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Abstract: The purpose of this paper is to introduce the concept ofα(γ ,γ ′ )-open sets in topological spaces and study some of their
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1 Introduction

In 1965, Njastad [4] initiated and explored a new class of generalized open setsin a topological space calledα-open sets.

In 1979, S. Kasahara [3] defined the concept of an operation on topological spaces and introducedα-closed graphs of an

operation. H. Ogata [5] called the operationα asγ operation and introduced the notion ofγ-open sets. H. Z. Ibrahim [1]

introduced and discussed an operation of a topologyαO(X) into the power setP(X) of a spaceX and also he introduced

the concept ofαγ -open sets. In 1992, J. Umehara, H. Maki and T. Noir [6] defined and discussed the properties of(γ,γ ′
)-

open sets. A. B. Khalaf, S. Jafari and H. Z. Ibrahim [2] introduced the notion ofαO(X,τ)
[γ,γ ′ ], which is the collection of

all α
[γ,γ ′ ]-open sets in a topological space(X,τ). In this paper, the author introduce and study the notion ofαO(X,τ)

(γ,γ ′ )

which is the collection of allα
(γ,γ ′ )-open by using operationsγ andγ ′

on a topological spaceαO(X,τ).

2 Preliminaries

Throughout this paper,(X,τ) represent nonempty topological space on which no separation axioms are assumed, unless

otherwise mentioned. The closure and the interior of a subset A of X are denoted byCl(A) andInt(A), respectively. A

subsetA of a topological space(X,τ) is said to beα-open [4] if A ⊆ Int(Cl(Int(A))). The complement of anα-open

set is said to beα-closed. The intersection of allα-closed sets containingA is called theα-closure ofA and is denoted

by αCl(A). The family of allα-open (resp.α-closed) sets in a topological space(X,τ) is denoted byαO(X,τ) (resp.

αC(X,τ)). An operationγ [3] on a topologyτ is a mapping fromτ into power setP(X) of X such thatV ⊆Vγ for each

V ∈ τ, whereVγ denotes the value ofγ atV. An operationγ : αO(X,τ)→ P(X) [1] is a mapping satisfying the condition,

V ⊆ Vγ for eachV ∈ αO(X,τ). We call the mappingγ an operation onαO(X,τ). A subsetA of X is called anαγ -open

set [1] if for each pointx∈ A, there exists anα-open setU of X containingx such thatU γ ⊆ A. The complement of an

αγ -open set is calledαγ -closed. The set of allαγ -open sets ofX is denote byαO(X,τ)γ . The intersection of allαγ -closed

sets containingA is called theαγ -closure ofA and denoted byαγCl(A). A point x ∈ αClγ (A) iff U γ ∩A 6= φ for each

α-open setU containingx. An operationγ on αO(X,τ) is said to beα-regular [1] if for every α-open setsU andV

containingx∈ X, there exists anα-open setW containingx such thatWγ ⊆U γ ∩Vγ . A spaceX is said to beαγ -regular
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[2] if for eachx∈ X and for eachα-open setV in X containingx, there exists anα-open setU in X containingx such that

U γ ⊆ V. A subsetA of X is said to beα[γ,γ ′ ]-open [2] if for eachx∈ A, there existα-open setsU andV of X containing

x such thatU γ ∩Vγ ′ ⊆ A. A non-empty subsetA of X with an operationγ on τ is called(γ,γ ′
)-open [6] if for eachx∈ A,

there exist open setsU andV of X containingx such thatU γ ∪Vγ ′ ⊆ A.

3 α(γ ,γ ′)-Open Sets

In this section, we define and discuss the properties ofα
(γ,γ ′ )-open sets.

Definition 1. A subset A of(X,τ) is said to beα
(γ,γ ′ )-open if for each x∈ A, there existα-open sets U and V of X

containing x such that Uγ ∪Vγ ′ ⊆ A. The set of allα
(γ,γ ′ )-open sets of(X,τ) is denoted byαO(X,τ)

(γ,γ ′ ).

Proposition 1. If Ai is α
(γ,γ ′ )-open for every i∈ I, then∪{Ai : i ∈ I} is α

(γ,γ ′ )-open.

