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Abstract: We investigate semi-orthogonal wavelet frames on poshiadéline and provide a characterization of frame wavelsts
means of some basic equations in the frequency domain.
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1 Introduction

The concept of frames in a Hilbert space was originally idtrwed by Duffin and Schaeffer [7] in the context of
non-harmonic Fourier series. In signal processing, thixcept has become very useful in analyzing the completeness
and stability of linear discrete signal representationsantes did not seem to generate much interest until the
ground-breaking work of Daubechies et al. [6]. They combitiee theory of continuous wavelet transforms with the
theory of frames to introduce wavelet (affine) frameslf&(R). Since then the theory of frames began to be more widely
investigated, and now it is found to be useful in signal pssa&y, image processing, harmonic analysis, samplingyheo
data transmission with erasures, quantum computing anicmedRecently, more applications of the theory of frames
are found in diverse areas including optics, filter bankgnali detection and in the study of Bosev spaces and Banach
spaces. We refer [5] for an introduction to frame theory asa@pplications.

In recent years, wavelets have been generalized in margreliff settings, for example locally compact abelian group,
abstract Hilbert spaces, locally compact Cantor dyadiagyr®ilenkin group, local fields and positive half-line. lImg
paper our interest is in positive half-line. Farkov [8] hageg general construction of compactly supported orthagon
p-wavelets inL?(R*). An algorithm for biorthogonal wavelets related to Walshdtions on positive half line was given
in [9]. Dyadic wavelet frames on the positive half-line R+reeonstructed by Shah and Debnath in [15] using Walsh
Fourier transforms. They have established necessary anfficient conditions for the system
{Wjk(x) = 212Y(2Ixok),j € Z,k € Z*} to be a frame foL2(R*). Wavelet frame packets related to the Walsh
polynomials were deeply investigated by Shah and Debnaftiéh A constructive procedure for constructing tight
wavelet frames on positive half-line using extension pplas was recently considered by Shah in [17], in which he has
pointed out a method for constructing affine framek3(R*). Moreover, the author has established sufficient condition
for a finite number of functions to form a tight affine frames E6(R*). Abdullah [1] has given characterization of
nonuniform wavelet sets on positive half-line and Chamdzdéion of wavelets on positive half line by means of two
basic equations in the Fourier domain was established in [2]
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In this paper, we extend the notion of wavelet frames to semhiegonal wavelet frames on positive half-line using the
Walsh Fourier transform. This paper is organized as folldwsSsec. 2, we present a brief review of generalized Walsh
functions and polynomials, the Walsh Fourier transform BMRA in L>(R™). A characterization of semi-orthogonal
wavelet frames on positive half-line is given in Section 3.

2 Notations and preliminaries

Let p be a fixed natural number greater than 1. As usuaRfet= [0,») andZ* = {0,1,...}. Denote by{x] the integer
part ofx. Forx € R and for any positive integgr, we set

xj = [pP'¥](modp), x_j = [p'~'x](modp), 1)
wherex;, x_; € {0,1,...,p—1}.
Consider the addition defined @™ as follows
X@y:jzofjp"’“rgofjp" )
with
&j=Xj+yj(modp), j e Z\{0}, (3)

whereéj € {0,1,2,...,p— 1} andx;, y; are calculated by (1). Moreover, we write= Xxo yif zgy=X.
Forx e [0,1), letrp(x) be given by

1,xe{o,%),

ro(x) = 4
gFJJa Xe I:jpila(j +1)pil)7 J = 1727"'5 p— 17

whereg, = exp 2_;)11 . The extension of the functian to R* is defined by the equalitsy(x+ 1) = ro(x), x € R*. Then
the generalized Walsh functiokigom(X) }mez+ are defined by
k .-
wo(X) =1, wm(x) = I_L(fo (P%))™,
=
wherem=3*¥_oup), pj €{0,1,2,....p—1}, p # 0. Forx, w € R, let
2m 2
X(Xaw):exp ?Z(XJQ)*J+X*J(‘)J) s (5)
=1

wherex; andwj are calculated by (1). We observe that

m X X ~
X(X,W) :)(<W,m) :wm(pnl) vxe [0, p" 1), mezt.
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The Walsh Fourier transform of a functidne L(R*) is defined by

flw) = [ | fooxBa)dx (6)
wherex (x, w) is given by (5). Iff € L>(R*) and
ra
hi(@) = [ 10X w)dx (a<0), ™)
thenf is defined as limit 08, f in L2(R*) asa — .
The properties of Walsh Fourier transform are quite sintitethe classical Fourier transform. It is known that systems
{x(a,)}2_, and{x(.,a)}%_, are orthonormal bases I?(0,1). Let us denote by w} the fractional part otw. For

| € Z*, we havex (I, w) = x (I, {w}).

