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1 Introduction

Let f be a meromorphic function in the open complex planeC. We use the standard notations of Nevanlinna theory,
which can be found in [7]. We denote byS(r, f ) any quantity satisfyingS(r, f ) = o{T(r, f )} asr → ∞ possibly outside a
set of finite linear measure.

A meromorphic functiona= a(z) is called a small function off if T(r,a) = S(r, f ). We denote byS( f ) the collection of
all small functions off . ClearlyC⊂ S( f ).

Let f andg be two meromorphic functions inC anda∈ S( f )∩S(g). We say thatf andg share the functiona= a(z) CM
(counting multiplicities) or IM (ignoring multiplicities) if f − a and g− a have the same set of zeros counting
multiplicities or ignoring multiplicities respectively.

Definition 1. [5] Let k be a positive integer, and let f be a meromorphic function and a∈ S( f ).

(i) N(r,a; f | ≥ k) denotes the counting function of zeros of f−a whose multiplicities are not less than k, where each
zero is counted only once.

(ii) N(r,a; f | ≤ k) denotes the counting function of zeros of f−a whose multiplicities are not greater than k, where
each zero is counted only once.

(iii) Np(r,a; f ) = N(r,a; f )+∑p
k=2N(r,a; f | ≥ k).

Definition 2. [2] For any complex number c∈C∪{∞}, we denote byδp(c, f ) the quantity

δp(c, f ) = 1− lim
r→∞

sup
Np(r,c; f )

T(r, f )
,
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where p is a positive integer. Clearlyδp(c, f ) ≥ δ (c, f ).

Let NE(r,a) be the counting function of all common zeros of f−a and g−a with the same multiplicities, and N0(r,a) be
the counting functions of all common zeros of f−a and g−a ignoring multiplicities. Denotes byNE(r,a) andN0(r,a)
the reduced counting functions of f and g corresponding to the counting functions NE(r,a) and N0(r,a), respectively. If

N(r,a; f )+N(r,a;g)−2NE(r,a) = S(r, f )+S(r,g),

then we say that f and g share a “CM”. If

N(r,a; f )+N(r,a;g)−2N0(r,a) = S(r, f )+S(r,g),

then we say that f and g share a “IM”.

Definition 3. [5] Let f and g be two nonconstant meromorphic functions sharinga “IM”, for a ∈ S( f )∩S(g), and a
positive integer k or∞.

(i) N
k)
E (r,a) denotes the counting function of zeros of f−a whose multiplicities are equal to the corresponding zeros

of g−a, both of their mutiplicities are not greater than k, where each zero is counted only once.

(ii) N
(k
0 (r,a) denotes the reduced counting function of zeros of f−a which are zeros of g−a, both of their mutiplicities

are not less than k, where each zero is counted only once.

(iii) Let z0 be the zeros of f−a with multiplicity p and zeros of g−a with multiplicity q. Denote byN f>k(r,a;g) the
reduced counting function of those zeros of f− a and g− a such that p> q = k.Ng>k(r,a;g) is defined
analogously.

(iv) N∗(r,a; f ,g) denotes the reduce counting function of zeros of f−a whose multiplicities differ from the multiplicities
of the corresponding zeros of g−a.

Clearly,
N∗(r,a; f ,g) = N∗(r,a;g, f ) andN∗(r,a; f ,g) = NL(r,a; f )+NL(r,a;g).

Definition 4. [5] For a∈ S( f )∩S(g), if k is a positive integer or∞, and

N(r,a; f | ≤ k)−N
k)
E (r,a) = S(r, f ), N(r,a; f | ≥ k+1)−N

(k+1
0 (r,a) = S(r, f );

N(r,a;g| ≤ k)−N
k)
E (r,a) = S(r,g), N(r,a;g| ≥ k+1)−N

(k+1
0 (r,a) = S(r,g),

or if k = 0 and
N(r,a; f )−N0(r,a) = S(r, f ), N(r,a;g)−N0(r,a) = S(r,g),

whereN0(r,a) is the reduce counting functions of all common zeros f−a and g−a ignoring multiplicities, then we say
f and g weakly share a with weight k. Here, we write f,g share“(a,k)” to mean that f,g weakly share a with weight k.

