m)

n+m

(n+m)]eia

= r[n− (n−m)τ
n+m

n−(n+m) +
(n+m)1

r

τ
]eia

= r hymap[τ,n,m+n,
1
r
,a]

(ii) Let hymap[t,n,m, r,a] = [(n−m)t
m

n−m + rm
t ]eia andτ = t

m
n−m . Thent = τ

n−m
m . We get

hymap[t,n,m, r,a] = [(n−m)t
m

n−m +
rm
t
]eia

= r[
(n−m)

r
t

m
n−m +

m
t
]eia

= r[
n+(m−n)

t
− (m−n)

r
t

m
n−m ]eia

= r[
n+(m−n)

t
− (m−n)

1
r

t
n+(m−n)

n−m ]eia

= r[n+(n−m)τ
m−n

m − (m−n)
1
r

τ]eia

= r epmap[τ,n,m−n,1/r,a]

The B-E-G theorem comes into play in the design of the rotary engine, where the bore is in the shape of an epitrochoid,
and the rotor is determined using the equivalent hypotrochoid. The center of the rotor traces out a circle, which
corresponds to the driveshaft. A nice Mathematica animation can be made of a working rotary engine, complete with
rotating driveshaft.
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11 S. Pasali Atmaca: The Geometry of Map Equations for Trochoids

To illustrate the B-E-G Theorem, we shall plot the graphs ofhymap[t,7,3,1/2,0] and 1/2 epmap[τ,7,−4,2,0], where
we use part (ii) withn= 7, m= 3, r = 1/2, anda= 0. The plots will be identical.

Fig. 3: 2 hymap[t,7,3,1/2,0] = epmap[τ,7,−4,2,0].

Theorem 3.(The Complement Theorem) If(n,m) = 1, then

hymap[t,n,m, r,a] = r hymap[τ,n,n−m,
1
r
,a]

whereτ = t
m

m−n .

Proof.Usingτ = t
m

m−n , we gett = τ
m−n

m . Then

hymap[t,n,m, r,a] = [(n−m)t
m

n−m +
rm
t
]eia

= r[
(n−m)

r
t

m
n−m +

m
t
]eia

= r[
n− (n−m)

t
+

(n−m)1
r

t
m

m−n
]eia

= r[(n− (n−m))τ
n−m

n−(n−m) − (n−m)1
r

τ
]eia

= r hymap[τ,n,n−m,
1
r
,a]

For example,hymap[t,7,1,1,0] and hymap[τ,7,6,1,0] both produce the following graph, the curve being traced out
counterclockwise whenm= 1 and clockwise whenm= 6. Such congruences follow from the Complement theorem
because the radius of the two rolling circles sum ton. Another connection between epitrochoids and hypotrochoids,
which can be proved either by appealing to the definitions or by applying the Complement and B-E-G theorems, is that
epmap[t,n,m, r,a] = hymap[τ,n,−m, r,a]. Usingt = τ−1

epmap[t,n,m, r,a] = [(n+m)t
m

n+m − rmt]eia

= [(n− (−m))t
n−(n−m)
n−(−m) + r(−m)t]eia

= [(n− (−m))τ
−m
n+m +

r(−m)

τ
]eia

= hymap[τ,n,−m, r,a].

We now look at the idea of multiple points of trochoids. An-fold point of a trochoid is a point that is traced over exactly n
times during one fundamental period. A rose withn petals has ann-fold point at(0,0). The next theorem gives a necessary
and sufficient condition for the hypotrochoid with second argumentn to have ann-fold point at(0,0). We shall call this
kind of hypotrochoid, as well as any other curve withn “petals” and ann-fold point at(0,0) a rosette. First, however, we
need a theorem.
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Fig. 4: hymap[t,7,1,1,0] and hymap[τ,7,6,1,0].

Theorem 4.The graphs of hymap[t,n,m,−r,a+mπ/n] and hymap[t,n,m, r,a] are congruent.

Proof. A proof based on the definitions is possible here, but geometric reasoning is more intuitive. It is easier to picture
what is going on ifm< n, but the lemma remains true if mm≥ n. Geometrically,t is the counterclockwise angle
through which the center of the rolling circle has moved, measured from the starting, anglea, and mπ /n is thet-increment
corresponding to half of one revolution of the rolling circle. Thus, whent = mπ/n, the position of the rolling circle in
hymap[t,n,m, r,a] is: center at angle(a+mπ/n) and tracing point diametrically opposite its starting point with respect to
the rolling circle. But this is the same as the starting position for hymap[t,n,m,−r,a+mπ/n].