Proof.Let x∈ ∪i∈I Ai , thenx∈ Ai for somei ∈ I . SinceAi is anα
(γ,γ ′ )-open set, so there existα-open setsU andV of X

containingx such thatU γ ∪Vγ ′ ⊆ Ai ⊆ ∪i∈I Ai . Therefore,∪i∈I Ai is anα
(γ,γ ′ )-open set of(X,τ).

Remark.If A andB are twoα(γ,γ ′ )-open sets in(X,τ), then the following example shows thatA∩B need not beα(γ,γ ′ )-open.

Example 1. Let X = {1,2,3} andτ = {φ ,X,{2},{3},{1,2},{2,3}} be a topology onX. For eachA ∈ αO(X,τ), we

define two operationsγ andγ ′
, respectively, by

Aγ =

{

A∪,{2} if 3 ∈ A,

A, if 3 /∈ A,

and

Aγ ′ =

{

A, if A 6= {2},

X, if A= {2}.

Then, it is obvious that the sets{1,2} and{2,3} areα
(γ,γ ′ )-open, however their intersection{2} is notα

(γ,γ ′ )-open.

Remark.From the above example, we notice that the family of allα(γ,γ ′ )-open subsets of a spaceX is a supratopology and

need not be a topology in general.

In the following proposition, the intersection of twoα
(γ,γ ′ )-open sets is alsoα

(γ,γ ′ )-open, under a certain condition.

Proposition 2.Let γ andγ ′
beα-regular operations. If A and B areα

(γ,γ ′ )-open, then A∩B is α
(γ,γ ′ )-open.

Proof. Let x ∈ A∩B. Thenx ∈ A andx ∈ B. SinceA andB areα(γ,γ ′ )-open sets, there existα-open setsU , V, W andS

containingx such thatU γ ∪Vγ
′

⊆ A andWγ ∪Sγ
′

⊆ B. Sinceγ andγ ′
areα-regular operations, then there existα-open

setsK andL containingx such thatKγ ∪Lγ ′ ⊆ (U γ ∩Wγ)∪ (Vγ ′ ∩Sγ ′ ) ⊆ (U γ ∪Vγ ′ )∩ (Wγ ∪Sγ ′ ) ⊆ A∩B. This implies

thatA∩B is anα
(γ,γ ′ )-open set.

Remark.By the above propositon, ifγ andγ ′
areα-regular operations, thenαO(X,τ)

(γ,γ ′ ) forms a topology onX.

Proposition 3. The set A isα
(γ,γ ′ )-open in X if and only if for each x∈ A, there exists anα

(γ,γ ′ )-open set B such that

x∈ B⊆ A.

Proof.Obvious.
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Remark. A subset A is an α
(id,id′

)
-open set of(X,τ) if and only if A is α-open in (X,τ). The operation

id = id
′

: αO(X,τ) → P(X) is defined byV id = V for any setV ∈ αO(X,τ). This operation is called the identity

operation onαO(X,τ). ThereforeαO(X,τ)
(id,id′

)
= αO(X,τ).

Remark.[1] A subsetA is an αid-open set of(X,τ) if and only if A is α-open in (X,τ). Therefore, we have that

αO(X,τ)id = αO(X,τ).

Remark.From Remarks3 and3, we haveαO(X,τ)(id,id′
) = αO(X,τ) = αO(X,τ)id = αO(X,τ)id′ .

Remark.The following example shows that the concept ofα
(γ,γ ′ )-open and open are independent.

Example 2.Let X = {1,2,3} andτ = {φ ,X,{1}} be a topology onX. For eachA∈ αO(X,τ), we define two operations

γ andγ ′
, respectively, by

Aγ = Aγ
′

=











A, if A= {1,2},

X, if A 6= {1,2},

φ , if A= φ .

Then,α
(γ,γ ′ )-open sets areφ , X, and{1,2}.

Proposition 4.Let γ andγ ′
be operations onαO(X). If A is (γ,γ ′

)-open, then A isα
(γ,γ ′ )-open.

Proof.Obvious.

The converse of the above proposition need not be true in general as it is shown in the following example.