Obviously, if f and g share“(a,k)” , then f and g share“(a, p)” for any p(0≤ p≤ k). Also, we note that f and g share a
“IM” or “CM” if and only if f and g share “(a,0)” or “(a,∞)” , respectively.

Definition 5. [5] Let

L( f ) = f (n)+an−1 f (n−1)+ ...+a0 f , (∗)

be a differential polynomial of f, where aj ( j = 0,1, ...,n−1)∈ S( f ).

In 2003, Yu [8] considered the uniqueness problem of an entire function or meromorphic function when it shares one
small function with its derivative and proved the followingresults.
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Theorem 1.Let n≥1, let f be a non-constant entire function, a∈S( f ) and a6≡0,∞. If f , f (n) share a CM andδ (0, f )> 3
4,

then f≡ f (n).

Theorem 2.Let n≥ 1, let f be a non-constant non-entire meromorphic function, a∈ S( f ) and a 6≡ 0,∞, f and a do not
have any common pole. If f, f (n) share a CM and4δ (0, f )+2(8+n)Θ(∞, f )> 19+2n, then f≡ f (n).

In 2004, Liu and Gu [3] applied a different method and obtained the following results.

Theorem 3.Let f be a non-constant meromorphic function, a∈ S( f ) and a6≡ 0,∞. If f , f (n) share a CM, f and a do not
have any common pole of same multiplicity and2δ (0, f )+4Θ(∞, f )> 5, then f≡ f (n).

Theorem 4.Let n≥1, let f be a non-constant entire function, a∈S( f ) and a6≡0,∞. If f , f (n) share a CM andδ (0, f )> 1
2,

then f≡ f (n).

In 2011, Hong-Yan Xu and Yi Hu [5] obtained the following result which improve the results of [15, 8].

Theorem 5.Let n≥ 1, let f be a non-constant meromorphic function, a∈S( f ) and a6≡ 0,∞. Suppose that L( f ) is defined
by (∗), If f , L( f ) share“(a,k)” . Then f≡ L( f ) if one of the following assumptions holds,

1. 2≤ k≤ ∞ and
4Θ(∞, f )+2δ2+n(0, f )> 5,

2. k= 1 and
(

7
2
+n

)

Θ(∞, f )+
3
2

δ2(0, f )+ δ2+n(0, f )> n+5,

3. k= 0 and
(6+2n)Θ(∞, f )+ δ2(0, f )+2Θ(0, f )+2δ2+n(0, f )> (2n+10).

We define a monomialM[ f ] and differential polynomialH[ f ] as follows,
Let p0, p1, ..., pk be non-negative integers. We call

M[ f ] = f p0 ( f
′
)p1...( f (k))pk

a differential monomial inf with degreedM = p0+ p1+ ...+ pk and weightΓM = p0+2p1+ ...+(k+1)pk, and

H[ f ] =
n

∑
j=1

a jM j [ f ], (1)

wherea j are small functions off , is called a differential polynomial inf of degreed = max{dM j ,1≤ j ≤ n} and weight
Γ = max{ΓM j ,1 ≤ j ≤ n}, furthermore if deg(M j) = d ( j = 1,2, ...,n), then H[ f ] is a homogeneous differential
polynomial in f of degreed.

In this paper, we improve the above Theorems and obtain the following results.

