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Abstract: In this paper, we investigate base conformal warped productmanifolds with generalized conjugate connections. We prove
that the generalized conjugate connection defined on a base conformal warped product manifold induces generalized conjugate
connections on the base and the fiber manifolds. Conversely generalized conjugate connections on the base and the fiber manifolds
induce a generalized conjugate connection defined on a base conformal warped product manifold. Also, we investigate base conformal
warped product manifolds with product conjugate connections and give some results.
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1 Introduction

A natural generalization of geometry of Levi-Civita connections from Riemannian manifolds theory gives geometry of

conjugate connections. Since conjugate connections arisefrom affine differential geometry and from geometric theoryof

statistical inferences, many studies have been carried outin the recent 20 years [7]. In that study, the authors have defined

the dual or conjugate connection as follows.

Let (M,g) a Riemannian manifold and∇ a affine connection onM. Affine connection∇′
is said to be dual or conjugate

of ∇ w.r.t. the metricg if,

X .g(Y,Z) = g(∇XY,Z)+ g(Y,∇
′

X Z) , ∀X ,Y,Z ∈ TM.

Given an affine connection∇ on a Riemannian manifold(M,g), there exists an unique affine connection dual of∇ w.r.t.

g, denoted by∇∗. Also, in [4], the geometry of product conjugate connections has been studied. Furthermore there are

many studies deal with this subject as [1], [3], [5]. On the other hand, base conformal warped product manifolds have

been studied in [11]. They have defined the concept of a base conformal warped product of two pseudo-Riemannian

manifolds in this study.

In the third section of the present paper, we study generalizations of conjugate connections on the base conformal

warped product manifolds. In the fourth section, we investigate product conjugate connections on the base conformal

warped product manifolds and give some results.

2 Preliminaries

In this section, let us recall some general notions about base conformal warped product manifolds by [11]. Also we

statement the notions generalized conjugate connection and product conjugate connection.
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Let (B,gB) and (F,gF) be m and k dimensional pseudo-Riemannian manifolds, respectively.Then M = B × F is an

(m+ k)-dimensional pseudo-Riemannian manifold withπ : B×F → B andσ : B×F → F the usual projection maps.

Throughout this paper we use the natural product coordinatesystem on the product manifoldB×F, namely. Let(p0,q0)

be a point inM and coordinate charts(U,x) and(V,y) on B andF , respectively such thatp0 ∈ B andq0 ∈ F. Then we

can define a coordinate chart(W,z) onM such thatW is an open subset inM contained inU ×V , (p0,q0) ∈W and for all

(p,q) in W , z(p,q) = (x(p),y(q)), wherex = (x1, ...,xm) andy = (ym+1, ...,ym+k). Clearly, the set of all(W,z) defines an

atlas onB×F. Here, for our convenience, we call thej-th component ofy asym+ j for all j ∈ {1, ...,k}.

Let ϕ : B → R ∈ C∞(B) then the lift ofϕ to B×F is ϕ̃ = ϕ ◦ π ∈ C∞(B× F), whereC∞(B) is the set of all smooth

real-valued functions onB. Moreover, one can define lifts of tangent vectors as: LetXp ∈ Tp(B) andq ∈ F then the lift

X̃(p,q) of Xp is the unique tangent vector inT (p,q)(B×q) such thatdπ(p,q)(X̃(p,q)) = Xp anddσ(p,q)(X̃(p,q)) = 0.

We will denote the set of all lifts of all tangent vectors ofB by L(p,q)(B). Similarly, we can define lifts of vector fields.

Let X ∈ χ(B) then the lift ofX to B×F is the vector fieldX̃ ∈ χ(B×F) whose value at each(p,q) is the lift of Xp to

(p,q). We will denote the set of all lifts of all vector fields ofB by L (B).

Let (B,gB) and (F,gF) be pseudo-Riemannian manifolds and also letw : B → (0,∞) and c : B → (0,∞) be smooth

functions. The base conformal warped product (briefly bcwp)is the product manifoldB×F furnished with the metric

tensorg = c2gB ⊕w2gF defined by

g = (c◦π)2π∗(gB)⊕ (w◦π)2σ∗(gF). (1)

We will denote this structure byB×(c;w) F . The functionw : B → (0,∞) is called the warping function and the function

c : B → (0,∞) is said to be the conformal factor. Ifc ≡ 1 andw is not identically 1, then we obtain a singly warped

product. If bothw ≡ 1 andc ≡ 1, then we have a product manifold. If neitherw nor c is constant, then we have a

nontrivial bcwp. If(B,gB) and(F,gF) are both Riemannian manifolds, thenB×(c;w) F is also a Riemannian manifold.