Example 3.Let X = {1,2,3} andτ = {φ ,X,{2}} be a topology onX. For eachA∈ αO(X,τ), we define two operations

γ andγ ′
, respectively, byAγ = Aγ ′ = A. Then,{1,2} is α

(γ,γ ′ )-open but not(γ,γ ′
)-open.

Proposition 5. If A is α
(γ,γ ′ )-open, then A isα

[γ,γ ′ ]-open.

Proof.Obvious.

The converse of the above proposition need not be true in general as it is shown in the following example.

Example 4.Let X = {1,2,3} andτ = {φ ,X,{1},{1,2},{1,3}} be a topology onX. For eachA ∈ αO(X,τ), we define

two operationsγ andγ ′
, respectively, by

Aγ =

{

A∪{1}, if 2 ∈ A,

A, if 2 /∈ A,

and

Aγ
′

=











X, if A 6= {1},

A, if A= {1},

φ , if A= φ .

Then,{1,3} is α
[γ,γ ′ ]-open but notα

(γ,γ ′ )-open.

Proposition 6. If A is α(γ,γ ′ )-open, then A isαγ -open for any operationγ ′
.

Proof.Obvious.

The converse of the above proposition need not be true in general as it is shown in the following example.
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Example 5.Let X = {1,2,3} andτ be a discrete topology onX. For eachA∈ αO(X,τ), we define two operationsγ and

γ ′
, respectively, by

Aγ =











A, if A= {3},

X, A 6= {3},

φ , if A= φ .

and

Aγ
′

=

{

X, if A 6= φ ,
φ , if A= φ .

Then,{3} is αγ -open but notα
(γ,γ ′ )-open.

Remark. Ais αγ -open if and only ifA is α(γ,id)-open.

Remark.[1] Everyαγ -open subset of a spaceX is α-open.

Remark.We have the following implications but none of this implications are reversible.

Definition 2. A topological space(X,τ) is said to beα
(γ,γ ′ )-regular if for each point x in X and everyα-open set U in X

containing x, there existα-open sets W and S in X containing x such that Wγ ∪Sγ ′ ⊆U.

Proposition 7.A topological space(X,τ) with operationsγ andγ ′
onαO(X,τ) is α

(γ,γ ′ )-regular if and only ifαO(X,τ) =
αO(X,τ)

(γ,γ ′ ).

Proof.Let (X,τ) beα
(γ,γ ′ )-regular andA∈αO(X,τ). Since(X,τ) is α

(γ,γ ′ )-regular, then for eachx∈A, there existα-open

setsW andS in X containingx such thatWγ ∪Sγ ′ ⊆ A. This implies thatA∈ αO(X,τ)
(γ,γ ′ ). But we haveαO(X,τ)

(γ,γ ′ ) ⊆

αO(X,τ). ThereforeαO(X,τ) = αO(X,τ)
(γ,γ ′ ).

Conversely, letαO(X,τ) = αO(X,τ)(γ,γ ′ ), x∈ X andV beα-open inX containingx. Then, by assumptionV is α(γ,γ ′ )-

open set. This implies that there existα-open setsW andS in X containingx such thatWγ ∪Sγ ′ ⊆V. Therefore,(X,τ) is

α
(γ,γ ′ )-regular.

Remark.If a spaceX is α
(γ,γ ′ )-regular, thenτ ⊆ αO(X,τ)

(γ,γ ′ ).

Remark.(X,τ) is α
(γ,γ ′ )-regular if and only if it is bothαγ -regular andαγ ′ -regular.

Definition 3. A subset F of(X,τ) is said to beα
(γ,γ ′ )-closed if its complement X\F is α

(γ,γ ′ )-open. We denote the set of

all α
(γ,γ ′ )-closed sets of(X,τ) byαC(X,τ)

(γ,γ ′ ).
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Definition 4. Let A be a subset of a topological space(X,τ). The intersection of allα
(γ,γ ′ )-closed sets containing A is

called theα(γ,γ ′ )-closure of A and denoted byα(γ,γ ′ )-Cl(A).

Proposition 8.For a point x∈ X, x∈ α
(γ,γ ′ )-Cl(A) if and only if V∩A 6= φ for everyα

(γ,γ ′ )-open set V containing x.

