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Abstract: In this paper we focus on developing bounded quasilineaniat-valued functions. We deal with the Hahn-Banach
extension theorem for interval-valued functions. Finallke show that there are enough bounded quasilinear furatsi@m the space
of interval-valued functions to distinguish between its thgular elements.
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1 Introduction

Interval-valued functions have a wide range of applicationseveral areas, e.g., chemical and structural engirggeri
economics, control circuity design, global optimizatiordaignal processing. Interval analysis developed by Métre
plays an important role in applied mathematics and funefianalysis. Interval-valued functions are discussedverse
research papers,see for instarige[[3], [4].

A closed interval denoted bja, b] is the set of real numbers given g, b] = {x € R: a < x < b}. If a equals tob,

namely, the interval contains a single real number then wete [a, b is degenerate intervadnd it is shown aga} or

{b}. The set of all nonempty intervals of real numbers is embte®d by Qc(R) and each element @ (R) is called a
interval. Further, the intervals are excellent tools fondiiang global optimization problems. Further, we refer 7§ [6]

and [1] for the global optimization theory and for some applicat®f interval analysis.

The Hahn-Banach extension theorem is one of the most imtaatad fundamental theorems in the whole theory of
normed spaces (se&]). The expression of such theorem is as follows.

Theorem 1.Let X be a normed space, Z a linear subspace of X and f a bouimded functional on Z. Then there exists
a bounded linear functional on X such that (x) = f(x) for xe Z and| f|| = || f]|.

In this paper we extend the Hahn-Banach theorem to intesadaled functions. Further, we show that the dual space of a
consolidate normed quasilinear space (to illustrate tlaeespf intervals) is richly supplied with bounded quas#ine
functionals. For this it must be established an algebraigire on the classes of interval-valued functions Sovitas
that, Aseev in 1986 present an approach for the functionespaf set-valued functions by raising the notion of
"quasilinear space”.

Let us give the definition of a quasilinear space which isgmé=d by Aseevq].
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A setX is called aquasilinear spacelfriefly;QLS)if a partial order relation X”, an algebraic sum operation, and an
operation of multiplication by real numbers are defined imisuch a way that the following conditions hold for any
elements,y,zve X and anya, B€ R,

X=X, 1)

x=zif x<yandy <z (2)

x=yif x<yandy <x, 3)
X+Yy=Yy+X, (4)

X+ (Y+2) = (X+y)+z (5)
there exists an element (ze®) X such thak+ 6 = x, (6)
a(Bx) = (ap)x, )
a(x+y) = ax+ay, (8)
Ix =X, (9)
Ox=6, (20)
(a+B)x =< ax+ BX, (11)
Xx+z=xy+vif x<yandz=<y, (12)
ax=ayif x=<y. (13)

Note that quasilinear spaces has been only introduced dietd&®, so far.

Any linear space is a QLS with the partial order relation dadiby X <y if and only if x =y”". Perhaps the most popular
example of a nonlinear QLS B¢ (R) with the inclusion relation £”, the algebraic sum operation

X+y=[XX+[y,y] = [x+y,X+y] ={a+b:acxbey}

and the real-scalar multiplication

o [AxAXA =0
AX_AM”‘{MxAgA<o
={Aa:aex}.

In fact Qc(R) is the set of all nonempty compact convex subsets of real pusrand it is a subset @3 (R), the set of all
nonempty compact subsets of real numbers which is anothartant example of a nonlinear QLS.

2 Terminology and basic notations

We will start this section by giving some basic results fré@ [

Definition 1. An element s calledinverseof x € X if x+x = 6. The inverse is unique whenever it exists. An element x
possessing inverse is calleggulat otherwise is calledgingular

It will be assumed in what follows thatx = (—1)x. Note thatx’ may not be exists but if it exists theti= —x. An
example of a singular element in the nonlinear QR§R) is the interval2,3] since[2,3] + (—1)[2,3] = [-1,1] # 6.
However— [2,3] = [-3,—2] € Qc(R).Further, a characterization of a regular elemgiig.thatx' = —x, or equivalently,
Xx—x= 0. For example, the degenerate inter{a} is a regular element ic(R). We should note that in a linear QLS,
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briefly in a linear space, each element is regular. Hencedtiens of regular and singular elements in linear spaces are
redundant.

