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Abstract: In this work, taking solutions of homogeneous differentialequations with constant coefficients in classical analysisas a basis,
solutions of homogeneous differential equations with constant exponentials in multiplicative analysis are obtained. Thus, solutions for
these equations, being a class of non-linear differential equations, and having correspondence in the classical senseare stated.
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1 Introduction

Beginning from last century non-Newtonian calculus have developed and many researchers pay attention to this branch.
In non-Newtonian calculus, differentiation and integration are based on non-Newtonian operations instead of classical
operations. Grossman and Katz, introduced the non-Newtonian calculus consisting of the branches of geometric,
anageometric and biogeometric calculus, etc. Fundamentaldefinitions and concepts related to Non-Newtonian calculus
are given in [1]. Geometric calculus is named as Multiplicative calculus after Dick Stanley [2]. Multiplicative calculus
uses ”multiplicative derivative” and ”multiplicative integral”. Thus it is an alternative to the classical calculus of Newton
and Leibniz (also referred as Newtonian calculus), which has an additive derivative and an additive integral. In [3],
Bashirov and friends gave further concepts and applications to the properties of derivative and integral operators of the
multiplicative calculus. Some studies in recent years, [4-12] the multiplicative analysis, can be used in solving someof
the problems in science and engineering, and illustrates the problems can be solved in a more practical way with the help
of this analysis. In this study, the solution of multiplicative homogeneous differential equations with constant
exponentials is researched. For this purpose, first of all, multiplicatively linearly independent, multiplicativelylinearly
dependent and Wronskian determinant of the functions are expressed. After that, the analysis, which is similar the
solution of classical homogeneous linear differential equations with constant coefficients, are generalized to the
multiplicative homogeneous differential equations with constant exponentials. Hence, solutions of a class of nonlinear
differential equations which is multiplicative homogeneous linear differential equations with constant exponentials are
obtained.

2 Multiplicative Derivatives

Here, we will give some basic definitions and properties of the multiplicative derivative theory which can be found in
[2-4].
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Definition 1. Let f : R→ R+ be a positive function. The multiplicative derivative of the function f is given by:

d∗ f
dt

(t) = f ∗ (t) = lim
h→0

(

f (t +h)
f (t)

) 1
h

. (1)

Assuming that f is a positive function and using properties of the classical derivative, multiplicative derivative canbe
written as

d∗ f
dt

(t) = f ∗ (t) = lim
h→0

(

f (t +h)
f (t)

) 1
h

, (2)

d∗ f
dt

(t) = f ∗ (t) = lim
h→0

(

1+
f (t +h)− f (t)

f (t)

)

f (t)
f (t+h)− f (t)

f (t+h)− f (t)
h

1
f (t)

, (3)

d∗ f
dt

(t) = f ∗ (t) = lim
h→0





(

1+
f (t +h)− f (t)

f (t)

)

(

f (t)
f (t+h)− f (t)

)



(

f (t+h)− f (t)
h

1
f (t)

)

, (4)

d∗ f
dt

(t) = f ∗ (t) = e
f
′
(t)

f (t) , (5)

d∗ f
dt

(t) = f ∗ (t) = e(ln◦ f )
′
(t) (6)

where(ln◦ f )(t) = ln( f (t)).

Definition 2. If multiplicative derivative f∗ as a function has also multiplicative derivative then multiplicative derivative
of f∗ is called second order multiplicative derivative of f and itis represented by f∗∗. Similarly we can define nth order
multiplicative derivative of f with the notation f∗(n). With n times repeated multiplicative differentiation operation, a
positive f function has an nth order multiplicative derivative at the point t and defined as

f ∗(n) (t) = e(ln◦ f )(n)(t). (7)

Theorem 1.If a positive function f is differentiable with the multiplicative derivative at the point t, then it is differentiable
in the classical sense and the relation between these two derivatives can be shown as

f
′
(t) = f (t) ln f ∗(t). (8)

