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Abstract: In this paper we focus on developing bounded quasilinear interval-valued functions. We deal with the Hahn-Banach
extension theorem for interval-valued functions. Finally, we show that there are enough bounded quasilinear functionals on the space
of interval-valued functions to distinguish between its the regular elements.
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1 Introduction

Interval-valued functions have a wide range of applications in several areas, e.g., chemical and structural engineering,

economics, control circuity design, global optimization and signal processing. Interval analysis developed by Moore[1]

plays an important role in applied mathematics and functional analysis. Interval-valued functions are discussed in several

research papers,see for instance [2], [3], [4].

A closed interval denoted by[a,b] is the set of real numbers given by[a,b] = {x ∈ R : a ≤ x ≤ b}. If a equals tob,

namely, the interval contains a single real number then we say that [a,b] is degenerate intervaland it is shown as{a} or

{b}. The set of all nonempty intervals of real numbers is emblematized byΩC(R) and each element ofΩC(R) is called a

interval. Further, the intervals are excellent tools for handling global optimization problems. Further, we refer to [7], [6]

and [1] for the global optimization theory and for some applications of interval analysis.

The Hahn-Banach extension theorem is one of the most important and fundamental theorems in the whole theory of

normed spaces (see, [5]). The expression of such theorem is as follows.

Theorem 1.Let X be a normed space, Z a linear subspace of X and f a bounded linear functional on Z. Then there exists

a bounded linear functional̂f on X such that f(x) = f̂ (x) for x∈ Z and‖ f‖ =
∥

∥ f̂
∥

∥ .

In this paper we extend the Hahn-Banach theorem to interval-valued functions. Further, we show that the dual space of a

consolidate normed quasilinear space (to illustrate the space of intervals) is richly supplied with bounded quasilinear

functionals. For this it must be established an algebraic structure on the classes of interval-valued functions So it iswas

that, Aseev in 1986 present an approach for the function spaces of set-valued functions by raising the notion of

”quasilinear space”.

Let us give the definition of a quasilinear space which is presented by Aseev [8].
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A set X is called aquasilinear space (briefly;QLS) if a partial order relation ”�”, an algebraic sum operation, and an

operation of multiplication by real numbers are defined in itin such a way that the following conditions hold for any

elementsx,y,z,v∈ X and anyα,β∈ R,

x� x, (1)

x� z if x� y andy� z, (2)

x= y if x� y andy� x, (3)

x+ y= y+ x, (4)

x+(y+ z) = (x+ y)+ z, (5)

there exists an element (zero)θ ∈ X such thatx+θ = x, (6)

α(βx) = (αβ )x, (7)

α(x+ y) = αx+αy, (8)

1x= x, (9)

0x= θ , (10)

(α +β )x� αx+βx, (11)

x+ z� y+ v if x� y andz� v, (12)

αx� αy if x� y. (13)

Note that quasilinear spaces has been only introduced on thefieldR, so far.

Any linear space is a QLS with the partial order relation defined by ”x� y if and only if x= y”. Perhaps the most popular

example of a nonlinear QLS isΩC(R) with the inclusion relation “⊆” , the algebraic sum operation

x+ y= [x,x]+ [y,y] = [x+ y,x+ y] = {a+b : a∈ x,b∈ y}

and the real-scalar multiplication

λx= λ [x,x] =
{

[λx,λx]
[λx,λx]

λ > 0
λ < 0

= {λa : a∈ x} .

In factΩC(R) is the set of all nonempty compact convex subsets of real numbers and it is a subset ofΩ(R), the set of all

nonempty compact subsets of real numbers which is another important example of a nonlinear QLS.

2 Terminology and basic notations

We will start this section by giving some basic results from [8].

Definition 1. An element x′ is calledinverseof x∈ X if x+ x′ = θ . The inverse is unique whenever it exists. An element x

possessing inverse is calledregular, otherwise is calledsingular.

It will be assumed in what follows that−x = (−1)x. Note thatx′ may not be exists but if it exists thenx′ = −x. An

example of a singular element in the nonlinear QLSΩC(R) is the interval[2,3] since[2,3]+ (−1)[2,3] = [−1,1] 6= θ .