Theorem 6. Let f be a non-constant meromorphic function and H[ f ] be a non-constant homogeneous differential
polynomial of degree d and weightΓ satisfyingΓ ≥ (k+2)d−2. Let a(z) ∈ S( f ) be a small meromorphic function of f

such that a(z) 6≡ 0,∞. Suppose that f−a and H[ f ]−a share(0,k). ThenH[ f ]−a
f−a =C for some non-zero constant C if one

of the following asumptions holds,

(i) 2 ≤ k≤ ∞ and
4Θ(∞, f )+ δ2(0, f )+dδ2+Γ−d(0, f d)> 5, (2)

(ii) k= 1 and
(

7
2
+Γ −d

)

Θ(∞, f )+
3
2

δ2(0, f )+dδ2+Γ−d(0, f d)> Γ +4, (3)

(iii) k= 0 and

(6+2Γ −2d)Θ(∞, f )+ δ2(0, f )+2Θ(0, f )+dδ1+Γ−d(0, f d)+dδ2+Γ−d(0, f d)> 2Γ +9. (4)
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Especially, whenk= 0, i.e., f andH sharea IM, if (4) holds, thenf ≡ H[ f ].

From Theorem 6 we have the following corollary.

Corollary 1. Let f be a non-constant entire function and a≡ a(z)(6≡ 0,∞) be a meromorphic function such that T(r,a) =
S(r, f ). If f ,H[ f ] share“(a,k)” , k ≥ 2 andδ2+Γ−d(0, f d) > 1

d+1, or if f , H[ f ] share“(a,1)” andδ2+Γ−d(0, f d)> 2d+1
3+2d ,

or if f , H[ f ] share“(a,0)” andδ2+Γ−d(0, f d) > 2d+2
d − 1

d

(

δ2(0, f )+2Θ(0, f )+dδ1+Γ−d(0, f d)
)

, then H[ f ]−a
f−a = C for

some non-zero constant C and f≡ H[ f ] for k= 0, where H[ f ] is defined by(1).

2 Some lemmas

For the proof of our main results, we need the following lemmas.

Lemma 1. [4] Let H[ f ] be a non-constant differential polynomial. Let z0 be a pole of f order p and neither a zero nor a
pole of coefficients of H[ f ]. Then z0 is a pole of H[ f ] with order at most pd+(Γ −d).

Lemma 2. [4] Let f be a non-constant meromorphic function, H[ f ] is a homogeneous differential polynomial in f of
degree d and weightΓ , and let p be a positive integer. If H[ f ] 6≡ 0 andΓ ≥ (k+2)d− (p+1), we have

Np

(

r,
1
H

)

≤ T(r,H)−dT(r, f )+Np+Γ−d

(

r,
1
f d

)

+S(r, f ), (5)

Np

(

r,
1
H

)

≤ (Γ −d)N(r, f )+Np+Γ−d

(

r,
1
f d

)

+S(r, f ). (6)

Lemma 3. [6] Let k be a nonnegative integer or∞, F and G be two nonconstant meromorphic functions, F and G share
“(1,k)” . Let

∆ =

(

F
′′

F ′ −2
F

′

F −1

)

−

(

G
′′

G′ −2
G

′

G−1

)

. (7)

If ∆ 6≡ 0, 2≤ k≤ ∞, then

T(r,F)≤ N2(r,∞;F)+N2(r,0;F)+N2(r,∞;G)+N2(r,0;G)+S(r,F)+S(r,G).

The same inequalities holds for T(r,G).

When f and g share1 “IM”, NL(r,1; f ) denotes the counting function of the 1-points of f whose multiplicities are

greater than 1-points of g, where each zero is counted only once. Similarly, we denoteNL(r,1;g), N1)
E (r,1; f ) denotes the

counting function of those simple 1-points of f and g, andN
(2
E (r,1; f ) denotes the counting function of those multiplicity

1-points of f and g, each point in these counting functions is counted only once.In the same way, one can define

N1)
E (r,1;g), N

(2
E (r,1;g).

Lemma 4. [5] If f , g be two nonconstant meromorphic functions such that they share “(1,1)” , then

2NL(r,1; f )+2NL(r,1;g)+N
(2
E (r,1; f )−N f>2(r,1;g)≤ N(r,1;g)−N(r,1;g).