If x,y, € RT andx@yis p-adic irrational, then

X(X@y,w) = X (X, w)X (¥, w), X(XOY,w)= X (X w)X(y,w). (8)
For givenW = {2, ..., ¢t} C L?(RY), define the wavelet system
X(W)Z{l,ll|’j,k11§|SL,jEZ,kEZJr} (9)

wherey j «(x) = p//2yi (p'x© k). The wavelet syster (W) is called a wavelet frame if there exist positive numbrs
andB with 0 < A < B < « such that

L
Alfl3 < (F,un x| <BJIf]13 (10)
? I;ngkezZﬁ‘ %) ?

for all f € L2(R*). The largest and the smallesB for which (10) holds are called frame bounds. A frame is attigh
frame if A andB are chosen so th&t= B and is a normalized tight frameA=B = 1.

The collectionX(¥) is said to be a semi-orthogonal wavelet frame if
(kW k) =0 whenevei # jandk,K € Z*, 1<I <L.

The characterization of wavelet frames on positive halé-lhas been studied in detail by Abdullah [2].

Theorem 1.Suppos#&’ = {Y*, 2, ..., -} C L2(R™). The affine system(¥) is a tight frame with constant 1 foP(R*),
ie.,

L
3= S Y [<fwju>[? forallfel?(R")
I=1]eZkeZt

if and only if

|G (p'€)[2=1 fora.e.& eRT, (11)
JEZ

M-
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and
L o
Z ZOLI/|(ij)¢|(pJ(E ®©s))=0 fora.e.£ cR" andforallsc Z"\pzZ*. (12)
==

In particular, ¥ is a set of basic wavelets of (R*) if and only if|¢'||, = 1 for | = 1,2,...,L and (11) and (12) hold.

Definition 1. The collection{¢y (.6 k) : 1 <1 <L,k € Z*} forms a wavelet frame for yWf and only if there exist positive
numbers A and B such that

A< Y [B(EeKIP<B aefes, (13)

kez*

whereB = maxB;, A=minA andS = {& €[0,1] : ¢y (& ©k) # 0}.

3 Semi-orthogonal wavelet frames on positive half-line

In this section, we characterize semi-orthogonal wavekanés on positive half-line by virtue of the Walsh-Fourier
transform. Our results generalize the characterizatiomavkelets on Euclidean spaces by means of two basic equations

Foreach =1,2,...,L, we define

n &) .
@*(E):{m if £ g,

0 otherwise

where§ = {& € [0,1] : §(¢ ©k) # 0}. Then, the systenX(¥*) obtained by the combined action of dilation and
translation of a finite number of functiong® = {5, @5,..., ¢ }  L3(R*) is given by

X(W) ={yj:1<I<L,j €EZ,keZ"}. (14)

Theorem 2.Let X(¥) and X(¥*) be as defined in (9) and (14), respectively. Then the follgsiatements are equivalent:

(a) X(¥) is a semi-orthogonal wavelet frame with frame bounds A and B.
(b) Foreachl=1,2,...,L, there exist positive constantssAminA; and B= minB; such that inequality (13) holds and

L
Z Z |@ (p =1 fora.e.& eR™, (15)
and
i ilpﬁ(pjf)ﬁlﬁ(pj(f ®s))=0 fora.e.£ € R" and forallsc Z*\pZ™. (16)
=Y

(c) There exist positive numbers A and B such that functings,, ..., Yy satisfy conditions (13), (16) and
L

> > hEekdi(p(Eek)=0 fora.efcR"j>1, 17)

I=1keZ+

L
A< I5)*<B fora. el cR™. 18
l;jgz\llll(p )| ora.e (18)
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Proof. For eachj € Z, we define
=spa{yjk:1<I <L, keZ"}

and
W =spa{ g : 1<I <L, keZ"}.

(a)=(b): Suppose that the affine systett¥) given by (9) is a semi-orthogonal wavelet frame ES(R ™) with bounds
AandB, i.e.

A||f|\2<z S > | Wik)|? <B|f|?, forall f € LARY).
I=1jeZkeZt

By the scaling property diV; spaces,we have

L
;gzkez%‘“"”“k Z |(f o]

-

, forall f e W.

Therefore, we have
L
2
AlIfII? < > 2 [(f,wn0k)|” <B|If|? forall f W,
=1kezZ+t
which is equivalent to (13).
Since the/;" are orthogonal to each other, i LW, j1 # j2, we have

J27

Z I (Eek)>P=1 foraefes.

kez+

Therefore, the syster(¥*) is a tight frame with frame bound 1 fdr?(R*). Hence (15) and (16) are satisfied by
Theorem 1.

(b)=(c): ForeachH =1,2,...,L, we use equation (13), we have
& 1B < B (©OF < 2 B, (19)

Or equivalently,

LU PULLIE S 3L

By taking maxB, = B, minA; = A and applying (15), we get
> 3 B ‘
A< O(p'é)"<B aeleR
22

which shows (18). Moreover, it follows from (15) and (16) ttize systerr{tpl*yoyk : ke Z*} forms a tight frame fok\;
with frame bound 1. By Theorem {yjf;  : j € Z,k € Z} is a normalized tight frame fdr?(R ™). Since eachy; lies in
W, it follows from the tightness of both systerigy’o, - k € Z*} and{¢f;  : j € Z,k € Z*} that

||(»U|*||%:2Z > |<1.U|7‘I’|Jk| = z (Wi, g0 |-
j

cLkeZt keZ
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Therefore(yy", 4y ) = O for j # 0. Also, for eact = 1,2,...,L andj € N, we have