We call B ×(c;w) F as a Lorentzian base conformal warped product if(F,gF) is Riemannian and either(B,gB) is

Lorentzian or else(B,gB) is a one-dimensional manifold with a negative definite metric−dt2.

Also,letφ ∈C∞(B) andψ ∈C∞(B). Then

∇φ =
1
c2 ∇Bφ and ∇ψ =

1
w2 ∇F ψ .

On the other hand, thegeneralized conjugate connection ∇̄∗ of ∇ with respect tog by τ is defined by

Xg(Y,Z) = g(∇XY,Z)+ g(Y,∇∗
X Z)− τ(X)g(Y,Z), (2)

whereτ is a 1-form onM.

Suppose that∇ and ∇′
are affine connections on a semi-Riemannian(M,g). We say that∇ and ∇′

are projectively

equivalent if there exist a 1-formτ that

∇
′

XY = ∇XY + τ(Y )X + τ(X)Y. (3)

We say that∇ and∇′
aredual-projectively equivalent if there exist a 1-formτ that

∇
′

XY = ∇XY + g(X ,Y)τ♯, (4)
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where τ♯ is the metrical dual vector field, i.e.,g(X ,τ♯) = τ(X). Here, even if ∇ and ∇′
are projectively (or

dual-projectively) equivalent, their dual connections∇∗ and (∇′
)∗ may not be dual-projectively (or projectively)

equivalent, respectively [7].

Let M a smooth,n-dimensional manifold for which we denote [4]: C∞(M) the algebra of smooth real functions onM,

χ(M) the Lie algebra of vector fields onM, T r
s M) the C∞(M)-module of tensor fields of(r,s)- type onM. Usually

X,Y,Z,... will be vector fields onM and if T → M is a vector bundle overM, thenΓ (T ) denotes theC∞-module of

sections ofT [e.g.Γ (T M) = χ(M)]. Let C (M) be the set of linear connections onM. Since the difference of two linear

connections is a tensor field of(1,2)-type, it results thatC (M) is aC∞(M)-affine module associated to theC∞(M)-linear

moduleT 1
2 (M).

Now, letE an almost product structure onM, i.e. an endomorphism of the tangent bundle such thatE2 = Iχ(M). Then, for

the associated linear connections,∇ ∈ C (M) is anE-connection if E is covariant constant with respect to∇, namely

∇E = 0. LetCE(M) be the set of these connections. In order to find the above set,let us consider after the maps

ψE : CE(M)→ CE(M), ψE(∇) =
1
2
(∇+E ◦∇◦E)χE : T 1

2 (M)→ T 1
2 (M), χE(τ) =

1
2
(τ +E ◦ τ ◦E).

Then,ψE is aC∞(M)-projector onC (M) associated to theC∞(M)-linear projectorχE :

ψ2
E = ψE , χ2

E = χE , ψE(∇+ τ) = ψE(∇)+ χE(τ).

So, we have

ψE(∇) =
1
2
[(∇XY +E(∇X EY )]χE(τ)(X ,Y ) =

1
2
[τ(X ,Y )+E(τ(X ,EY ))].

It follows that∇E = 0 meansE(∇) = ∇ which gives thatCE(M) = ImψE . This determines completelyCE(M). Let ∇0

arbitrary inC (M) and∇ in CE(M). So,∇ = E(∇′
) with ∇′

= ∇0+τ . In conclusion,∇ = E(∇0)+χE(τ); in other words,

CE(M) is the affine submodule ofC (M) passing through theE-connectionE(∇0) and having the direction given by the

linear submoduleImχE of T 1
2 (M). Let us remark a decomposition (of arithmetic mean type) of it:

ψE(∇) =
1
2
(∇+CE(∇)

with the conjugation map CE : C (M)→ C (M):

CE(∇)X = E ◦∇X ◦E.

Thenthe product conjugate connection CE(∇) measures how far the connection∇ is from being anE-connection andCE

is the affine symmetry of the affine moduleC (M) with respect to the affine submoduleCE(M), made parallel with the

linear submodule kerχE .