Lemma 5. [5] Let f, g share“(1,1)” . Then

N f>2(r,1;g)≤
1
2

N(r,0; f )+
1
2

N(r,∞; f )−
1
2

N0(r,0, f
′
)+S(r, f ).
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Lemma 6. [5] Let f and g be two nonconstant meromorphic functions sharing“(1,0)” . Then

NL(r,1; f )+2NL(r,1;g)+N
(2
E (r,1; f )−N f>1(r,1;g)−Ng>1(r,1; f ) ≤ N(r,1;g)−N(r,1;g).

Lemma 7. [5] Let f, g share“(1,0)” . Then

NL(r,1; f )≤ N(r,0; f )+N(r,∞; f )+S(r, f ).

Lemma 8. [5] Let f, g share“(1,0)” . Then

(i) N f>1(r,1;g)≤ N(r,0; f )+N(r,∞; f )−N0(r,0, f
′
)+S(r, f );

(ii) Ng>1(r,1; f )≤ N(r,0;g)+N(r,∞; f )−N0(r,0, f
′
)+S(r,g).

Proof. (proof of Theorem 6.) Let

F =
f
a
, G=

H[ f ]
a

. (8)

From the conditions of Theorem 6, we know thatF andG share “(1,k)” , and from (8), we have

T(r,F) = T(r, f )+S(r, f ),T(r,G) = O(T(r, f ))+S(r, f ). (9)

N(r,∞;F) = N(r,∞;G)+S(r, f ). (10)

It is obvious thatf is a transcendental meromorphic function. Let∆ be defined by (7). We distinguish two cases

Case 1.∆ ≡ 0. integrating (7), yields

1
F −1

=
C

G−1
+D, (11)

whereC andD are constants andC 6= 0. If there exists a polez0 of f with multiplicity p which is not zero or pole ofa,
thenz0 is a pole ofG with multiplicity pd+(Γ −d), a pole ofF with multiplicity p. This contradicts (11) asH contains
at least one derivative. Therefore, we have

N(r,∞;F) = N(r,∞;G) = N(r,∞; f ) = S(r, f ). (12)

(11) also shows thatF andG share the value 1 CM. Next, we will proveD = 0. SupposeD 6= 0, then we have

1
F −1

=
D
(

G−1+ C
D

)

G−1
. (13)

So, we have

N

(

r,0;D

(

G−1+
C
D

))

= N

(

r,∞;
F −1
G−1

)

= S(r, f ). (14)

Subcase 1.1.If C
D 6= 1, then by using (12), (14) and the second fundamental theorem,we have

T(r,F)≤ N(r,∞;G)+N(r,0;G)+N

(

r,0;G−1+
C
D

)

+S(r,F)

≤ N(r,0;G)+S(r,F)≤ (1+o(1))T(r,G).

This gives that
T(r,G) = N(r,0;G)+S(r,F) = N1(r,0;G)+S(r,F).

So we have
T(r,H) = N(r,0;H)+S(r, f ) = N1(r,0;H)+S(r, f ).
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Let p= 1, then from assumption we have

Γ ≥ (k+2)d−2= (k+2)d− (p+1).

Thus from (5) in Lemma 2, we get

T(r,H) = N1(r,0;H)+S(r, f )≤ T(r,H)−dT(r, f )+N1+Γ−d(r,0; f d)+S(r, f ).

So we have
dT(r, f )≤ N1+Γ−d(r,0; f d)+S(r, f ).

This gives that
dT(r, f ) = N1+Γ−d(r,0; f d)+S(r, f ).

So we have
δ2+Γ−d(r,0; f d) = δ1+Γ−d(r,0; f d) = 0.

Since (12), we get
Θ(∞, f ) = 1. (15)

Subcase 1.2.k≥ 2. By using (2) and the definition of deficiency, we get a contradiction.

Subcase 1.3.k= 1. By using (3) and the definition of deficiency, we get a contradiction.

Subcase 1.4.k= 0. By using (4) and the definition of deficiency, we get a contradiction.

Subcase 1.5.If C
D = 1, then from (13), we have

1
F −1

≡C
G

G−1
.

This gives us that
(

F −1−
1
C

)

G≡−
1
C
.

