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Abstract: In this article, we drive the Binet form to Fibonacci and generalized Fibonacci numbers by applying the Laplace transform
method that has not got enough credit for solutions of difference equations compare to other avaiable methods so far.

Keywords: Fibonacci numbers, difference equations, Laplace transform.

1 Introduction

The sequenceFn of the Fibonacci numbers is defined by the recurrence relation

Fn =















0, if n = 0

1, if n = 1

Fn−1+Fn−2, if n ≥ 2.

A compact formula, known the Binet form, for the Fibonacci numbers is given by

Fn =
1√
5
(φn − (−φ)−n),

whereφ = 1+
√

5
2 , for the name ofφ see [1]. There are several analytic proofs obtaining the Binet form using the method

of matrices [2,3,4,5], the method of generating functions [6], the method of complex residues [7], for a discussion of
more traditional methods [8] and the method of difference equation [9,10,11].

It is important to note that Binet (1786–1856) probably was not the first to figure out this. Leonhard Euler (1707–1783),
Daniel Bernoulli (1700–1782), Abraham de Moivre (1667–1754) and also Gabriel Lamé (1795–1870) after whom the
sequence is sometimes called, worked the same formula out more than a century earlier. For further reading, see [13,14,
15,16,17,18,19,20].

Let Y (t) be a real or complex function fort > 0 ands is a real or complex parameter. Then the Laplace transform ofY (t)
is defined by

L {Y (t)}= y(s) =
∫ ∞

0
Y (t)e−stdt,
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we assume that this integral exists.

If L {Y (t)}= y(s) and G(t) =

{

Y (t − a) if t > a

0 if t < a
then L {G(t)}= e−asy(s). (1)

For the Laplace transform ofY (t) and its properties, see [21,22].

2 Main results

Lemma 1. Let Y (t) = an for n ≤ t < n+1 where n = 0,1,2,3, · · · . Then

L {Y (t +1)}= esy(s)− a0es(1− e−s)

s
.

Proof. ApplyingY (t) = a0 for 0≤ t < 1. Then

L {Y (t +1)}=
∫ ∞

0
e−stY (t +1)dt

= es
∫ ∞

1
e−suY (u)du

= es
[

∫ ∞

0
e−suY (u)du−

∫ 1

0
e−suY (u)du

]

= esy(s)− es
∫ 1

0
e−sua0du

= esy(s)− a0es(1− e−s)

s
.

Lemma 2. Let Y (t) = an for n ≤ t < n+1 where n = 0,1,2,3, · · · . Then

L {Y (t +2)}= e2sy(s)− es(1− e−s)(a0es + a1)

s
.

Proof. ApplyingY (t) = a0 for 0≤ t < 1 andY (t) = a1 for 1≤ t < 2. Then

L {Y (t +2)}=
∫ ∞

0
e−stY (t +2)dt

= e2s
∫ ∞

2
e−suY (u)du

= e2s
∫ ∞

0
e−suY (u)du− e2s

∫ 1

0
e−suY (u)du− e2s

∫ 2

1
e−suY (u)du

= e2sy(s)− e2s
∫ 1

0
e−sua0du− e2s

∫ 2

1
e−sua1du

= e2sy(s)− a0e2s(1− e−s)

s
− a1e2s(e−s − e−2s)

s

= e2sy(s)− es(1− e−s)(a0es + a1)

s
.

For general version of Lemma1 and Lemma2, see [12].
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Lemma 3. Let Y (t) = rn for n ≤ t < n+1 where n = 0,1,2,3, · · · . Then

L {Y (t)}= 1− e−s

s(1− re−s)
.

Proof. Geometric series is employed when necessary.

L {rn}=
∫ 1

0
e−str0dt +

∫ 2

1
e−str1dt +

∫ 3

2
e−str2dt + · · ·

=
1− e−s

s
+ r

e−s− e−2s

s
+ r2 e−2s − e−3s

s
+ · · ·

=
1− e−s

s

(

1+ re−s+ r2e−2s + · · ·
)

=
1− e−s

s
1

1− re−s

=
1− e−s

s(1− re−s)
.

Theorem 1. Let F0 = 0 and F1 = 1. If

Fn+2 = Fn+1+Fn, n ≥ 0, (2)

then

Fn =
1√
5

((

1+
√

5
2

)n

−
(

1−
√

5
2

)n)

. (3)

Proof. By applying Lemma1, Lemma2 and taking the Laplace transform of both sides of (2) one obtains.

(

e2s − es −1
)

y(s) =
es(1− e−s)

s
.

Then

y(s) =
es(1− e−s)√

5s

(

1

es − 1+
√

5
2

− 1

es − 1−
√

5
2

)

=
(1− e−s)√

5s

(

1

1− 1+
√

5
2 e−s

− 1

1− 1−
√

5
2 e−s

)

.

Applying Lemma3 and the inverse Laplace transform one obtains

Fn =
1√
5

((

1+
√

5
2

)n

−
(

1−
√

5
2

)n)

.

Theorem 2. Let F0 = p and F1 = p+ q if

Fn+2 = Fn +Fn+1, n ≥ 0, (4)
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then either

Fn =
F1−F0√

5

((

1+
√

5
2

)n

−
(

1−
√

5
2

)n)

+
F0√

5





(

1+
√

5
2

)n+1

−
(

1−
√

5
2

)n+1




or

Fn =
F1+F0(

√
5−1)√

5

((

1+
√

5
2

)n

−
(

1−
√

5
2

)n)

.

For generalized Fibonacci numbers, see [23].

Proof. By applying Lemma1, Lemma2 and taking the Laplace transform of both sides of (4) one obtains

(

e2s − es−1
)

y(s) =
es(1− e−s)(F0es +F1)

s
− F0es(1− e−s)

s
.

Then

y(s) = (F1−F0)
es(1− e−s)√

5s

(

1

es − 1+
√

5
2

− 1

es − 1−
√

5
2

)

+F0
e2s(1− e−s)√

5s

(

1

es − 1+
√

5
2

− 1

es − 1−
√

5
2

)

= (F1−F0)
1− e−s
√

5s

(

1

1− 1+
√

5
2 e−s

− 1

1− 1−
√

5
2 e−s

)

+F0
es(1− e−s)√

5s

(

1

1− 1+
√

5
2 e−s

− 1

1− 1−
√

5
2 e−s

)

.

Now using Lemma3, (1) and taking the inverse Laplace transform one obtains either

Fn =
F1−F0√

5

((

1+
√

5
2

)n

−
(

1−
√

5
2

)n)

+
F0√

5





(

1+
√

5
2

)n+1

−
(

1−
√

5
2

)n+1




or

Fn =
F1+F0(

√
5−1)√

5

((

1+
√

5
2

)n

−
(

1−
√

5
2

)n)

.

Corollary 1. If F0 = 0 and F1 = 1 then one obtains Theorem 1.

Corollary 2. If F0 = 0 and F1 = 1 then one obtains Lucas numbers, denoted by Ln, Ln = 2Fn+1−Fn, where Fn is in the
form (3).

For Lucas numbers and its properties, see [13,15,16,17,18].

3 Conclusion

The Laplace transform method are applied to generalized Fibonacci sequence to obtain the Binet form. The result obtained
in [12] is applied to Pell and Tribonacci numbers. With this article, we aim to bring up the importance of Laplace transform
method for difference equations to interested readers.
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