For simplification we will denote by a superscriptE the product conjugate connection of∇

∇(E) =CE(∇) = ∇+E ◦∇E

and then

∇(E)
X Y = ∇XY +E(∇X EY −E(∇XY )) = E(∇X EY ). (5)
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On the other hand, a more general notion like restricting to adistribution is that of geodesically invariance: the distribution

D is ∇-geodesically invariant if for every geodesicγ : [a,b]→ M of ∇ with γ̇(a) ∈ Dγ(a) it follows γ̇(t) ∈ Dγ(t) for any

t ∈ [a,b]. As a necessary and sufficient condition for a distributionD to be ∇-geodesically invariant: for anyX and

Y ∈ Γ (D), the symmetric product< X ,Y >:= ∇XY +∇Y X to belong toΓ (D) or equivalently, for anyX ∈ Γ (D) to have

∇X X ∈ Γ (D).

3 Base conformal warped product manifolds with generalized conjugate connections

In this section, we investigate base conformal warped product manifolds with generalized conjugate connections.

Let (M,g) be a semi-Riemannian manifold, and∇ an affine connection onM. We can define another affine connection

∇∗ by

Xg(Y,Z) = g(∇XY,Z)+ g(Y,∇∗
XZ). (6)

Then the triple of a semi-Riemannian metric and a pair of conjugate connection(g,∇,∇∗) satisfying (6) is called a

dualistic structure on M [6]. Many authors have studied such structures (see [6], [8], [10]).

Let (g,∇,∇∗) be a dualistic structure onB × F . For X̄ ,Ȳ , Z̄ ∈ χ(B), X ,Y ∈ LH (B) and Ū ,V̄ ,W̄ ∈ χ(F),

U,V ∈ LV (F ), we get

π∗(∇XY ) =B ∇X̄Ȳ and π∗(∇∗
XY ) =B ∇∗

X̄Ȳσ∗(∇UV ) =F ∇ŪV̄ and σ∗(∇∗
UV ) =F ∇∗

ŪV̄ .

Also, we take [9]:

X̄g(Ȳ , Z̄)◦π = Xg(Y,Z) and Ūg(V̄ ,W̄ )◦σ =Ug(V,W ).

Since∇ and∇∗ are affine connections onB×F andπ andσ are the projections ofB×F onB andF respectively,B∇ and
B∇∗ are affine connections onB andF∇ andF ∇∗ are affine connections onF. Then we can give results for bcwp-manifold

at the following proposition :

Proposition 1. Let (M = B×(c,w) F,g) be a base conformal warped product manifold. Then the triple(gB,
B ∇,B ∇∗) is a

dualistic structure onB and the triple(gF ,
F ∇,F ∇∗) is a dualistic structure onF .

Proof. The proof is obvious by [6].

Proposition 2. Let (M = B ×(c,w) F,g) be a base conformal warped product manifold. Then the triple(g,∇,∇∗) is a

dualistic structure onM.

Proof. The proof is obvious by [6].

Now, we can give a main result at following:

Proposition 3. Let (M = B×(c,w) F,g) be a base conformal warped product manifold. If∇̄∗ is a generalized conjugate

connection of a affine connection∇ onM, thenB∇̄∗ andF ∇̄∗ are generalized conjugate connections of affine connections
B∇̄ onB andF∇̄ on F , respectively.

Proof. Let X̄ ,Ȳ , Z̄ ∈ χ(B) andX ,Y,Z ∈ LH (B) be their corresponding horizontal lifts respectively. Then we obtain

X̄gB(Ȳ , Z̄)◦π = (c◦π)−2Xg(Y,Z)

= (c◦π)−2[g(∇XY,Z)+ g(Y, ∇̄∗
X Z)− τ(X)g(Y,Z)]

= (c◦π)−2[(c◦π)2gB(π∗(∇XY ),π∗(Z))◦π +(c◦π)2gB(π∗(Y ),π∗(∇̄∗
X Z))◦π

− (c◦π)2τ(π∗(X))gB(π∗(Y ),π∗(Z))◦π ]. (7)
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Then, from (7), we have

X̄gB(Ȳ , Z̄) = gB(
B∇X̄Ȳ , Z̄)+ gB(Ȳ ,

B ∇̄∗
X̄ Z̄)− τ(X̄)gB(Ȳ , Z̄).