Lemma 1.[8] Suppose that each element x in QLS X has inverse elefreKt X hen the partial order in X is determined
by equality, the distributivity conditions hold, and cogsently X is a linear space.

In a real linear space, the equality is the only way to definartig order such that conditions (1)-(13) hold.

Definition 2. [10] Suppose that X is a QLS andYX. Then Y is called aubspace oK wheneverY is a QLS with the
same partial order and the restriction to Y of the operationsx.

Itis shown in [LO).that Qc(RR) is a subspace d (R).

LetY be a subspace of a QLSand suppose each elemeanh Y has an inverse iM. Then by Lemmal the partial order
onY is determined by the equality. In this caéés a linear subspace of.

An elementx in X is said to besymmetridf —x = x andXsymdenotes the set of all symmetric elements. In a linear QLS,
equivalently, in a linear space zero is the only symmeteenant.X, andXs stand for the set of all regular, and singular
elements with zero iX, respectively. Further, it can be easily shown atXsym andXs are subspaces of. They are
calledregular, symmetri@ndsingular subspacesf X, respectively. Furthermore, it isn’t hard to prove that suation

of a regular element with a singular element is a singulamet#. Regular subspace ¥fis a linear space while the
singular subspace is a nonlinear QLS.

Example 1.In Qc(R),
Xs={0}U{[a,b] : a,b € R anda < b}

is the singular subspace &f. Further{[a,b] = {a} :a€ R} is the set of all degenerate intervals or of the set of all
singletons ofR constitutes the regular subspate It is a linear subspace @c(R) andX; is the copy ofR in Qc(R).
Symmetric subspace

Xsym={[—a,a:acR}

of Qc(R) is also a subspace &. In a linear spacX, Xsym= Xs = {6}, the trivial subspace, ar} = X.

In a QLSX, areal functiony|. ||y : X — R is called anormif the following conditions hold§]:

IX|[x > Oif x 0, (14)

X+ Yllx < (Xl + ¥l (15)

llaxlix = lallx]x (16)

if x 2y, then|[x[lx <[yllx a7

if for any € > 0 there exists an elemex € X such that (18)

X2 y+Xe and||Xe||x < € thenx <.

A gquasilinear spac& with a norm defined on it, is calledormed quasilineaspace (brieflynormed QL% It follows
from Lemma 2 that if any € X has an inverse elemexitc X then the concept of normed QLS coincides with the concept
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of real normed linear space. Hausdorff metric or norm metniX is defined by the equality
hx(x,y) =inf{r >0:x=<y+aj,y<x+a,and|af| <r,i=12}.

Sincex < y+ (x—Yy) andy = x+ (y — X), the quantityhx (x,y) is well-defined for any elemenssy € X, and the function
hx satisfies all axioms of the metric. Furtheg(x,y) may not equal td)x—y||x if X is not a linear space but always
hx(x.y) < [[x—Y]lx for everyx,y € X [g].

Example 2.[8] For a normed linear spa¢g a norm onQ (E) is defined by
Al = supllallg -
acE
HenceQc(E) andQ(E) are normed quasilinear spaces. In this case the Hausdorfhjrmetric is defined as usual:

h(x,y) =inf{r >0:xCy+S(0),yC x+S(0)},

whereS (6) is closed ball oE andx,y are elements a2c(E) or Q(E).

Partial ordering structure of the QLS plays again a crucikd in this section. QLSs may have various types. We want to
describe best advantages one.

Definition 3. [9] Let X be a quasilinear space, M X and xe M. The set
FM={zeM :z=<x}

is calledfloor in M of x . In the case of M= X it is called onlyfloor of x and written briefly kinstead of .

Floor of an elemenk in linear spaces is the singletdw}. Therefore, it is nothing to discuss the notion of floor of an
elementin a linear space.

Definition 4. [9] Let X be a quasilinear space and W X. Then the union set

U

XeM

is calledfloor of M and is denoted by fr. In the case of M= X, Fx is called floor of the quasilinear space X

Definition 5. [9] A quasilinear space X is callezbnsolidatejuasilinear space whenevsupk, exists for every ¥ X and

y=supF, =sup{ze X : z=<y}.