Theorem 2.Let f and g be differentiable with the multiplicative derivative. If c is an arbitrary constant, then c. f , f .g,
f +g, f/g, f g functions are differentiable with the multiplicative derivative and their multiplicative derivatives can be
shown as

(1) (c. f )∗ (t) = f ∗ (t) ,
(2) ( f .g)∗ (t) = f ∗ (t) .g∗ (t) ,

(3) ( f +g)∗ (t) = f ∗(t)
f (t)

f (t)+g(t) g∗(t)
g(t)

f (t)+g(t) , (9)
(4) ( f/g)∗ = f ∗ (t)/g∗ (t)
(5) ( f g)∗ (t) = f ∗(t)g(t) f (t)g′(t).

Theorem 3. f ∗ (t) = 1 for ∀t ∈ (a,b)⇔ f (t) =C> 0 is a fixed function in the open interval(a,b).

Theorem 4.Let g be differentiable in meaning of the multiplicative derivative and let f be differentiable in the classical
sense. If f(t) = (g◦h)(t) , then, it can be written that

f ∗ (t) = [g∗ (h(t))]h
′
(t). (10)
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Theorem 5.Let f be a positive function. Then, f∗ (t) = 1⇔ f
′
(t) = 0.

3 Multiplicative linear differential equations

Definition 3. Multiplicative linear differential equations can be defined in the form of

(

y∗(n)
)an(t)(

y∗(n−1)
)an−1(t)

. . . (y∗∗)a2(t)(y∗)a1(t)ya0(t) = f (t) . (11)

Here, f(t) is a positive definite function. If, all of an(t) exponentials are constants, equation (11) is called as
multiplicative linear differential equations with constant exponentials. Otherwise, equation (11) is as called
multiplicative linear differential equations with variable exponentials. In equation (11), if f(t) = 1, equation (11) is
called multiplicative homogeneous linear differential equations, otherwise it is called multiplicative nonhomogeneous
linear differential equations. Now, let’s search how to solve these multiplicative homogeneous linear differential
equations with constant exponentials. We describe multiplicatively linear independent and multiplicatively Wronskian
determinant of positive definite functions.

Definition 4. Let y1,y2, . . . ,yn be positive definite functions. Any expression of the form

y1
c1y2

c2 . . .yn
cn (12)

is called a multiplicatively linear combinations of y1,y2, . . . ,yn where c1,c2, . . . ,cn are arbitrary constants[10].

Definition 5. Let y1,y2, . . . ,yn be positive definite functions. Then, they are called multiplicatively linear dependent if there
are not all zero constants c1,c2, . . . ,cn with

y1(t)
c1y2(t)

c2 . . .yn(t)
cn = 1 (13)

for all t. Otherwise, they are called multiplicatively linear independent.

Definition 6. Let y1,y2, . . . ,yn be at least(n−1) times multiplicative differentiable positive definite functions. The
determinant

Wm(y1,y2, . . . ,yn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

lny1 lny2 . . . lnyn

lny1
∗ lny∗2 . . . lnyn

∗

...
...

. . .
...

lny∗(n−1)
1 lny∗(n−1)

2 . . . lny∗(n−1)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(14)

is called multiplicatively Wronskian determinant of the functions{yi}n
i=1.

Theorem 6. Let y1,y2, . . . ,yn be multiplicative differentiable positive definite functions on [a,b]. If multiplicatively
Wronskian Wm(y1,y2, . . . ,yn) is nonzero for some t0 ∈ [a,b], then these functions are multiplicatively linearly
independent on[a,b]. If y1,y2, . . . ,yn are multiplicatively linearly dependent then the multiplicatively Wronskian is equal
to zero for∀t ∈ [a,b].