Theorem 5.(The Rosette Theorem I) If(n,m) = 1, hymap[t,n,m, r,a] is a rosette with n-fold point at(0,0) if and only if
r = (n−m

m ).

Proof. (=⇒) Suppose hymap[t,m,n,r,a] is a rosette with n-fold point at(0,0). Then

hymap[t,n,m, r,a] = [(n−m)t
m

n−m +
rm
t
]eia

and there are exactlyn turnst such that

0= ((n−m)t
m

n−m +
mr
t

eia,

which is equivalent to

t
n

n−m =
mr

m−n
.

Becauset is a turn,

|tn|= |t n
n−m |= 1,

1= | mr
m−n

|,

r =±n−m
m

.

(⇐=) Supposer =± n−m
m . Thenrm=±(n−m).

Case 1.Supposerm= n−m.
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hymap[t,n,m, r,a] = hymap[t,n,m,
n−m

m
,a]

= [(n−m)t
m

n−m +
(n−m)

t
]eia

= [(n−m)[t
m

n−m +
1
t
]]eia

= [(n−m)[
t

n
n−m +1

t
]]eia.

The curve passes through (0,0) whent = [(−1)n−m]
1
n and because these arenth root of either 1 or−1, there are exactly n

of them in one circuit of the unit circle.
Case 2.Supposerm=−(n−m). In the same way,

hymap[t,n,m, r,a] = [(n−m)[
t

n
n−m −1

t
]]eia.

The curve passes through (0,0) whent = [1n−m]
1
n , annth root of unity, of which there are exactly n in one circuit of the

unit circle.

To illustrate the Theorem, here is the graph ofhy[t,12,1,11,0] (Figure5). The theorem conditions for a 12-fold point at
(0,0) are satisfied.

-20 -10 10 20

-20

-10

10

20

Fig. 5: hymap[t,12,1,11,0].

Definition 8. For a rosette with map equation hymap[t,n,m, r,a, ](or epmap[t,n,m, r,a]), if
hymap[τ1,n,m, r,a] = hymap[τ2,n,m, r,a] = 0 and there are no other zeros betweenτ1 and τ2, then that part of the
rosette corresponding values of t betweenτ1 andτ2 is a petal. A petal angle is the angle between the tangents to apetal
at the origin.

In other words, a petal is one loop of the rosette. By the symmetry, if a= 0, every kind of petal intersection will occur on
either the x-axis or the line with polar angleπ

n . If a 6= 0, the intersections are rotated by the anglea.

Theorem 6.(Petal Angle Theorem) The petal angle of a rosette is

α = |Re{ı log(−(−1)
−2m

n )}|.

c© 2018 BISKA Bilisim Technology
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Proof.From Rosette Theorem I,r = n−m
m or rm= n−m. Thus, in the hypocycloid map equation, we get

hymap[t,n,m, r,a] = ((n−m)t
m

n−m +
n−m

t
)eia = [(n−m)[t

m
n−m +

1
t
]eia

Let t = τn−m. Thent
m

n−m = τm. Using this assumption above, we get

hymap[τ,n,m, r,a] = (n−m)[τm+
1

τn−m]eia = (n−m)τm−n(1+ τn)eia.

We want to find the petal angle of the hypocycloid. Using the definition of petal angles, we need consecutive turns where
hymap[t,n,m, r,a] = 0. That meansτn+1= 0, andτ = (−1)

1
n . Differentiating, we get

Dτhymap= (n−m)[mτm−1+(m−n)τm−(n+1)]eia,

and
Dτhymap= (n−m)[mτ1−m+(m−n)τn+1−m]eia.

Hence, we can obtain the clinant of the tangent from the map equation,

c=
Dτhymap

τ2Dτ hymap
=

(n−m)[mτ1−m+(m−n)τn+1−m]eia

τ2(n−m)[mτm−1+(m−n)τm−(n+1)]eia
=

τ1−m[(m−n)τn+m]

τ2(τm−1[(m−n)τ−n+m])
.

Since this is to be evaluated whereτn =−1 andτ−n =−1,

c=
1

τ2m .