However− [2,3] = [−3,−2] ∈ ΩC(R).Further, a characterization of a regular element.x is thatx′ = −x, or equivalently,

x− x= θ . For example, the degenerate interval{3} is a regular element inΩC(R). We should note that in a linear QLS,
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briefly in a linear space, each element is regular. Hence the notions of regular and singular elements in linear spaces are

redundant.

Lemma 1.[8] Suppose that each element x in QLS X has inverse element x′ ∈X. Then the partial order in X is determined

by equality, the distributivity conditions hold, and consequently X is a linear space.

In a real linear space, the equality is the only way to define a partial order such that conditions (1)-(13) hold.

Definition 2. [10] Suppose that X is a QLS and Y⊆ X. Then Y is called asubspace ofX whenever Y is a QLS with the

same partial order and the restriction to Y of the operationson X.

It is shown in [10].thatΩC(R) is a subspace ofΩ(R).

Let Y be a subspace of a QLSX and suppose each elementx in Y has an inverse inY. Then by Lemma1 the partial order

onY is determined by the equality. In this caseY is a linear subspace ofX.

An elementx in X is said to besymmetricif −x= x andXsymdenotes the set of all symmetric elements. In a linear QLS,

equivalently, in a linear space zero is the only symmetric element.Xr andXs stand for the set of all regular, and singular

elements with zero inX, respectively. Further, it can be easily shown thatXr , Xsym andXs are subspaces ofX. They are

calledregular, symmetricandsingular subspacesof X, respectively. Furthermore, it isn’t hard to prove that summation

of a regular element with a singular element is a singular element. Regular subspace ofX is a linear space while the

singular subspace is a nonlinear QLS.

Example 1.In ΩC(R),

Xs = {0}∪{[a,b] : a,b∈ R anda< b}

is the singular subspace ofX. Further{[a,b] = {a} : a∈ R} is the set of all degenerate intervals or of the set of all

singletons ofR constitutes the regular subspaceXr . It is a linear subspace ofΩC(R) andXr is the copy ofR in ΩC(R).

Symmetric subspace

Xsym= {[−a,a] : a∈ R }

of ΩC(R) is also a subspace ofXs. In a linear spaceX, Xsym= Xs = {θ}, the trivial subspace, andXr = X.

In a QLSX, a real function‖.‖X : X −→R is called anorm if the following conditions hold [8]:

‖x‖X > 0 if x 6= 0, (14)

‖x+ y‖X ≤ ‖x‖X + ‖y‖X , (15)

‖αx‖X = |α|‖x‖X , (16)

if x� y, then‖x‖X ≤ ‖y‖X , (17)

if for any ε > 0 there exists an elementxε ∈ X such that (18)

x� y+ xε and‖xε‖X ≤ ε thenx� y.

A quasilinear spaceX with a norm defined on it, is callednormed quasilinearspace (briefly,normed QLS). It follows

from Lemma 2 that if anyx∈ X has an inverse elementx′ ∈ X then the concept of normed QLS coincides with the concept
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of real normed linear space. Hausdorff metric or norm metriconX is defined by the equality

hX(x,y) = inf {r ≥ 0 : x� y+ar
1, y� x+ar

2 and‖ar
i ‖ ≤ r, i = 1,2} .

Sincex� y+(x− y) andy� x+(y− x), the quantityhX(x,y) is well-defined for any elementsx,y∈ X, and the function

hX satisfies all axioms of the metric. FurtherhX(x,y) may not equal to‖x− y‖X if X is not a linear space but always

hX(x,y)≤ ‖x− y‖X for everyx,y∈ X [8].

Example 2.[8] For a normed linear spaceE, a norm onΩ(E) is defined by

‖A‖Ω = sup
a∈E

‖a‖E .

HenceΩC(E) andΩ(E) are normed quasilinear spaces. In this case the Hausdorff (norm) metric is defined as usual:

h(x,y) = inf{r ≥ 0 : x⊆ y+Sr(θ ), y⊆ x+Sr(θ )},

whereSr(θ ) is closed ball ofE andx,y are elements ofΩC(E) or Ω(E).