Proof. Suppose thaty1,y2, . . . ,yn are multiplicative differentiable positive definite functions on [a,b]. Let
Wm(y1,y2, . . . ,yn) 6= 0 for somet0 ∈ [a,b], and assume the functions are multiplicatively linear dependent. Then, there
exist arbitrary constantsc1,c2, . . . ,cn not all equal to zero such that

y1
c1y2

c2 . . .yn
cn = 1 (15)
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for ∀t ∈ [a,b] . Taking(n−1) multiplicative derivatives of this equality gives us the following system of equalities

y1
c1y2

c2 . . .yn
cn = 1,

y∗1
c1 y∗2

c2 . . . y∗n
cn = 1,

... (16)

y∗(n−1)
1

c1
y∗(n−1)

2

c2
. . . y∗(n−1)

n
cn
= 1.

Now, let’s take the natural logarithm of both sides of equalities. So,

c1 lny1+ c2 lny2+ . . .+ cn lnyn = 0,

c1 lny∗1+ c2 lny∗2+ . . .+ cn lny∗n = 0,

... (17)

c1 lny∗(n−1)
1 + c2 lny∗(n−1)

2 + . . .+ cn lny∗(n−1)
n = 0,

Since,Wm(y1,y2, . . . ,yn) 6= 0 for somet0 ∈ [a,b]. It follows thatc1 = c2 = . . .= cn = 0. But, this is in contradiction with ,
c1,c2, . . . ,cn being not all equal to zero. So, functions are multiplicatively linearly independent.

Example 1.Considery1 = eet , y2 = ee−t
, y3 = ee2t

. Multiplicatively Wronskian determinant of these functions are

Wm(y1,y2,y3) =

∣

∣

∣

∣

∣

∣

∣

lny1 lny2 lny3

lny1
∗ lny2

∗ lny3
∗

lny1
∗∗ lny2

∗∗ lny3
∗∗

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

lneet
lnee−t

lnee2t

lneet
lne−e−t

lne2e2t

lneet
lnee−t

lne4e2t

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

et e−t e2t

et −e−t 2e2t

et e−t 4e2t

∣

∣

∣

∣

∣

∣

∣

=−6e2t 6= 0.

Thus, these functions are multiplicatively linear independent.

Example 2. For t > 0, consider functionsy1 = t−1,y2 = t,y3 = t2. Multiplicatively Wronskian determinant of these
functions are

Wm(y1,y2,y3) =

∣

∣

∣

∣

∣

∣

∣

ln
(

t−1
)

ln t ln t2

ln
(

e−1/t
)

ln
(

e1/t
)

ln
(

e2/t
)

ln
(

e1/t2
)

ln
(

e−1/t2
)

ln
(

e−2/t2
)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

− ln t ln t 2lnt
− 1

t
1
t

2
t

1
t2

− 1
t2

− 2
t2

∣

∣

∣

∣

∣

∣

∣

= 0. (18)

Thus, these system of functions have multiplicatively linear dependent property.

4 Multiplicative homogeneous linear differential equations with constant exponentials

Now, we analyze solutions of multiplicative homogeneous linear differential equation with constant exponentials

(

y∗(n)
)an

(

y∗(n−1)
)an−1

. . . (y∗∗)a2(y∗)a1ya0 = 1 (19)

whereak, k = 1, . . . ,n are the arbitrary constants. Class of this equation corresponds to the class of non-linear equations
in the classical sense

an
dn−1

dtn−1

(

1
y

dy
dt

)

+an−1
dn−2

dtn−2

(

1
y

dy
dt

)

+ . . .+a2
d
dt

(

1
y

dy
dt

)

+a1

(

1
y

dy
dt

)

=−a0 lny. (20)
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So, solutions of the equation (19) corresponds to solutionsof the non-linear equation (20). By the help of following
multiplicative derivative operators

y∗ = D̃y= eD(lny) = e
D(y)

y ,

y∗∗ = D̃2y= eD2(lny) = e
D
(

D(y)
y

)

,

...

y∗(n) = D̃ny= eDn(lny) = e
D(n−1)

(

D(y)
y

)

,

L∗ (D̃
)

=
(

D̃n)an
(

D̃n−1)an−1 . . .
(

D̃
)a1

(

D̃0)a0

equation (19) can be rewritten as
L∗ (D̃

)

y= 1 (21)

Sincea0,a1, . . . ,an exponentials are constants, operator

L∗ (D̃
)

=
(

D̃n)an
(

D̃n−1)an−1 . . .
(

D̃
)a1

(

D̃0)a0 (22)

also has constant coefficients.