Using thatF = f
a andG= H

a , we get

f −

(

a+
1
C

)

≡−
a2

C
·

1
H
. (16)

Using (12), (16), Lemma 1 and the first fundamental theorem, we get

(d+1)T(r, f ) = T

(

r,0; f d
(

f −

(

1+
1
C

)

a

))

+O(1)

= T

(

r,∞;−
CH
f da2

)

+O(1)

= N

(

r,∞;
H
f d

)

+S(r, f )

≤ dN(r,0; f )+S(r, f )

≤ (d+o(1))T(r, f ),

which is a contradiction, henceD = 0. This gives from (11) that

G−1
F −1

≡C.
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So we getH[ f ]−a
f−a =C(C 6= 0.) Next, we will proveC= 1 whenl = 0. SupposeC 6= 1, then we have

F ≡
1
C
(G−1+C)

and
N(r,0;F) = N(r,(1+C);G). (17)

By the second fundamental theorem and (12) (17), we have

T(r,G)≤ N(r,∞;G)+N(r,0;G)+N(r,(1+C);G)+S(r, f )

≤ N(r,0;G)+N(r,0;F)+S(r, f )

= N1(r,0;G)+N(r,0;F).

By Lemma 2 forp= 1, we have

dT(r, f ) ≤ N1+Γ−d(r,0; f d)+N(r,0; f )+S(r, f ).

From the above formula and the definition of deficiency, we have

dδ1+Γ−d(0, f d)+Θ(0, f )≤ 1. (18)

So we have
dδ2+Γ−d(0, f d)+ δ2(0, f )≤ 1, dδ1+Γ−d(0, f d)≤ 1. (19)

Combining (18) (19) (15) with the assumptions of Theorem 6, we get a contradiction. SoC = 1 and F ≡ G, i.e.
f ≡ H[ f ]. This is just the conclusion of this theorem.

Case 2.∆ 6≡ 0.

Subcase 2.1.k≥ 2. It follows from Lemma 3 that

T(r,G)≤ N2(r,∞;F)+N2(r,0;F)+N2(r,∞;G)+N2(r,0;G)+S(r,F)+S(r,G). (20)

Noting that

N2(r,0;G) = N2

(

r,0;
H
a

)

≤ N2(r,0;H)+S(r, f ).

Let p= 2, then from assumption we have

Γ ≥ (k+2)d−2> (k+2)d− (p+1).

Thus, from (5) in Lemma 2 we obtain that

T(r,H)≤ 4N(r,∞; f )+N2(r,0; f )+T(r,H)−dT(r, f )+N2+Γ−d(r,0; f d)+S(r, f ).

So we have
dT(r, f ) ≤ 4N(r,∞; f )+N2(r,0; f )+N2+Γ−d(r,0; f d)+S(r, f ).

This gives that
4Θ(∞, f )+ δ2(0, f )+dδ2+Γ−d(0, f d)≤ 5.

Which contradicts the assumption (2) of Theorem 6.

Subcase 2.2.k= 1. We know thatF, G share “(1,1)” , hence we have
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N(r,∞;H) ≤ N(r,∞;F)+N(r,1;F | ≥ 2)+N(r,0;F | ≥ 2)+N(r,0;G| ≥ 2)

+N0(r,0;F
′
)+N0(r,0;G

′
)+S(r, f ),

(21)

and
N(r,1;F |= 1)≤ N(r,0;H)+S(r, f )≤ N(r,∞;H)+S(r, f ), (22)

whereN0(r,0;F
′
) is the reduced counting function of those zeros ofF

′
which are not the zeros ofF(F−1), andN0(r,0;G

′
)

is similarly defined. By the second fundamental theorem, we see that

T(r,F)+T(r,G)≤ N(r,∞;F)+N(r,0;F)+N(r,∞;G)+N(r,0;G)

+N(r,1;F)+N(r,1;G)−N0(r,0;F
′
)

−N0(r,0;G
′
)+S(r,F)+S(r,G).