Otherwise, X is callethion-consolidate quasilinear space.

Especially, we should note that the supremum in this dedimis defined according to the partial order relatiefi ‘bn
X.

For any normed linear spa& Q (E) andQc (E) are consolidate normed quasilinear space. Further, singubspace

of ={0}U{[a,b]:a#b,a,be R}

of Qc(R) is a nc-QLS sinc&, = 0 fory = [1,2] in A. Further,

#={[abl:a<0<b, a,b,0eR}
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is another nc-subspace 6 (R).

Remarkln general, a nonlinear QL% consists of its regular paX; which is a linear space and its singular pértvhich
is an nc-QLS

3 Some new results on interval-valued functions

Let us start this section by recording some concepts andisesuquasilinear operators given by Aseev.

Definition 6. [8] Let X and Y be quasilinear spaces. A mapping'— Y is called aquasilinear operatdf it satisfies
the following conditions:
TXxa+X%2) 2T (x1)+T(X2),

T(ax) =aT(x) foranya € R,
if X1 < X2, then T(x1) < T(X2).

If X and Y are linear spaces, by Lemrhave say that the definition of a quasilinear operator coinsigéth the usual
definition of a linear operator. The last condition is autdinally satisfied in this case.

Definition 7.[8] Let X andY be a normed quasilinear spaces. A quasilinearatpel : X — Y is said to béooundedf
there exists a numberk 0 such that| TX| < k||x|| for any xe X.

Lemma 2.[8] Suppose that X and Y are normed quasilinear spaces. Thenslligear operator T: X — Y is bounded
if and only if it is continuous at the poitt € X. The continuity of T a@ implies that it is uniformly continuous on X.

Let X andY be a normed quasilinear spaces. Denoté X, Y) the space of all bounded quasilinear operators f¥oto
Y. We write Ty < T, if and only if T;(x) < To(x) for anyx € X. Algebraic sum and multiplication by real numbers are
defined onA(X,Y) as follows; (T + T2)(x) = Ta(X) + To(x) and (aT)(x) = aT(x), for x € X. ThereforeA(X,Y) is a
quasilinear space with these operations and partial orédation. The norm onA(X,Y) is defined by
IT|A = sup||T(X)|y. HenceA(X,Y) is a normed quasilinear spa@.|

lIxI=1
Suppose thaX is a normed quasilinear space. Then the spbcé, Q(R)) is called thedual spaceof X and is denoted
X*. Further, the spacd (X, Qc(R)) is called theconvex dual spacef X and is denotec. Any quasilinear operator
from X to Q(R) is called aquasilinear functiona[8]. Also, a quasilinear operator froid to Qc(R) is said aconvex
quasilinear functional (briefly, c-quasilinear functidja

Note that a quasilinear functional is an operator whoseegdieg on theQ (R), i.e., the range its is nd&. Because i is
a space of subset (for exampgle(R)), thenA (X,R) consists of the single elemeff}.

Example 3.[8] (A example on interval-valued function) Let X be a linear space and let the functipn X — R be
sublinear, i.e., the following conditions hold:

p(ax) = ap(x), a >0,

P(X1+X2) < p(X1) + P(X2).

Then the mappin@ : X — Qc(R) defined by (x) = [—p(—X), p(X)] is a quasilinear functional frortX to Qc(R). If
X is a normed linear space apds continuous, theg € Xx. Conversely, suppose thét: X — Qc(R) is a quasilinear
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operator, wher&X is a linear space. Then the interyéd(x), f(x)] is the value ofp (x) for anyx € X. It follows from the
quasilinearity of the operatqr that if a > 0,
fa(ax) = afa(x),

fo(x1+X2) < f1(x1) + f2(x2)

and
fj_(X) = — f2(7X).

Consequently, there exists a unique sublinear fungbict = f»(x) such thatp (x) = [—p(—x), p(x)]. If X is a normed
linear space and € Xz, then the corresponding sublinear functis continuous.

Theorem 2.Any element e R can uniquely be represented by
T(x) =xA (29)

where Ac Qc(R).