Theorem 7. If equation (19) has multiplicatively linear independent solution y1 (t) , y2(t) , . . . , yn (t), then the general
solution has the form

y= y1
c1y2

c2...yn
cn (23)

where c1, c2, . . . , cn are arbitrary constants.

Proof. Let y1 (t) , y2 (t) , . . . ,yn (t) be solutions of the equation(19). For arbitrary constantsck, k = 1, . . . ,n, introduce
notation

y= (y1)
c1(y2)

c2 . . .(yn)
cn

Sincey1 (t) , y2 (t) , . . . , yn (t) are multiplicatively linear independent solutions of equation (19), these functions are
n-times multiplicative differentiable. Hence, we can write

y∗ = (y1
∗)c1(y2

∗)c2, . . . , (yn
∗)cn (24)

...

y∗(n) =
(

y1
∗(n)

)c1
(

y2
∗(n)

)c2
, . . . ,

(

yn
∗(n)

)cn

Substitutingy,y∗, . . . , y∗(n) in equation (19), we get the next equality

L∗ (D̃
)

y =
[(

y1
∗(n)

)c1
. . .

(

yn−1
∗(n)

)cn−1
(

yn
∗(n)

)cn
]an[(

y1
∗(n−1)

)c1
. . .

(

yn−1
∗(n−1)

)cn−1
(

yn
∗(n−1)

)cn
]an−1

. . . [(y1
∗)c1 . . . (yn

∗)cn−1(yn
∗)cn]

a1[(y1)
c1 . . . (yn−1)

cn−1(yn)
cn]a0

=
[(

y1
∗(n)

)an
. . . (y1

∗)a1(y1)
a0
]c1

[(

y2
∗(n)

)an
. . . (y2

∗)a1(y2)
a0
]c2

. . .
[(

yn
∗(n)

)an
. . .(yn

∗)a1(yn)
a0
]cn

= 1

Theorem 8.Let L∗
(

D̃
)

be an operator with constant coefficients given by (23) and L(r) = ∑n
i=0air i . Then,

L∗ (D̃
)

(

eert
)

=
(

eert
)L(r)

(25)

where r is real or complex constant.
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Proof.Fory= eert
, We get

y∗ = D̃y= erert

y∗∗ = D̃2y= er2ert

...
y∗(n) = D̃ny= ernert

.

(26)

Substitutingy= eert
and its multiplicative derivative in equation (22), then

L∗ (D̃
)

(

eert
)

=
(

eert
)L(r)

(27)

is obtained. Hence, the proof is completed.

We seek the solution of (19) in the formy= eert
, wherer is a real or complex constant. From equation (19) and Theorem

8, It follows that

L∗ (D̃
)

(

eert
)

=
(

eert
)L(r)

= (e)L(r)ert
= 1= e0. (28)

For all r, we haveert 6= 0. Hence,

L(r) = anrn+an−1r
n−1+ . . .+a1r +a0 = 0 (29)

is obtained. The equation (30) is called as characteristic equation of equation (19).

Theorem 9.If equation (30) have n distinct roots r1, r2, . . . ,rn, then the following functions

y1 (t) = eer1t
, y2 (t) = eer2t

, . . . , yn (t) = eernt
(30)

are multiplicatively linear independent solutions of the equation (19). Since functions in (30) are multiplicativelylinear
independent solutions, the function

y=
(

eer1t
)c1

(

eer2t
)c2

...
(

eernt
)cn

(31)

or
y= ec1er1t

ec2er2t
. . .ecnernt

Here, ec1 =C1, ec2 =C2, . . . , ecn =Cn and

y= (C1)
er1t

(C2)
er2t

. . . (Cn)
ernt

(32)

is the general solution of equation (19).