(23)

Using Lemmas (4)and (5), (21) and (22) we can get

N(r,1;F)+N(r,1;G)≤ N(r,1;F |= 1)+NL(r,1;F)+NL(r,1;G)+N
(2
E (r,1;F)+N(r,1;G)

≤ N(r,1;F |= 1)+N(r,1;G)−NL(r,1;F)−NL(r,1;G)+NF>2(r,1;G)

≤ N(r,0;F | ≥ 2)+N(r,0;G| ≥ 2)+N(r,∞;F)+N∗(r,1;F,G)+T(r,G)

−m(r,1;G)+O(1)+
1
2

N(r,∞;F)−NL(r,1;F)−NL(r,1;G)+
1
2

N(r,0;F)

+N0(r,0;F
′
)+N0(r,0;G

′
)+S(r,F)+S(r,G).

(24)

Combining (23) and (24), we can obtain

T(r,F)≤
7
2

N(r,∞;F)+N2(r,0;F)+N2(r,0;G)+
1
2

N(r,0;F)+S(r, f )

≤
7
2

N(r,∞;F)+
3
2

N2(r,0;F)+N2(r,0;G)+S(r, f ).

By the definition ofF, G and (6), we have

T(r, f )≤
7
2

N(r,∞;F)+
3
2

N2(r,0;F)+N2(r,0;H)+S(r, f )

≤
7
2

N(r,∞; f )+
3
2

N2(r,0; f )+ (Γ −d)N(r,∞; f )+N2+Γ−d(r,0; f d)+S(r, f ).

So
(

7
2
+Γ −d

)

Θ(∞, f )+
3
2

δ2(0, f )+dδ2+Γ−d(0, f d)≤ Γ +4,

which contradicts the assumption (3) of Theorem 6.

Subcase 2.3.k= 0. We know thatF, G share “(1,0)” , hence we have

N(r,∞;H) ≤ N(r,∞;F)+N(r,1;F | ≥ 2)+N(r,0;F | ≥ 2)+N(r,0;G| ≥ 2)

+NL(r,1;F)+NL(r,1;G)+N0(r,0;F
′
)+N0(r,0;G

′
)+S(r, f ),

(25)

and
N1)

E (r,1;F) = N1)
E (r,1;G)+S(r, f ), N(2

E (r,1;F) = N(2
E (r,1;G)+S(r, f ),

N1)
E (r,1;F)≤ N(r,∞;H)+S(r, f ). (26)

c© 2018 BISKA Bilisim Technology
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Using Lemmas 6-8 and (25) and (26), we get

N(r,1;F)+N(r,1;G)≤ NL(r,1;F)+NL(r,1;G)+N
(2
E (r,1;F)+N(r,1;G)

≤ N1)
E (r,1;F)+N(r,1;G)−NL(r,1;G)+NF>1(r,1;G)+NG>1(r,1;G)

≤ N(r,0;F | ≥ 2)+N(r,0;G| ≥ 2)+N(r,∞;F)+N∗(r,1;F,G)+T(r,G)

−m(r,1;G)+O(1)−NL(r,1;G)+NF>1(r,1;G)+NG>1(r,1;G)

+N0(r,0;F
′
)+N0(r,0;G

′
)+S(r,F)+S(r,G).

(27)

Combining (23) and (27) and by Lemma 2, we can obtain

T(r, f ) ≤ 6N(r,∞;F)+N2(r,0;F)+2N(r,0;F)+N2(r,0;G)+N(r,0;G)+S(r, f )

≤ (6+2Γ −2d)N(r,∞; f )++N2(r,0; f )+2N(r,0; f )+N2+Γ−d(r,0; f d)

+N1+Γ−d(r,0; f d)+S(r, f ).

So
(6+2Γ −2d)Θ(∞, f )+ δ2(0, f )+2Θ(0, f )+dδ1+Γ−d(0, f d)+dδ2+Γ−d(0, f d)≤ 2Γ +9,

which contradicts the assumption (4) of Theorem 6. Now the proof has been completed.
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