Proof. Suppose thal € Rg. Everyx € R has an unique representation such that
x=x1

where{1} is the standard basis &. Further,T (x) = T(1x) = XT(1) sinceT is a quasilinear operator. If we talé1) =
A€ Qc(R) then
T(X) =xA.

Conversely, leT : R —Qc(R) be defined byl (x) = xAwhere the intervaA is a distinguished element &fc (R). First of
all, T is well-defined. Indeedf x= xA= {xa: a€ A} € Qc(R) for A€ Qc(R). FurthermoreT is a quasilinear operator:
Foranyx,y € R, A € RandA € Qc(R),

T(X+Y) = (X+Y)ACXA+yA=T(X) +T(y),

TAX) = (AX)A=A(XA) =AT(X)

and
If x=ythenT(x) =xA=yA=T(y) and soT (x) C T(y).

It is obvious that {9) representation is unique.
Theorem 3.The spac&¢ is a consolidate QLS.

Proof. By the Theoren®, we know that any elemenfsc R¢ has the representation
f(x) = x[u,V]|

for an elemenfu,v] € Qc(R) and this representation is unique. Firstly, we determieerdgular elements of preceding
from f. Let us describe the functiagy : R —Qc(R) by the equalityga(x) = a.{x} for a constant elemerte [u,v] and

x € R. It is not hard to see tha € A (R, Qc(R)),. Further, for every € R, a.{x} C x.[u,v] and so for each element
a € [u,v] we have thagy < f. We must show sufg, : a € [u,v]} = f to complete the proof. It is obvious that the set
{0a:ae€[u,v]} is bounded and is an upper bound for this set. Suppose that the elemEnanother upper bounded of
the set{ga: a € [u,V]}. Let us assume thdt £ h. There exists an elemerg € R such thatf (xg) Z h(xXo). This means
thatty € f(xp) butty ¢ h(Xg) for to € R. Sincety € f(xo), there exists an elemeate [u,V] such thaty = xpa. If a=0
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then ga(x) = go(x) = 0{x} = {0} for everyx € R and especiallyga(Xp) = {0} for x = Xo. If a = 0 thenty = 0 and
{to} = {0} € h(xp) and soga(xo) Z h(xo) sinceto = 0 ¢ h(xo). Therefore, we obtaig, £ h. If a0 then we writexg = %0
by the equalityty = Xpa. Further,

0a(%0) = a0} =a{ 2} = {to}

and soga(xo) € h(xo), since{to} ¢ h(xo). Thus we say thaga £ h. Eventually this contradicts with the fact thiais an
upper bound ofga : a € [u,v]}. Sinceh is an arbitrary element, we have that §gp: a € [u,v]} = f.

4 The Hahn-Banach theorem

Theorem 4.Let X be a linear space anl be a c-quasilinear functional defined on Suppose that Z is a subspace of X
and f is a c-quasilinear functional defined on Z such that

FX)lo <loM™lo

for all x € Z. Then, there exists a quasilinear extensfanX — Qc(R) of f (i.e. f(x) = f(x) for all x € Z) such that

[RACI PIT-TeN]
forall x € X.

Proof. The proof involves three steps:
Step 1. Let P be the set of all quasilinear extensiansY — Qc(R) of f satisfied the condition

19X)llq < 1#(X)llq

forall x e Y, whereY is subspace oX. ClearlyP is non-empty sincé € P. Consider the partial order relation defined on
P by
954

if Y Y andg: Y — Qc(R) is a quasilinear extension gf LetC be a chain irP. Define

whereY; is subspace of. Letg:Y — Qc(R) be defined by(x) = gi(x) if xe Y, whereg; : Y; — Qc(R) is an element of
Cforeachi =1,2,.... SinceCis a chain, it is not hard to see thats well defined and also that is a quasilinear extension
of each ofg;. Also ||g(X)|lo < |@(X)||o for all x e Y. Henceg is an upper bound dE. SinceC C P is arbitrary,P has a
maximal elemenf by Zorn's lemma. By the definition d?, this is a quasilinear extension &fwhich satisfies

1]l <1800
for all x e D(f). (D(f) is the domain set of )

Step 2. We will show thatD(f) = X. Suppose thab(f) # X. Then we can chooseya € X\D(f). Note thaty; # 0
since Oc D(f). Consider the subspatg of X given by

Yi = {y+ay::yeD(f),a e R}.
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Now we will define a functiom; : Y1 — Qc(R) such that

flyy a=o0

Guly+ayy) = {¢<y+ay1> o #0.