Becauseτ = (−1)
1
n ,

c= (−1)
−2m

n .

The inclination angleφ = i
2 log(−(−1)

−2m
n ). Therefore

α = 2 | φ |= 2| i
2

log(−(−1)
−2m

n )|=| i log(−(−1)
−2m

n ) |= |Re{i log(−(−1)
−2m

n )}|

Theorem 7.(Petal Angle Sum Theorem) The sum of all the petal angles of the trochoid hymap[t,n,m, r,a] is

nα = |n−2m|π .

Proof.Case 1. If n= 2k, then

nα = 2k|Re{i log(−(−1)
−2m
2k )}|

= 2k|Re{i log(eiπ(eiπ)
−m
k )}|

= 2k|Re{−π(1− m
k
}|

= 2kπ |1− m
k
|

= π |2k−2m|
= π |n−2m|

Cese 2.If n= 2k+1, then

c© 2018 BISKA Bilisim Technology
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15 S. Pasali Atmaca: The Geometry of Map Equations for Trochoids

nα = (2k+1)|Re{i log(−(−1)
−2m
2k+1 )}|

= (2k+1)|Re{i log(eiπ(eiπ)
−2m
2k+1}|

= (2k+1)|Re{−π(1− 2m
2k+1

}|

= |(2k+1)−π(1− 2m
2k+1

)|

= π |(2k+1)− (2k+1)
2m

2k+1
|

= π |n−2m|

Theorem 8.(The Rose Theorem) If(n,m) = 1, the hypotrochoid hymap[t,n,m, r,a] is a rose if and only if

r =± (n−m)

m
and either m= [

n
2
]+1 or m= n− [

n
2
]−1

where[n
2] denotes the greatest integer inn

2.

Proof. (=⇒) Supposehymap[t,n,m, r,a] is a rose. Thenhymap[t,n,m, r,a] is a rosette, andr = ±m−n
n . The sum of the

petal angles of a rose isπ or 2π . That meansn−2m is±1 or±2.
Case 1.Supposen is odd. Then[n

2] =
n−1

2 . Sincen is odd,n−2mmust be equal to±1. Supposen−2m= 1. Then

m=
n−1

2
= n− n−1

2
−1= n− [

n
2
]−1.

Supposen−2m=−1. Then

m=
n+1

2
=

n−1
2

+1= [
n
2
]+1.

Case 2.Supposen is even. Then[n
2] =

n
2. Since n is even,n−2mmust be equal to±2.

Supposen−2m= 2. Then

m=
n−2

2
= n− n

2
−1= n− [

n
2
]−1.

Supposen−2m=−2. Then

m=
n+2

2
=

n
2
+1= [

n
2
]+1.

(⇐=) Supposer =± (n−m)
m . Then the curve is a rosette.

Case 1.Supposen is odd andm= [n
2]+1. Then[n

2] =
n−1

2 andm= n+1
2 . The sum of the petal angles of the rosette is

|n−2m|π = |n− (n+1)|π
= π .

Case 2.Supposen is odd andm= n− [n
2]−1. Then[n

2] =
n−1

2 andm= n−1
2 . The sum of the petal angles of rosette is

|n−2m|π = |n− (n−1)|π = π .

The sum of the petal angles isπ in case(i) and case (ii). Therefore, the curve has no double point andhymap[t,n,m, r,0] is
a rose.
Case 3.Supposen is even andm= [n

2]+1. Then[n
2] =

n
2 andm= n+2

2 . The sum of the petal angles of the rosette is
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|n−2m|π = |n− (n+2)|π = 2π .

Case 4.Supposen is even andm= n− [n
2]−1. Then[n

2] =
n
2 andm= n−2

2 . The sum of the petal angles of the rosette is

|n−2m|π = |n− (n−2)|π = 2π .

The sum of the petal angles is 2π in case(iii) and case (iv). Therefore, the curve has no double point andhymap[t,n,m, r,0]
is a rose.

Theorem 9.(The Rosette Theorem II) If(n,m) = 1, the curve defined by

dmap[t,n,m, r1, r2,a] = epmap[t,n,m, r1,a]−hymap[t,n,m, r2,a]

is a rosette of n petals if and only if|r1+ r2|= 2.