Proof.Obvious.

Proposition 9.Let A and B be subsets of(X,τ). Then the following hold:

(1) A⊆ α
(γ,γ ′ )-Cl(A).

(2) If A ⊆ B, thenα
(γ,γ ′ )-Cl(A)⊆ α

(γ,γ ′ )-Cl(B).

(3) A∈ αC(X,τ)
(γ,γ ′ ) if and only ifα

(γ,γ ′ )-Cl(A) = A.

(4) α(γ,γ ′ )-Cl(A) ∈ αC(X,τ)(γ,γ ′ ).
(5) α

(γ,γ ′ )-Cl(A∩B)⊆ α
(γ,γ ′ )-Cl(A)∩α

(γ,γ ′ )-Cl(B).

(6) If γ andγ ′
are α-regular, thenα

(γ,γ ′ )-Cl(A∪B) = α
(γ,γ ′ )-Cl(A)∪α

(γ,γ ′ )-Cl(B).

Proof.They are obvious.

Remark.From Remark3 and Definition3, the following hold for any subsetA of X.

(1) αC(X,τ)(γ,id) = {F : F is αγ -closed}.

(2) α(γ,id)-Cl(A) = αγCl(A).

Definition 5. For a subset A of(X,τ), we defineαCl
(γ,γ ′ )(A) as follows:αCl

(γ,γ ′ )(A) = {x∈ X : (U γ ∪Wγ ′)∩A 6= φ holds

for everyα-open sets U and W containing x}.

Proposition 10.For a subset A of(X,τ), we have

(1) A⊆ αCl(A)⊆ αClγ (A)⊆ αCl
(γ,γ ′ )(A)⊆ α

(γ,γ ′ )-Cl(A).

(2) αγCl(A)⊆ α
(γ,γ ′ )-Cl(A).

Proof.Obvious.

Theorem 1.Let A and B be subsets of a topological space(X,τ). Then, we have the following properties:

(1) A⊆ αCl
(γ,γ ′ )(A).

(2) αCl
(γ,γ ′ )(φ) = φ andαCl

(γ,γ ′ )(X) = X.

(3) A∈ αC(X,τ)
(γ,γ ′ ) if and only ifαCl

(γ,γ ′ )(A) = A.

(4) If A ⊆ B, thenαCl
(γ,γ ′ )(A)⊆ αCl

(γ,γ ′ )(B).

(5) If γ andγ ′
are α-regular, thenαCl

(γ,γ ′ )(A∪B) = αCl
(γ,γ ′ )(A)∪αCl

(γ,γ ′ )(B).

(6) αCl
(γ,γ ′ )(A∩B)⊆ αCl

(γ,γ ′ )(A)∩αCl
(γ,γ ′ )(B).

Proof. (1), (2) and (4) They are obtained from Definition5.

(3) SupposeA is α(γ,γ ′ )-closed, soX \A is α(γ,γ ′ )-open in(X,τ). We claim thatαCl(γ,γ ′ )(A) ⊆ A. Let x /∈ A. There exist

α-open setsU andV of (X,τ) containingx such thatU γ ∪Vγ ′ ⊆ X \A, that is,(U γ ∪Vγ ′)∩A= φ . Hence by Definition5,

we have thatx /∈ αCl
(γ,γ ′ )(A) and soαCl

(γ,γ ′ )(A)⊆ A. By (1), it is proved thatαCl
(γ,γ ′ )(A) = A.

Conversely, suppose thatαCl
(γ,γ ′ )(A)=A. Letx∈X\A. Sincex /∈αCl

(γ,γ ′ )(A), there existα-open setsU andV containing

x such that(U γ ∪Vγ ′)∩A= φ , that is,U γ ∪Vγ ′ ⊆ X \A. Therefore,A is α
(γ,γ ′ )-closed.