Therefore,B∇̄∗ is generalized conjugate connection of affine connectionB∇̄ with respect togB. Similarly, letŪ ,V̄ ,W̄ ∈

χ(F) andU,V,W ∈ LV (F) be their corresponding horizontal lifts respectively. Then we obtain,

ŪgF(V̄ ,W̄ )◦σ = (w◦π)−2Ug(V,W)

= (w◦π)−2[g(∇UV,W)+ g(V, ∇̄∗
UW )− τ(U)g(V,W)]

= (w◦π)−2[(w◦π)2gF(σ∗(∇UV ),σ∗(W ))◦σ +(w◦π)2gF(σ∗(V ),σ∗(∇̄∗
UW ))◦σ

− (w◦π)2τ(σ∗(U))gF(σ∗(V ),σ∗(W ))◦σ ]. (8)

Hence, from (8), we have

ŪgF(V̄ ,W̄ ) = gF(
F ∇ŪV̄ ,W̄ )+ gF(V̄ ,F ∇̄∗

ŪW̄ )− τ(Ū)gF(V̄ ,W̄ ).

Then,F ∇̄∗ is generalized conjugate connection of affine connectionF ∇̄ with respect togF .

Proposition 4. Let (M = B×(c,w) F,g) be a base conformal warped product manifold. IfB∇̄∗ andF ∇̄∗ are generalized

conjugate connections of affine connectionsB∇̄ on B and F∇̄ on F , respectively. Then̄∇∗ is a generalized conjugate

connection of a affine connection∇ on M.

Proof. Let X̄ ,Ȳ , Z̄ ∈ χ(B) andX ,Y,Z ∈ LH (B) be their corresponding horizontal lifts respectively. Then we obtain

Xg(Y,Z) = c2X̄gB(Ȳ , Z̄)◦π

= c2[gB(
B∇X̄Ȳ , Z̄)+ gB(Ȳ ,

B ∇̄∗
X̄ Z̄)− τ(X̄)gB(Ȳ , Z̄)]◦π

= c2[gB(π∗(∇XY ),π∗(Z))◦π + gB(π∗(Y ),π∗(∇̄∗
X Z))◦π

− τ(π∗(X))gB(π∗(Y ),π∗(Z))◦π ]

= g(∇XY,Z)+ g(Y, ∇̄∗
XZ)− τ(X)g(Y,Z). (9)

On the other hand, let̄U ,V̄ ,W̄ ∈ χ(F) andU,V,W ∈LV (F) be their corresponding horizontal lifts respectively. Then we

obtain,

Ug(V,W) = w2ŪgF(V̄ ,W̄ )◦σ

= w2[gF(
F ∇ŪV̄ ,W̄ )+ gF(V̄ ,F ∇̄∗

ŪW̄ )− τ(Ū)g(V̄ ,W̄ )]◦σ

= w2[gF(σ∗(∇UV ),σ∗(W ))◦σ + gF(σ∗(V ),σ∗(∇̄∗
UW ))◦σ

− τ(σ∗(U))gF(σ∗(V ),σ∗(W ))◦σ ]

= g(∇UV,W )+ g(V, ∇̄∗
UW )− τ(U)g(V,W). (10)

Terefore, the proof is complete.

Theorem 1. Let (M = B×(c,w) F,g) be a base conformal warped product manifold,∇ an affine connection onM and∇∗

the standard conjuge connection of∇ with respect tog. Assume that an affine connection∇′
is projectively equivalent to

∇ by τ. Then the generalized conjugate connection∇̄′∗ of ∇′
by τ is dual-projectively equivalent to∇∗ by τ with respect

to g.

Proof. Let ∇′
be an affine connection onM, for X ,Y,Z ∈ χ(M), from (2), we have

Xg(Y,Z) = g(∇
′

XY,Z)+ g(Y, ∇̄′∗

X Z)− τ(X)g(Y,Z).
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Here using (3), we obtain

Xg(Y,Z) = g(∇XY,Z)+ g(Y, ∇̄′∗

X Z)+ τ(Y )g(X ,Z).

Using (6) in the last equation, we have

g(Y, ∇̄′∗

X Z) = g(Y,∇∗
X Z)+ τ(Y )g(X ,Z). (11)

Then, for allY ∈ χ(M), the proof is complete.

Corollary 1. Let (M = B×(c,w) F,g) be a base conformal warped product manifold,∇ an affine connection onM and∇∗

the standard conjuge connection of∇ with respect tog. Assume that an affine connection∇′
is projectively equivalent to

∇ by τ. If the generalized conjugate connection̄∇′∗ of ∇′
by τ is dual-projectively equivalent to∇∗ by τ with respect to

g, then the generalized conjugate connectionsB∇̄′∗ of B∇′
andF ∇̄′∗ of F ∇′

are dual-projectively equivalent toB∇̄∗ on B

andF∇̄∗ on F , respectively.