Partial ordering structure of the QLS plays again a crucial role in this section. QLSs may have various types. We want to

describe best advantages one.

Definition 3. [9] Let X be a quasilinear space, M⊆ X and x∈ M. The set

FM
x = {z∈ Mr : z� x}

is calledfloor in M of x . In the case of M= X it is called onlyfloor of x and written briefly Fx instead of FXx .

Floor of an elementx in linear spaces is the singleton{x}. Therefore, it is nothing to discuss the notion of floor of an

element in a linear space.

Definition 4. [9] Let X be a quasilinear space and M⊆ X. Then the union set

⋃

x∈M

FM
x

is calledfloor of M and is denoted by FM. In the case of M= X, FX is called floor of the quasilinear space X.

Definition 5. [9] A quasilinear space X is calledconsolidatequasilinear space wheneversupFy exists for every y∈ X and

y= supFy = sup{z∈ Xr : z� y} .

Otherwise, X is callednon-consolidate quasilinear space.

Especially, we should note that the supremum in this definition is defined according to the partial order relation “�” on

X.

For any normed linear spaceE, Ω (E) andΩC (E) are consolidate normed quasilinear space. Further, singular subspace

A = {0}∪{[a,b] : a 6= b,a,b∈R}

of ΩC(R) is a nc-QLS sinceFy = /0 for y= [1,2] in A. Further,

B = {[a,b] : a≤ 0≤ b, a,b,0∈ R}
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is another nc-subspace ofΩC(R).

Remark.In general, a nonlinear QLSX consists of its regular partXr which is a linear space and its singular partXs which

is an nc-QLS.

3 Some new results on interval-valued functions

Let us start this section by recording some concepts and results on quasilinear operators given by Aseev.

Definition 6. [8] Let X and Y be quasilinear spaces. A mapping T: X →Y is called aquasilinear operatorif it satisfies

the following conditions:

T(x1+ x2)� T(x1)+T(x2),

T(αx) = αT(x) for anyα ∈ R,

if x1 � x2, then T(x1)� T(x2).

If X and Y are linear spaces, by Lemma1 we say that the definition of a quasilinear operator coincides with the usual

definition of a linear operator. The last condition is automatically satisfied in this case.

Definition 7. [8] Let X and Y be a normed quasilinear spaces. A quasilinear operator T : X →Y is said to beboundedif

there exists a number k> 0 such that‖Tx‖ ≤ k‖x‖ for any x∈ X.

Lemma 2. [8] Suppose that X and Y are normed quasilinear spaces. Then a quasilinear operator T: X →Y is bounded

if and only if it is continuous at the pointθ ∈ X. The continuity of T atθ implies that it is uniformly continuous on X.

Let X andY be a normed quasilinear spaces. Denote byΛ(X,Y) the space of all bounded quasilinear operators fromX to

Y. We writeT1 � T2 if and only if T1(x) � T2(x) for anyx ∈ X. Algebraic sum and multiplication by real numbers are

defined onΛ(X,Y) as follows;(T1 +T2)(x) = T1(x) +T2(x) and(αT)(x) = αT(x), for x ∈ X. ThereforeΛ(X,Y) is a

quasilinear space with these operations and partial order relation. The norm onΛ(X,Y) is defined by

‖T‖Λ = sup
‖x‖=1

‖T(x)‖Y. HenceΛ(X,Y) is a normed quasilinear space [8].

Suppose thatX is a normed quasilinear space. Then the spaceΛ(X,Ω(R)) is called thedual spaceof X and is denoted

X⋆. Further, the spaceΛ(X,ΩC(R)) is called theconvex dual spaceof X and is denotedX⋆
C. Any quasilinear operator

from X to Ω(R) is called aquasilinear functional[8]. Also, a quasilinear operator fromX to ΩC(R) is said aconvex

quasilinear functional (briefly, c-quasilinear functional).

Note that a quasilinear functional is an operator whose range lies on theΩ(R), i.e., the range its is notR. Because ifX is

a space of subset (for exampleΩC(R)), thenΛ(X,R) consists of the single element{θ}.