(5) Let x /∈ αCl
(γ,γ ′ )(A)∪ αCl

(γ,γ ′ )(B). Then, there existα-open setsU,V,W and S of (X,τ) containingx such that

(U γ ∪Vγ ′)∩A= φ and(Wγ ∪Sγ ′)∩B= φ . Sinceγ andγ ′
areα-regular, by definition ofα-regular, there existα-open

setsK andL of (X,τ) containingx such thatkγ ⊆U γ ∩Wγ andLγ
′

⊆Vγ
′

∩Sγ
′

. Thus, we have(kγ ∪Lγ
′

)∩(A∪B)⊆ ((U γ ∩
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Wγ )∪(Vγ
′

∩Sγ
′

))∩(A∪B)⊆ ((U γ ∪Vγ
′

)∩(Wγ ∪Sγ
′

))∩(A∪B) = [((U γ ∪Vγ
′

)∩(Wγ ∪Sγ
′

))∩A]∪ [((U γ ∪Vγ
′

)∩(Wγ ∪

Sγ
′

))∩B] = φ , that is,(kγ ∪Lγ
′

)∩ (A∪B) = φ . Hence,x /∈ αCl
(γ,γ ′ )(A∪B). This shows thatαCl

(γ,γ ′ )(A)∪αCl
(γ,γ ′ )(B)⊇

αCl
(γ,γ ′ )(A∪B).

(6) This obtained from (4).

Definition 6. Let A be a subset of a topological space(X,τ). The union of allα
(γ,γ ′ )-open sets contained in A is called

theα
(γ,γ ′ )-interior of A and is denoted byα

(γ,γ ′ )-Int(A).

Proposition 11.For any subsets A,B of X, we have the following:

(1) α
(γ,γ ′ )-Int(A) is anα

(γ,γ ′ )-open set in X.

(2) A is α
(γ,γ ′ )-open if and only if A= α

(γ,γ ′ )-Int(A).

(3) α
(γ,γ ′ )-Int(α

(γ,γ ′ )-Int(A)) = α
(γ,γ ′ )-Int(A).

(4) α
(γ,γ ′ )-Int(A)⊆ A.

(5) If A ⊆ B, thenα(γ,γ ′ )-Int(A)⊆ α(γ,γ ′ )-Int(B).

(6) α
(γ,γ ′ )-Int(A∪B)⊇ α

(γ,γ ′ )-Int(A)∪α
(γ,γ ′ )-Int(B).

(7) α
(γ,γ ′ )-Int(A∩B)⊆ α

(γ,γ ′ )-Int(A)∩α
(γ,γ ′ )-Int(B).

Proof.Obvious.

Proposition 12.Let A be any subset of a topological space(X,τ). Then, the following statements are true:

(1) X \α
(γ,γ ′ )-Int(A) = α

(γ,γ ′ )-Cl(X \A).

(2) X \α
(γ,γ ′ )-Cl(A) = α

(γ,γ ′ )-Int(X \A).

(3) α(γ,γ ′ )-Int(A) = X \α(γ,γ ′ )-Cl(X \A).

(4) α
(γ,γ ′ )-Cl(A) = X \α

(γ,γ ′ )-Int(X \A).

Proof.Obvious.

4 α(γ ,γ ′)-g.closed sets

In this section, we define and study some properties ofα
(γ,γ ′ )-g.closed sets.

Definition 7. A subset A of(X,τ) is said to be anα
(γ,γ ′ )- generalized closed (briefly,α

(γ,γ ′ )- g.closed) set, ifα
(γ,γ ′ )-

Cl(A)⊆U whenever A⊆U and U is anα
(γ,γ ′ )-open set in(X,τ).

Remark.It is clear that everyα
(γ,γ ′ )-closed set isα

(γ,γ ′ )-g.closed. But the converse is not true in general as it is shown in

the following example.

Example 6.Let X = {1,2,3} andτ = {φ ,{1},{2},{1,2},{1,3},X}. For eachA ∈ αO(X), we define two operationsγ
andγ ′

, respectively, by

Aγ = Aγ
′

=

{

A, if A∈ {φ ,{2}, {1,3}},

X, otherwise.

Now, if we let A = {1}, since the onlyα
(γ,γ ′ )-open supersets ofA are{1,3} andX, thenA is α

(γ,γ ′ )-g.closed. But, it is

easy to see thatA is notα(γ,γ ′ )-closed.

Proposition 13.If A is α(γ,γ ′ )-open andα(γ,γ ′ )-g.closed, then A isα(γ,γ ′ )-closed.