Proof.As equationL(r) = 0 hasn distinct real rootsr i , i = 1,2, . . . ,n , this equation can be written as

L(r) = an (r − r1) (r − r2) . . . (r − rn) = 0.

Hence equation (19) has n distinct solutions in the formy = eert
such asy1 = eer1t

, y2 = eer2t
, . . . , yn = eernt

. The
multiplicatively Wronskian determinant of these solutions is

Wm(y1,y2, . . . ,yn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

lny1 lny2 . . . lnyn

lny1
∗ lny∗2 . . . lnyn

∗

...
...

. . .
...

lny∗(n−1)
1 lny∗(n−1)

2 . . . lny∗(n−1)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

er1t er2t . . . ernt

r1er1t r2er2t . . . rnernt

...
...

. . .
...

r1
(n−1)er1t r2

(n−1)er2t . . . rn
(n−1)ernt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0
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So,yi = e eri t , i = 1,2, . . . ,n are multiplicatively linear independent solutions. Thus,fundamental set of solutions is

T =
{

eer1t
,eer2t

, . . . ,eernt
}

(33)

and the general solution is in the formyh = ec1er1t+c2er2t+...+cnernt
.

Example 3.Consider the equation
y∗∗(y∗)3y2 = 1. (34)

This equation corresponds to the equation

d
dt

(

1
y

dy
dt

)

+3

(

1
y

dy
dt

)

=−2lny (35)

or

y
′′
y−

(

y
′)2

+3yy
′
=−2y2 lny (36)

The characteristic equation of the given equation is

r2+3r +2= 0.

The roots arer1 =−2 andr2 =−1. Hence, the general solution of equation (35), so equation (37) is

yh = (C1)
e−2t

(C2)
e−t

. (37)

WhereC1 = ec1 veC2 = ec2. Now, we consider characteristic equation (30) whose rootsare not all distinct.

Theorem 10.If m is a real root that appears k times, that is, L(r) = (r −m)kp(r), where p(m) 6= 0, then for root-m,

yh1 = e(c1+c2t+c3t2+...+cktk−1)emt (38)

is a solution of (19). For the remaining n− k distinct roots,

yh2 = eck+1emk+1t+ck+2emk+2t+...+cnemnt
. (39)

is a solution of (19). Hence, the general solution of the equation (19) is

yh = yh1yh2 = e(c1+c2t+c3t2+...+cktk−1)mteck+1emk+1t+ck+2emk+2t+...+cnemnt
. (40)

Proof.Suppose characteristic equation hask-times repeated real roots and has also distinct real roots .Then we can write

L∗ (D̃
)

y= eL(D)(lny) = e[an(D−α)k(D−rk+1)...(D−rn)](lny) = e[F(D)(D−α)k](lny) = 1 (41)

where
F (D) = (D− rk+1) . . . (D− rn)

The solutionsyi = e eri t = e eαt
, i = 1,2, . . . ,k with respect tok-times repeated rootsr i = α are not multiplicatively linear

independent. But fori = 1,2, . . . ,k yi = e t i−1eαt
functions satisfy equationeL(D)(lny) = 1, in other words

eL(D)(t i−1eαt) = eF(D)(D−α)kt i−1eαt
= eF(D)eαt Dkt i−1

= 1. (42)

Moreover, as multiplicatively Wronskian determinant of these functions is not equal to zero, they are multiplicatively
linear independent. The first part of the proof is completed.For the second part the independence of solutions with respect
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to remaining distinct and real(n− k) roots is given in the previous theorem. Finally,

y1 = e eαt
, y2 = e teαt

, . . . , yk = e tk−1eαt
, yk+1 = e erk+1t

, . . . , yn = eernt
(43)

The solutions with respect tok-times repeated roots are and(n− k) real distinct roots are multiplicatively linear
independent. The general solution is multiplicatively linear combination of these solutions with arbitrary constants.