Example 3. [8] (A example on interval-valued function) Let X be a linear space and let the functionp : X → R be

sublinear, i.e., the following conditions hold:

p(αx) = α p(x), α ≥ 0,

p(x1+ x2)≤ p(x1)+ p(x2).

Then the mappingϕ : X → ΩC(R) defined byϕ(x) = [−p(−x), p(x)] is a quasilinear functional fromX to ΩC(R). If

X is a normed linear space andp is continuous, thenϕ ∈ X⋆
C. Conversely, suppose thatϕ : X → ΩC(R) is a quasilinear
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operator, whereX is a linear space. Then the interval[ f1(x), f2(x)] is the value ofϕ(x) for anyx∈ X. It follows from the

quasilinearity of the operatorϕ that if α ≥ 0,

f2(αx) = α f2(x),

f2(x1+ x2)≤ f1(x1)+ f2(x2)

and

f1(x) =− f2(−x).

Consequently, there exists a unique sublinear functionp(x) = f2(x) such thatϕ(x) = [−p(−x), p(x)]. If X is a normed

linear space andϕ ∈ X⋆
C, then the corresponding sublinear functionp is continuous.

Theorem 2.Any element T∈ R⋆
C can uniquely be represented by

T(x) = xA (19)

where A∈ ΩC(R).

Proof.Suppose thatT ∈ R⋆
C. Everyx∈ R has an unique representation such that

x= x1

where{1} is the standard basis ofR. Further,T(x) = T(1x) = xT(1) sinceT is a quasilinear operator. If we takeT(1) =

A∈ ΩC(R) then

T(x) = xA .

Conversely, letT :R→ΩC(R) be defined byT(x) = xAwhere the intervalA is a distinguished element ofΩC(R). First of

all, T is well-defined. Indeed;Tx= xA= {xa : a∈ A} ∈ ΩC(R) for A∈ ΩC(R). Furthermore,T is a quasilinear operator:

For anyx,y∈ R, λ ∈ R andA∈ ΩC(R),

T(x+ y) = (x+ y)A⊆ xA+ yA= T(x)+T(y),

T(λx) = (λx)A= λ (xA) = λT(x)

and

If x= y thenT(x) = xA= yA= T(y) and soT(x)⊆ T(y).

It is obvious that (19) representation is unique.

Theorem 3.The spaceR⋆
C is a consolidate QLS.

Proof.By the Theorem2, we know that any elementsf ∈ R⋆
C has the representation

f (x) = x[u,v]

for an element[u,v] ∈ ΩC(R) and this representation is unique. Firstly, we determine the regular elements of preceding

from f . Let us describe the functionga : R→ΩC(R) by the equalityga(x) = a.{x} for a constant elementa∈ [u,v] and

x ∈ R. It is not hard to see thatg ∈ Λ(R,ΩC(R))r . Further, for everyx ∈ R, a.{x} ⊆ x.[u,v] and so for each element

a ∈ [u,v] we have thatga ≤ f . We must show sup{ga : a ∈ [u,v]} = f to complete the proof. It is obvious that the set

{ga : a∈ [u,v]} is bounded andf is an upper bound for this set. Suppose that the elementh is another upper bounded of

the set{ga : a∈ [u,v]}. Let us assume thatf � h. There exists an elementx0 ∈ R such thatf (x0) * h(x0). This means

that t0 ∈ f (x0) but t0 /∈ h(x0) for t0 ∈ R. Sincet0 ∈ f (x0), there exists an elementa ∈ [u,v] such thatt0 = x0a. If a= 0
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then ga(x) = g0(x) = 0{x} = {0} for every x ∈ R and especiallyga(x0) = {0} for x = x0. If a = 0 thent0 = 0 and

{t0}= {0}* h(x0) and soga(x0)* h(x0) sincet0 = 0 /∈ h(x0). Therefore, we obtainga � h. If a 6= 0 then we writex0 =
t0
a

by the equalityt0 = x0a. Further,

ga(x0) = a{x0}= a{
t0
a
}= {t0}

and soga(x0) * h(x0), since{t0} /∈ h(x0). Thus we say thatga � h. Eventually this contradicts with the fact thatf is an

upper bound of{ga : a∈ [u,v]}. Sinceh is an arbitrary element, we have that sup{ga : a∈ [u,v]}= f .