Proof. ForX ,Y,Z ∈ χ(M), from (11), we obtain

(c◦π)2gB(π∗(Y ),π∗(∇̄′∗

X Z))◦π = (c◦π)2gB(π∗(Y ),π∗(∇∗
X Z))◦π

+ τ(π∗(Y ))(c◦π)2gB(π∗(X),π∗(Z))◦π .

Hence, forX̄ ,Ȳ , Z̄ ∈ χ(B), we have

gB(Ȳ , ∇̄′∗

X̄ Z̄) = gB(Ȳ ,∇∗
X̄ Z̄)+ τ(Ȳ )gB(X̄ , Z̄).

Then, for allȲ , we obtain∇̄′∗

X̄ Z̄ = ∇∗
X̄ Z̄ + gB(X̄ , Z̄)ρ , whereρ is a metrical dual vector field onM. Besides, we can give

a similar result for the fiber manifolds on the base conformalwarped product manifold as above. Therefore, the proof is

complete.

4 Base conformal warped product manifolds with product conjugate connections

In this section, we investigate base conformal warped product with product conjugate connections and give some results.

Let (M,g) be an paracompact and differentiability semi-Riemannian manifold andD be a distribution onM. If D
′

is a

complementary distribution toD in TM, thenT M has the decomposition

T M = D⊕D
′
.

Now, denote byh andv the projection morphisms ofT M on D andD
′
respectively. Then we have

h2 = h, v2 = v, hv = vh = 0, h+ v = I (12)

whereI is the identity morphism onT M. Now, we define the tensor fieldE of type(1,1) by

E = h− v. (13)

It follows that E is analmost product structure on M, that is,E satisfiesE2 = I. For this reason we call(M,D,D
′
) an

almost product manifold. Next, from (12) and (13), we deduce that

h =
1
2
(I+E) and v =

1
2
(I−E). (14)
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We say thatE is parallel with respect to a linear connection∇ on M if its covariant derivative with respect to∇ vanishes,

i.e., for∀X ,Y ∈ Γ (T M), we have

(∇X E)Y = ∇X EY −E(∇XY ) = 0. (15)

On the other than, letD be ann-distribution on an(n+ p)- dimensional manifoldM. A linear connection∇ on M is said

to be adapted toD if

∇XU ∈ Γ (D), (16)

where∀X ∈ Γ (T M),U ∈ Γ (D) [2].

Now, we can give the relation between the product conjugate connection of base conformal warped product and the

affine connections of its base and fiber manifolds by following proposition:

Proposition 5.Let (M = B×(c,w) F,g) be a base conformal warped product manifold with an almost product structureE

and let∇, B∇ andF ∇ be affine connections onM, B andF respectively, then we have

(i) ∇(E)
X̄

Ȳ = h(B∇X̄ hȲ ),

(ii) ∇(E)
Ū V̄ = v(F ∇Ū vV̄ ),

whereX̄ ,Ȳ ∈ χ(B), Ū ,V̄ ∈ χ(F) andE = h− v is an almost product structure onM.

Proof.Suppose that(M = B×(c,w) F,g) is a base conformal warped product manifold with an almost product structureE

and∇(E) is a product conjugate connection of∇.

Case (1): For X̄ ,Ȳ , Z̄ ∈ χ(B) andX ,Y,Z ∈ LH (B), we have

gB(∇
(E)
X̄

Ȳ , Z̄)◦π = (c◦π)−2g(∇(E)
X Y,Z)

= (c◦π)−2g(E(∇(E)
X EY ),Z)

= gB(π∗(E(∇
(E)
X EY )),π∗(Z))◦π .

Here, usingE = h− v, we obtain∇(E)
X̄

Ȳ = h(B∇X̄ hȲ ).

Case (2): ForŪ ,V̄ ,W̄ ∈ χ(F) andU,V,W ∈ LV (F), we have

gF(∇
(E)
Ū

V̄ ,W̄ )◦σ = (w◦π)−2g(∇(E)
U V,W )

= (w◦π)−2g(E(∇(E)
U EV ),W )

= gF(σ∗(E(∇
(E)
U EV )),σ∗(W ))◦σ .