Example 4.Consider the equation
y∗∗(y∗)−10y25 = 1.

The characteristic equation of the above equation is

r2−10r +25= 0

The roots arer1 = r2 = 5. Hence, the general solution is

yh = e(c1+c2t)e5t

Theorem 11.If r1 =α + iβ , r2 = r1 =α − iβ are conjugate complex roots of equation (19), which are eachof multiplicity
k, that is

L(r) = (r − r1)
k(r − r1)

kp(r) (44)

where p(r1) 6= 0, p(r1) 6= 0. y1 = eer1t
and y2 = eer2t

are multiplicatively linear independent solutions. Hence, general
solution is

yh = e[C1 cosβ t+C2 sinβ t]eαt+...+[C2k−1cosβ t+C2k sinβ t]t(k−1)eαt+C2k+1em2k+1t+...+Cnemnt
.

Proof.By Theorem 10, the solution is

y1 = e(c1+c2t+...+ckt(k−1))e(α+iβ)t
(45)

for k-times repeated rootr1 = α + iβ and the solution is

y2 = e(ck+1+ck+2t+...+c2kt(k−1))e(α−iβ)t
(46)

r1 = α − iβ . For the remainingn− k distinct roots we have solution

y3 = ec2k+1em2k+1t+c2k+2em2k+2t+...+cnemnt
(47)

Each ofy1,y2,y3 solutions are multiplicatively linear independent. The linear combination of these solutions is the general
solution of the equation (19) which can be stated as

yh = y1y2y3

yh = e(c1+c2t+...+ckt(k−1))e(α+iβ)t
e(ck+1+ck+2t+...+c2kt(k−1))e(α−iβ)t

ec2k+1em2k+1t+c2k+2em2k+2t+...+cnemnt

If we use following Euler equations ,
eiβ t = cosβ t + i sinβ t (48)

e−iβ t = cosβ t − i sinβ t

then the general solution of the equation (19) can be writtenas

yh = e[c1 cosβ t+c2 sinβ t]eat+...+[c2k−1 cosβ t+c2k sinβ t]tk−1eat+c2k+1em2k+1t+...+cnemnt
.
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which is multiplicatively linear independent. Here, if we use notations

c1+ ck+1 =C1, i(c1− ck+1) =C2, . . . , ck+ c2k =C2k−1, i(ck− c2k) = c2k,

then the general solution of the equation (19) can be rewritten as

yh = e[C1 cosβ t+C2 sinβ t]eαt+...+[C2k−1cosβ t+C2k sinβ t]t(k−1)eαt+C2k+1em2k+1t+...+Cnemnt
.

Example 5.Consider the equation
y∗∗y∗y= 1.

The characteristic equation of the above equation is

r2+ r +1= 0

The roots are

r1 =
−1
2

+ i

√
3

2
,

r2 =
−1
2

− i

√
3

2

Hence, the general solution is

yh = ee
−t
2

[

c1cos

(√
3

2 t

)

+c2 sin

(√
3

2 t

)]

.

5 Conclusion

In this study, the relation between multiplicatively Wronskian determinant and multiplicatively linear independentis given
for positive definite functions after defining the multiplicatively linear independent, multiplicatively linear dependent
and multiplicatively Wronskian determinant. On the other hand, multiplicative homogeneous differential equations with
constant exponentials are defined and the solutions are obtained. Solutions for these equations that have correspondence
with a class of non-linear differential equations in the classical sense are stated.
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[12] N. Yalçın, and E. Çelik,The Solution of Multiplicative Non-Homogeneous Linear Differential Equations,.Journal of Applied

Mathematics and Computation, 2018, 2(1): 27-36

c© 2018 BISKA Bilisim Technology


	Introduction
	Multiplicative Derivatives
	Multiplicative linear differential equations
	Multiplicative homogeneous linear differential equations with constant exponentials
	Conclusion