4 The Hahn-Banach theorem

Theorem 4.Let X be a linear space andϕ be a c-quasilinear functional defined on X. Suppose that Z is a subspace of X

and f is a c-quasilinear functional defined on Z such that

‖ f (x)‖Ω ≤ ‖ϕ(x)‖Ω

for all x ∈ Z. Then, there exists a quasilinear extensionf̃ : X → ΩC(R) of f (i.e. f(x) = f̃ (x) for all x ∈ Z) such that

∥

∥ f̃ (x)
∥

∥

Ω ≤ ‖ϕ(x)‖Ω

for all x ∈ X.

Proof.The proof involves three steps:

Step 1. Let P be the set of all quasilinear extensionsg : Y → ΩC(R) of f satisfied the condition

‖g(x)‖Ω ≤ ‖ϕ(x)‖Ω

for all x∈Y, whereY is subspace ofX. ClearlyP is non-empty sincef ∈ P. Consider the partial order relation defined on

P by

g/ g̃

if Y ⊂ Ỹ andg̃ : Ỹ → ΩC(R) is a quasilinear extension ofg. LetC be a chain inP. Define

Y = ∪
i∈I

Yi

whereYi is subspace ofX. Let g : Y → ΩC(R) be defined byg(x) = gi(x) if x∈Yi , wheregi : Yi → ΩC(R) is an element of

C for eachi = 1,2, .... SinceC is a chain, it is not hard to see thatg is well defined and also that is a quasilinear extension

of each ofgi . Also ‖g(x)‖Ω ≤ ‖ϕ(x)‖Ω for all x∈Y. Henceg is an upper bound ofC. SinceC ⊂ P is arbitrary,P has a

maximal element̃f by Zorn’s lemma. By the definition ofP, this is a quasilinear extension off which satisfies

∥

∥ f̃ (x)
∥

∥

Ω ≤ ‖ϕ(x)‖Ω

for all x∈ D( f̃ ). (D( f̃ ) is the domain set of̃f .)

Step 2. We will show thatD( f̃ ) = X. Suppose thatD( f̃ ) 6= X. Then we can choose ay1 ∈ X\D( f̃ ). Note thaty1 6= 0

since 0∈ D( f̃ ). Consider the subspaceY1 of X given by

Y1 = {y+αy1 : y∈ D( f̃ ),α ∈ R}.
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Now we will define a functiong1 : Y1 → ΩC(R) such that

g1(y+αy1) =

{

f̃ (y)
ϕ(y+αy1)

α = 0
α 6= 0.

Let us remember that anyx∈ Y1 can be writtenx= y+αy1 for y∈ D( f̃ ). Since this representation is unique,g1 is well

defined. Also it is immediate to see thatg1 is quasilinear, since the functions̃f andϕ are quasilinear. Furthermore, for

α = 0 we haveg1(y) = f̃ (y). Henceg1 is an extension of̃f such thatD( f̃ ) is a proper subset ofY1. Consequently, if we

can prove thatg1 ∈ P by showing that

‖g1(x)‖Ω ≤ ‖ϕ(x)‖Ω

for all x∈Y1 this will contradict the maximality of̃f . Thus we will prove thatD( f̃ ) = X.

Step 3. For all x∈Y1, if α = 0 then

‖g1(x)‖Ω = ‖g1(y+αy1)‖Ω =
∥

∥ f̃ (y)
∥

∥

Ω .

Since f̃ is a quasilinear extension off which satisfies
∥

∥ f̃ (x)
∥

∥

Ω ≤ ‖ϕ(x)‖Ω for all x ∈ D( f̃ ), we have that
∥

∥ f̃ (y)
∥

∥

Ω ≤

‖ϕ(y)‖Ω for all y= x∈ D( f̃ )⊂Y1 and so‖g1(x)‖Ω ≤ ‖ϕ(x)‖Ω . Similarly, by consideringα 6= 0, we write that

‖g1(x)‖Ω = ‖g1(y+αy1)‖Ω = ‖ϕ(y+αy1)‖Ω = ‖ϕ(x)‖Ω

and also that‖g1(x)‖Ω ≤ ‖ϕ(x)‖Ω . Hence the proof is complete.