=W W0 = (@ W)

= P2 [ @ @B (TP E)dE

R+
—p 2 [ G (POF@Xk e
R+
—n-i/2 (0 ENTF(E v (K £,
pey - W (PP (&)X (k §)dg

rez+7"

_ pj/z/@{ 5 mr(pi(é@r»w.*(éear)}x(k,adf-

rezZt

This shows that

> FEeng(pi(Eer)=0 foraef cR' j>1.

rezt

Therefore, we have

1 1

2 2
> WEekdi(p(Eek) { S @ (Eek) } { > |¢’|(59k)|2} < Y W& ek (pl(§ek)=0.
kezZ+ kez+ kezZ+ kezZ+

Hence, condition (17) is satisfied.

(c)=(a): we use condition (13)which shows that the affine sysxéfH) constitutes a frame fan;. Moreover, identity
(17) shows thai\p is orthogonal taw; for j # 0. Therefore, by means of change of variables, we have

(Wi Wam = (W ok pt-imPnjo), 1<I<L kmeZ*.

It is immediate from the above relation tha§ L W, for j # n. Thus, we conclude tha¢(¥) forms a frame folW =
spayijk:1<I<L,jeZkeZ"}. Next, we claimthatv = L?(R"). It suffices to show that the systex{¥*) given
by (14) is a frame foL?(R*). We set

S = {f € S:supf c R {0}}

which is dense i?(R*). Let f be inS. Applying Parseval’s formula, we obtain

2

(f - (f _ el [t .
gzk;%\ l.Uuk‘ EZkezZ ( Q’|Jk| kE%p / TRl de
: o )
B Ezpij/z 2 /f(pj'f)‘lﬁ*(f)x(k,f) d&
IE kéz+ /R
2
- 2| f(p! T o
_ngp J -/[0,1] Sez%f(pj(f@s))dﬁ (Eds)| dE
_ —j/2 " | 2
_ngp | -/[0,1] " (E)‘ % (20)

where

FE)= 35 fplEes)fEes). I=12...L

seZt
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Moreover, we have

f(pl(E@9)fi(Eds)| dE

/[O,l] ‘FJ'(E)}ZdE = /[O’l]

f(pl(E@9)fi(E@s)| dE

=2 _4071]’f(pj(f@s))m dE

(/ it ’E|d«5) (/ 7 (8 )|2d5>%.

Since bothf and f are compactly supported and eaf lies in L?(R™), it follows from the above inequality that
F/(&) € L%([0,1]). Also, for anyj € Z, we have

Fof <5 [fpEof 5 erEosl, 1=12...L
scZt seZt

and

[ fwem@xkae= [ FlExiceae.
R+

By applying the Plancherel formula, we get

5 | oy FlOXK

keZ+

:/[0,1] ’F‘J(E)’zdf'

Hence equation(20) becomes

2

z Z ‘<f#/-’|*,j,k>‘2= z pfj/z/ Z f(pl(E@9) i (E@9)| dE
JEZKeL* j scZt
=3 e[, 3 TPEEewEes 3 ipiEe)FEss
JEZ 01 seZt
-3 e / fEOUE) y f(pEesfEesde
seZ+
_/ IO S | (p18)]"dE +R(F), (21)
R+ Jez

where

B Ez RGIRCRE) S fEop 9@ (pTE@s)de.
jern/R*

seZt

For givens € Z™, there is a unique paik,m) with k € Z*+ andm e Z*\ pZ*, such thas = p“m. SinceR(f) is absolutely
convergent, we can estima®f) by rearranging the series, changing the order of summatidrrdegration by the Levi
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lemma as follows

[ f@ Jf{ fgepisf(p JE@S)}dE

/‘f(é){z A jf)f(é@p"p"m)tlﬂ*(pié@pkm)}df
R keZt meZ*\pZ*+
f

o
o

— S—

> EZ@*(W”"E) feep'mgy(pitke s pkm)} dé
KEZT meZT\pZ+ |

>
S > fgopm) ZLln*(p”"E)tlf|*(p"(pif@m))}df

JEZmezZ T\ pzt keZ+

CTOfEopm S G (p )T (PP 1€ o m)dé.

+/R* kez+

(
(

—hy|

>
ez
R+
R+

Zm

m
m
N
o
—
el
N

i

Using the above estimate Bf f) in (21), we obtain

L ‘<f W >|2*/‘ |f(f)‘2 : ‘Lp*( *JE)‘ZdE
I;jgzkezz;+ 7w|’1’k o R+ ;22 (P
JrEZmeZz\p%/ f@OfEepm IZkez%‘I’I*(prkf)‘fﬁ*(pk(p’jE@m))df. (22)

From (16), (19) and (22), we have

-

L
ABITBSS Y 3 [(fui <B/AIfIE

JEZKELT

This means that the systef’; , 1 1<1 <L,j€Z ke Z*} is a frame forlL2(R*). Hence, we get the desired result.
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