Let us remember that anye Y; can be writterx = y + ay; for y € D(f). Since this representation is unigqagg,is well
defined. Also it is immediate to see thgtis quasilinear, since the functiorfisand ¢ are quasilinear. Furthermore, for
a =0 we havegs (y) = F(y). Henceg; is an extension of such thaD(f~) is a proper subset of. Consequently, if we
can prove that; € P by showing that

191l < I#(X)lo

for all x € Y; this will contradict the maximality of . Thus we will prove thab(f) = X.

Step 3. Forallx e Yy, if o = 0then

gl = llgs(y+ays)llg = | f¥)] o -

Sincef is a quasilinear extension dfwhich satisfies| f(x)||, < |9 (x)||o for all x € D(f), we have that|f(y)|, <

o (y)|lo forally=xe D(f) C Yr and s0||g1(X)| o < ||#(X)||o- Similarly, by consideringr # 0, we write that

191 ]lo = g1y +ayi)lo = ¢y +ayi)lo = ¢ (X)lo

and also thafjgi(X)|| o < ||¢ (X)|| o- Hence the proof is complete.

Theorem 5.Let Z be a subspace of real normed linear space X and assurhé tha bounded c-quasilinear functional
on Z. Then there exists a bounded quasilinear exteniok — Qc(R) of f such that

1la = [IFlla
where||f||, = sup |[f(®],and|fl[,= sup [f®)],-

xeX,||x||l=1 XEZ,||X||=1

Proof.If Z = {0}, thenf = 0, and sof = 0. LetZ # {0}. We know that

IOl < [Tl lIX]

for all x € Z. Definep : X — R such thatp(x) = || | ||x|| for all x € X. pis a sublinear functional oKX, since

pOx+y) = [l [yl < [[FI (Xl + llyll) = p(x) + p(y)

and
plax) = [[[[{lax]] = la| [ f]/{Ix]| = [a] p(x).
On the other hand, by the Examf@@ghe mapping : X — R defines a mapping : X — Qc(R) by ¢ (X) = [— p(—X), p(X)]

such tha® is a quasilinear operator. Furthermore, we can Wrft&) || o < |p(X)| by the definition ofp. Since

16 X)la = Il=P(=X), PX)]ll@ = =P, Pl @ = [PCA],
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we say that]| f(x)||o < ||¢(X)||o. Hence we can now apply Theorednand conclude that there exists a quasilinear
functional f on X which is an extension of and satisfies

1| o < 19Xl = I 11
for all x € X. Taking the supremum over adle X of norm 1, we obtain the inequality

Il = sup [[fX)]lg <[[flly=sup [IfllxI=Ifll.
xeX,||x||=1 xeX,||x||=1

Since under an extension the norm cannot decrease, we aisg tjp, < H fHA and so the theorem is proved.

The Hahn-Banach theorem implies that the convex dual sfgcef a normed quasilinear spaee consists of many
bounded c-quasilinear functionals to distinguish betwtberregular elements .

Theorem 6.Let X be a consolidate normed quasilinear space ajd X a non-zero regular element. Then there exists a
bounded c-quasilinear functiondlon X satisfying| f|| = 1 and f(xo) = |||l -

Proof.Let Z be the one-dimensional space spanneggby.e.,Z consists of all elements= axy wherea is a real scalar.
Itis obvious tha is a subspace of;. Define a c-quasilinear functionélon Z by

f(x) = f(axo) = {a %ol }. (20)
Since

1l = [f(@xo)ll = [{alxll}o = laf [l = laxoll = [IX]],

f is bounded and has norfyf|| = 1. Theorenb implies thatf has a quasilinear extensidnfrom Z to X, with norm
1T, = f], = 1. From @0), we say that
f(x0) = f(x0) = [[%ol|-

Corollary 1. Let X be a consolidate normed quasilinear space. X0} then X cannot be{0}. Of course, X also
cannot be{0} since X% C X*.
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