Theorem 5.Let Z be a subspace of real normed linear space X and assume that f is a bounded c-quasilinear functional

on Z. Then there exists a bounded quasilinear extensionf̃ : X → ΩC(R) of f such that

‖ f‖Λ =
∥

∥ f̃
∥

∥

Λ

where
∥

∥ f̃
∥

∥

Λ = sup
x∈X,‖x‖=1

∥

∥ f̃ (x)
∥

∥

Ω and‖ f‖Λ = sup
x∈Z,‖x‖=1

∥

∥ f̃ (x)
∥

∥

Ω .

Proof. If Z = {0}, then f = 0, and sof̃ = 0. LetZ 6= {0}. We know that

‖ f (x)‖Ω ≤ ‖ f‖Λ ‖x‖

for all x∈ Z. Definep : X → R such thatp(x) = ‖ f‖‖x‖ for all x∈ X. p is a sublinear functional onX, since

p(x+ y) = ‖ f‖‖x+ y‖ ≤ ‖ f‖ (‖x‖+ ‖y‖) = p(x)+ p(y)

and

p(αx) = ‖ f‖‖αx‖ = |α|‖ f‖‖x‖= |α| p(x).

On the other hand, by the Example3, the mappingp : X →R defines a mappingϕ : X →ΩC(R) by ϕ(x) = [−p(−x), p(x)]

such thatϕ is a quasilinear operator. Furthermore, we can write‖ f (x)‖Ω ≤ |p(x)| by the definition ofp. Since

‖ϕ(x)‖Ω = ‖[−p(−x), p(x)]‖Ω = ‖[−p(x), p(x)]‖Ω = |p(x)| ,
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we say that‖ f (x)‖Ω ≤ ‖ϕ(x)‖Ω . Hence we can now apply Theorem4 and conclude that there exists a quasilinear

functional f̃ onX which is an extension off and satisfies

∥

∥ f̃ (x)
∥

∥

Ω ≤ ‖ϕ(x)‖Ω = ‖ f‖‖x‖

for all x∈ X. Taking the supremum over allx∈ X of norm 1, we obtain the inequality

∥

∥ f̃
∥

∥

Λ = sup
x∈X,‖x‖=1

∥

∥ f̃ (x)
∥

∥

Ω ≤
∥

∥ f̃
∥

∥

Λ = sup
x∈X,‖x‖=1

‖ f‖‖x‖= ‖ f‖ .

Since under an extension the norm cannot decrease, we also have‖ f‖Λ ≤
∥

∥ f̃
∥

∥

Λ and so the theorem is proved.

The Hahn-Banach theorem implies that the convex dual spaceX⋆
C of a normed quasilinear spaceX consists of many

bounded c-quasilinear functionals to distinguish betweenthe regular elements ofX.

Theorem 6.Let X be a consolidate normed quasilinear space and x0 ∈ X a non-zero regular element. Then there exists a

bounded c-quasilinear functional̃f on X satisfying
∥

∥ f̃
∥

∥= 1 and f̃ (x0) = ‖x0‖ .

Proof.Let Z be the one-dimensional space spanned byx0, i.e.,Z consists of all elementsx= αx0 whereα is a real scalar.

It is obvious thatZ is a subspace ofXr . Define a c-quasilinear functionalf onZ by

f (x) = f (αx0) = {α ‖x0‖}. (20)

Since

‖ f (x)‖Ω = ‖ f (αx0)‖= ‖{α ‖x0‖}‖Ω = |α|‖x0‖= ‖αx0‖= ‖x‖ ,

f is bounded and has norm‖ f‖ = 1. Theorem5 implies that f has a quasilinear extensioñf from Z to Xr with norm

‖ f‖Λ =
∥

∥ f̃
∥

∥

Λ = 1. From (20), we say that

f̃ (x0) = f (x0) = ‖x0‖ .

Corollary 1. Let X be a consolidate normed quasilinear space. If X6= {0} then X⋆C cannot be{0}. Of course, X⋆ also

cannot be{0} since X⋆C ⊂ X⋆.
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