Proof.First, we will combine the map equations.

dmap[t,n,m, r1, r2,a] = ((n+m)t− r1mt
n+m

m )− ((n−m)t+
mr2

t
n−m

m
)eia

= (2mt− r1mt
n+m

m − mr2

t
n−m

m
)eia

= [
−m

t
n−m

m
(−2t

n
m + r1t

2n
m + r2)]e

ia.

Let t1/m = τ. Then we get the complete equation:

dmap[τ,n,m, r1, r2,a] = [
−m

τn−m(r1τ2n−2τn+ r2)]e
ia.

For convenience, we will writedmap(τ) instead ofdmap[τ,n,m, r1, r2,a] in the rest of the proof.

(⇒) If dmap(τ) is a rosette ofn petals, then there are exactlyn turnsτ for whichdmap(τ) = 0. If dmap(τ) = 0, then

τn =
1±

√
1− r1r2

r1
.

So for one sign choice, but not both,|τn|= 1. There are three cases:

(i) r1r2 < 1 : τn = 1
r1
(1±

√
1− r1r2)> 0 andτn is real.

Let τn = 1. Then

1
r1
(1±

√

1− r1r2) = 1

1±
√

1− r1r2 = r1

1− r1r2 = (r1−1)2

r2
1 − r1(2− r2) = 0.

Thereforer1 = 0 or r1 = 2− r2. If r1 = 0, thenτn = r2
2 sor2 = 2, and if r1 = 2− r2, thenr1+ r2 = 2.

If τn =−1 similar work givesr1+ r2 =−2.
(ii) If r1r2 = 1, thenτn = 1

r1
and|τn|= 1. If r1 =±1, thenr2 =±1 andr1+ r2 =±2.

(iii) Supposer1r2 > 1. Thenτn = 1
r1
± i

√
r1r2−1

r1
and|τn|2 = r2

r1
. But, to be a turn, we need| r2

r1
| = 1. Thenr1 = r2 or

r1 =−r2. The caser1 =−r2 is impossible becauser1r2 > 1 fails. Sodmap(τ) = 0 in this case only ifr1 = r2 =±1.
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-4
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2

4

Fig. 6: dmap[t,6,1,1,1,0]=epmap[t,6,1,1,0]-hymap[t,6,1,1,0].

(⇐) If r1+r2 = 2, thendmap(τ)= −m
τn−m(τn−1)(r1τn−r2), and ifr1+r2 =−2, thendmap(τ)= −m

τn−m(τn+1)(r1τn+r2).
In either case, the only solution ofdmap(τ) which is a turn isτn =±1, and the origin has an n-fold point.

Let’s considerdmap[t,6,1,1,1,0] = epmap[t,6,1,1,0]− hymap[t,1,1,1,0]. After we combine the map equations, we
will get

dmap[t,6,1,1,1,0] =
−1
t5 (−2t6+ t32+1).

Becausem= 1, this is already in the conjugate form. When we look at the graph of thedmapthe roots are double roots
and the curve to “bounce back” at(0,0) instead of “passing through”.

Corollary 1. If (n,m) = 1, the curve defined by

dmap[t,n,m, r,a] = epmap[t,n,m, r,a]−hymap[t,n,m, r,a]

is a rosette with a2n− f old point at the origin if and only if|r|> 1.

Actually, the rosettes in Rosette Theorem II include those in Rosette Theorem I, and thus also include roses. The
relationship is given in the following corollary. A similarresult holds with−2 in place of 2.

Corollary 2.

dmap[τ,n,m,0,2,a] =
2m

(n−m)
hymap[τ,n,m,− n

m
+1,a].

4 Conclusion

Mathematical modelling regarding to algebraic curves is a long studied subject. In this study, trochoids and related curves
using the representation of these curves as mapping of the unit circle in the complex plane is given. First we define the
map equation of these curves with the self-conjugate relations. Then, we give the conditions for trochoids to be complete.
Since map equations are simpler than parametric equations,we introduce the basic results on trochoids and epitrochoids
by using their map equations. A classical result regarding trochoids is that any hypotrochoid can be expressed in terms of
an epitrochoid and viceversa. To obtain this result, we prove the Bernoulli - Euler- Goldbach double generation theorem
on map equations. We also present a connection between epitrochoids and hypotrochoids by applying the Complement
and B-E-G theorems, is thatepmap[t,n,m, r,a] = hymap[t,n,−m, r,a]. We also present the relationships between the
hypotrochoids and rosettas by using map equations.
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