Proof.SinceA is α
(γ,γ ′ )-open andA⊆ A, we haveα

(γ,γ ′ )-Cl(A)⊆ A, alsoA⊆ α
(γ,γ ′ )-Cl(A), thereforeα

(γ,γ ′ )-Cl(A) = A.

That is,A is α
(γ,γ ′ )-closed.
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Proposition 14.The intersection of anα
(γ,γ ′ )-g.closed set and anα

(γ,γ ′ )-closed set is alwaysα
(γ,γ ′ )-g.closed.

Proof. Let A be anα
(γ,γ ′ )-g.closed set andF be anα

(γ,γ ′ )-closed set. Assume thatU is an α
(γ,γ ′ )-open set such that

A∩F ⊆ U . SetG = X \F. Then we haveA ⊆ U ∪G, sinceG is α
(γ,γ ′ )-open, thenU ∪G is α

(γ,γ ′ )-open and sinceA is

α(γ,γ ′ )-g.closed, thenα(γ,γ ′ )-Cl(A)⊆U ∪G. Now,α(γ,γ ′ )-Cl(A∩F)⊆ α(γ,γ ′ )-Cl(A)∩α(γ,γ ′ )-Cl(F) = α(γ,γ ′ )-Cl(A)∩F ⊆

(U ∪G)∩F = (U ∩F)∪φ ⊆U .

The intersection of twoα
(γ,γ ′ )-g.closed sets need not beα

(γ,γ ′ )-g.closed in general. It is shown by the following example.

Example 7.Let X = {1,2,3} andτ be a discrete topology onX. For eachA∈ αO(X), we define two operationsγ andγ ′
,

respectively, by

Aγ = Aγ ′ =

{

A, if A∈ {φ ,{1}},

X, otherwise.

SetA= {1,2} andB= {1,3}. Clearly,A andB areα
(γ,γ ′ )-g.closed sets, sinceX is their onlyα

(γ,γ ′ )-open superset. But,

C= {1}= A∩B is notα
(γ,γ ′ )-g.closed, sinceC⊆ {1} ∈ αO(X,τ)

(γ,γ ′ ) andα
(γ,γ ′ )-Cl(C) = X 6⊆ {1}.

Proposition 15.If γ anaγ ′
are α-regular operations onαO(X,τ). Then the finite union ofα

(γ,γ ′ )-g.closed sets is always

an α
(γ,γ ′ )-g.closed set.

Proof. Let A and B be two α
(γ,γ ′ )-g.closed sets, andA∪B ⊆ U , whereU is α

(γ,γ ′ )-open. SinceA and B are α
(γ,γ ′ )-

g.closed sets, we haveα
(γ,γ ′ )-Cl(A) ⊆ U andα

(γ,γ ′ )-Cl(B) ⊆ U and soα
(γ,γ ′ )-Cl(A)∪α

(γ,γ ′ )-Cl(B) ⊆ U . But, we have

α
(γ,γ ′ )-Cl(A)∪α

(γ,γ ′ )-Cl(B) = α
(γ,γ ′ )-Cl(A∪B) by Proposition9 (6). Therefore,α

(γ,γ ′ )-Cl(A∪B) ⊆U and soA∪B is an

α(γ,γ ′ )-g.closed set.

The union of twoα
(γ,γ ′ )-g.closed sets need not beα

(γ,γ ′ )-g.closed in general. It is shown by the following example.

Example 8.Let X = {1,2,3} andτ be a discrete topology onX. For eachA∈ αO(X), we define two operationsγ andγ ′
,

respectively, by

Aγ = Aγ ′ =

{

A, if A∈ {φ ,{1,2}, {1,3}, {2,3}},

X, otherwise,

Let A = {1} andB = {2}. HereA andB areα
(γ,γ ′ )-g.closed butA∪B = {1,2} is not α

(γ,γ ′ )-g.closed, since{1,2} is

α
(γ,γ ′ )-open andα

(γ,γ ′ )-Cl({1,2}) = X.

Proposition 16. If a subset A of(X,τ) is α
(γ,γ ′ )-g.closed and A⊆ B⊆ α

(γ,γ ′ )-Cl(A), then B is anα
(γ,γ ′ )-g.closed set in

(X,τ).