UsingE = h− v in the above equation, we obtain∇(E)
Ū

V̄ = v(F ∇Ū vV̄ ). Therefore, the proof is complete.

Then we can give the product conjugate connection∇(E) as follows, if the affine connection∇ is a Levi-Civita connection.

Lemma 1. Let (M = B×(c,w) F,g) be a base conformal warped product manifold with an almost product structureE and

∇(E) be a product conjugate connection of a affine connection∇ on M. For X ,Y ∈ Γ (T B) andU,V ∈ Γ (T F), if ∇ is a

Levi-Civita connection, then we have

(i) ∇(E)
X Y = h(B∇X hY )+ X(c)

c hY + Y (c)
c hX − gB(X ,hY)

c h(B∇c),

(ii) ∇(E)
U X =− hX(w)

w vU ,
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(iii) ∇(E)
U V = v(F ∇U vV )− w

c2 gF(U,vV )v(B∇w),

whereB∇ andF ∇ are Levi-Civita connections ofB andF, respectively.

Proof. Since∇ is affine connection we have∇(E)
X Y = E(∇X EY ) and E = h − v. In particular, if ∇ is a Levi-Civita

connection, then case (1)-(3) are hold.

Theorem 2. Let (M = B×(c,w) F,g) be a base conformal warped product manifold with an almost product structureE and

∇(E) be a product conjugate connection of a affine connection∇ on M. If ∇(E) is torsion-free, then the distributionsDh

andDv of B andF, respectively are involutive distributions.

Proof. ForX ,Y ∈ Γ (T M), we have

E[X ,Y ] = h[X ,Y ]− v[X ,Y ] = ∇(E)
X Y −∇(E)

Y X . (17)

On the other hand, the product conjugate connection of∇ is

∇(E)
X Y = h(∇X hY −∇X vY )− v(∇X hY −∇X vY ). (18)

Thus, using (18) in (17), we obtainh[X ,Y ] = h(∇X hY )−h(∇X vY ) andv[X ,Y ] = v(∇Y vX)−v(∇X vY ). In the first equation,

takingX → vX andY → vY , we haveh[vX ,vY ] = 0 and in the second equation, takingX → hX andY → hY , we have

v[hX ,hY ] = 0. Then, the proof is complete.

Theorem 3. Let (M = B×(c,w) F,g) be a base conformal warped product manifold with an almost product structureE and

∇(E) be a product conjugate connection of a affine connection∇ on M. If ∇ adapted toB andF , also projectionsh andv

are parallel with respect to affine connectionsB∇ andF ∇ respectively, thenE is parallel with respect to product conjugate

connection∇(E).

Proof. ForX ,Y ∈ Γ (T M), we have

(∇(E)
X E)Y = ∇(E)

X EY −E(∇(E)
X Y ). (19)

Hence, using∇(E)
X EY = E(∇XY ) andE(∇(E)

X Y ) =∇X EY (see [4]) in (19), we obtain(∇(E)
X E)Y =−(∇X E)Y . Here, taking

E = h− v and using∇ adapted toB andF, we have(∇(E)
X E)Y = (F ∇X v)Y − (B∇X h)Y . Then, the proof is complete.

Proposition 6. Let (M = B×(c,w) F,g) be a base conformal warped product manifold with an almost product structure

E and ∇(E) be a product conjugate connection of a affine connection∇ on M. Suppose thatM̄ is a submanifold of

M = B×(c,w) F . If M̄ is invariant (E-invariant) and∇ adapted toM̄, then∇(E) also adapted tōM.

Proof. Suppose thatM̄ is an invariant submanifold ofM then, forX ∈ Γ (T M̄), we haveEX ∈ Γ (T M̄). Also, since the

affine connection∇ adapted toM̄, for anyY ∈ Γ (T M), ∇Y X ∈ Γ (T M̄). Thus, from the definition of product conjugate

connection∇(E), we have∇(E)
Y X = E(∇Y EX) ∈ Γ (T M̄). Therefore, the proof is complete.

Corollary 2. Let (M = B×(c,w) F,g) be a base conformal warped product manifold with an almost product structureE

and∇(E) be a product conjugate connection of a affine connection∇ on M. If M̄ ⊂ M is invariant and∇ adapted toM̄,

thenM̄ is ∇-geodesically invariant for∇(E).

Proof. The proof is obvious from the definition of∇-geodesically invariant.
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