Proof. Let U be anα
(γ,γ ′ )-open set of(X,τ) such thatB ⊆ U . Since A isα

(γ,γ ′ )-g.closed, we haveα
(γ,γ ′ )-Cl(A) ⊆ U .

Now, by Proposition9 and assumptions, it is shown thatα
(γ,γ ′ )-Cl(A)⊆ α

(γ,γ ′ )-Cl(B)⊆ α
(γ,γ ′ )-Cl[α

(γ,γ ′ )-Cl(A)] =α
(γ,γ ′ )-

Cl(A)⊆U and soα
(γ,γ ′ )-Cl(B)⊆U . Therefore,B is anα

(γ,γ ′ )-g.closed set of(X,τ).

Proposition 17.For each x∈ X, {x} is α(γ,γ ′ )-closed or X\ {x} is α(γ,γ ′ )-g.closed in(X,τ).

Proof. Suppose that{x} is not α
(γ,γ ′ )-closed. Then,X \ {x} is not α

(γ,γ ′ )-open. LetU be anyα
(γ,γ ′ )-open set such that

X \ {x} ⊆U . Then, this impliesU = X and soα
(γ,γ ′ )-Cl(X \ {x})⊆U . Hence,X \ {x} is α

(γ,γ ′ )-g.closed.

Proposition 18.The following statements(1),(2) and(3) are equivalent for a subset A of(X,τ).

(1) A is α
(γ,γ ′ )-g.closed in(X,τ).

(2) α
(γ,γ ′ )-Cl({x})∩A 6= φ for every x∈ α

(γ,γ ′ )-Cl(A).

(3) α
(γ,γ ′ )-Cl(A)\A does not contain any non-emptyα

(γ,γ ′ )-closed set.
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Proof.(1)⇒ (2). Suppose that there exists a pointx∈α
(γ,γ ′ )-Cl(A) such thatα

(γ,γ ′ )-Cl({x})∩A= φ . Sinceα
(γ,γ ′ )-Cl({x})

is α(γ,γ ′ )-closed by Proposition9, X \α(γ,γ ′ )-Cl({x}) is anα(γ,γ ′ )-open set of(X,τ). SinceA⊆ X \ (α(γ,γ ′ )-Cl({x})) and

A is α
(γ,γ ′ )-g.closed, this impliesα

(γ,γ ′ )-Cl(A)⊆ X \α
(γ,γ ′ )-Cl({x}) and hencex /∈ α

(γ,γ ′ )-Cl(A). This is a contradiction.

Therefore, we conclude thatα
(γ,γ ′ )-Cl({x})∩A 6= φ holds for everyx∈ α

(γ,γ ′ )-Cl(A).

(2)⇒ (3). Suppose that there exists a non-emptyα
(γ,γ ′ )-closed setF such thatF ⊆α

(γ,γ ′ )-Cl(A)\A and soA∩F = φ . Let

y∈ F . Then,y∈ α
(γ,γ ′ )-Cl(A) andy /∈ A. By (2), it is obtained thatφ 6= α

(γ,γ ′ )-Cl({y})∩A⊆ α
(γ,γ ′ )-Cl(F)∩A= F ∩A

and soF ∩A 6= φ . This is a contradiction and so (3) is claimed.

(3)⇒ (1). Let A⊆ U , whereU is α
(γ,γ ′ )-open in(X,τ). If α

(γ,γ ′ )-Cl(A) is not contained inU , thenα
(γ,γ ′ )-Cl(A)∩ (X \

U) 6= φ . Now, sinceα
(γ,γ ′ )-Cl(A)∩ (X \U)⊆ α

(γ,γ ′ )-Cl(A) \A andα
(γ,γ ′ )-Cl(A)∩ (X \U) is a non-emptyα

(γ,γ ′ )-closed

set, we obtain a contradiction and thereforeA is α
(γ,γ ′ )-g.closed.

Proposition 19.If A is anα
(γ,γ ′ )-g.closed set of a space X, then the following are equivalent:

(1) A is α
(γ,γ ′ )-closed.

(2) α
(γ,γ ′ )-Cl(A)\A is α

(γ,γ ′ )-closed.

Proof.(1)⇒ (2). SinceA is α
(γ,γ ′ )-closed, thenα

(γ,γ ′ )-Cl(A) = A holds by Proposition9 (3) and soα
(γ,γ ′ )-Cl(A)\A= φ

and the setφ is α
(γ,γ ′ )-closed.

(2) ⇒ (1). SinceA is α
(γ,γ ′ )-g.closed,α

(γ,γ ′ )-Cl(A) \A does not contain any non-emptyα
(γ,γ ′ )-closed subset and so

α
(γ,γ ′ )-Cl(A)\A= φ . This shows thatA is α

(γ,γ ′ )-closed.

Proposition 20.For a space(X,τ), the following are equivalent:

(1) Every subset of X isα
(γ,γ ′ )-g.closed.

(2) αO(X,τ)
(γ,γ ′ ) = αC(X,τ)

(γ,γ ′ ).

Proof.(1)⇒ (2). LetU ∈ αO(X,τ)
(γ,γ ′ ). Then, by hypothesis,U is α

(γ,γ ′ )-g.closed which implies thatα
(γ,γ ′ )-Cl(U)⊆U ,

so,α
(γ,γ ′ )-Cl(U) =U . Thus, we haveU ∈ αC(X,τ)

(γ,γ ′ ); and soαO(X,τ)
(γ,γ ′ ) ⊆ αC(X,τ)

(γ,γ ′ ).

Conversely, letV ∈ αC(X,τ)
(γ,γ ′ ). Then,X \V ∈ αO(X,τ)

(γ,γ ′ ). By using the above techinque, it is shown thatV ∈

αO(X,τ)
(γ,γ ′ ); and soαC(X,τ)

(γ,γ ′ ) ⊆ αO(X,τ)
(γ,γ ′ ). Therefore, we have the proof of (2).

(2)⇒ (1). If A is a subset of a space(X,τ) such thatA⊆U whereU ∈ αO(X,τ)
(γ,γ ′ ), thenU ∈ αC(X,τ)

(γ,γ ′ ). Therefore

α
(γ,γ ′ )-Cl(A)⊆ α

(γ,γ ′ )-Cl(U) =U which shows thatA is α
(γ,γ ′ )-g.closed.

Definition 8. A subset A of X isα
(γ,γ ′ )- g.open if its complement X\A is α

(γ,γ ′ )-g.closed in(X,τ).

It is clear that everyα
(γ,γ ′ )-open set isα

(γ,γ ′ )-g.open, but the converse is not true in general as it is shownin the following

example.

Example 9.Consider Example6, if A= {2,3}, thenA is α
(γ,γ ′ )-g.open but notα

(γ,γ ′ )-open.

Corollary 1. A subset A of(X,τ) is α
(γ,γ ′ )-g.open if and only if F⊆ α

(γ,γ ′ )-Int(A) whenever F⊆ A and F isα
(γ,γ ′ )-closed

in (X,τ).

Proof.By Definition8 and Proposition12, the proof is obtained.

The union of twoα(γ,γ ′ )-g.open sets need not beα(γ,γ ′ )-g.open in general. It is shown by the following example.

Example 10.Consider Example7, if A= {2} andB= {3} thenA andB areα
(γ,γ ′ )-g.open sets inX, butA∪B= {2,3} is

not anα
(γ,γ ′ )-g.open set inX.

Corollary 2. Let γ andγ ′
be anα-regular operations onαO(X,τ), and let A and B be twoα

(γ,γ ′ )-g.open sets in a space

(X,τ). Then A∩B is alsoα
(γ,γ ′ )-g.open.
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Proof.By Definition8 and Proposition15, it is proved.

Corollary 3. Every singleton point set in a space(X,τ) is eitherα
(γ,γ ′ )-g.open orα

(γ,γ ′ )-closed.

Proof.By Definition8 and Proposition17, it is proved.

Corollary 4. If α
(γ,γ ′ )-Int(A)⊆ B⊆ A and A isα

(γ,γ ′ )-g.open, then B isα
(γ,γ ′ )-g.open.

Proof.By Definition8 and Propositions12and16, the proof is obtained.
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