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Abstract: The goal of the present paper is to present numerical treatments for solving matrix differential equations of second order
using exponential and trigonometric cubic B-splines. Efficiency and accuracy of the proposed methods are illustrated by calculating
the maximum errors. The results of numerical experiments shown by these methods are convenient to be implemented and effective
numerical technique for solving matrix differential equations.
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1 Introduction

Given matrix boundary value problems

U ′′(t) = f (t,U(t),U ′(t))
U(a) =Ua,U(b) =Ub

}
,a≤ t ≤ b, [a,b]⊂ℜ, (1)

where matrices Ua,Ub,U(t) ∈ Cm×n and matrix function f : [a,b]×Cm×n ×Cm×n → Cm×n, are recurrent in various
phenomena in physics and engineering. Equation (1) is considered as the statement of Newton’s law of motion for
coupled mechanical system. Usually models of this kind recurrently appear in molecular dynamics, quantum mechanics
and for scattering methods, where one solves scalar or vectorial problems subject to boundary value conditions [1,6].

We define the Kronecker product of Y ∈Cm×n andX ∈Cp×q, denoted byY ⊗X [7]

Y ⊗X =


y11X · · · y1nX

...
. . .

...
ym1X · · · ymnX

 , (2)
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The column vector operator on a matrix Y ∈Cn×m is given by [7].

Vec(Y ) =


Y•1
...
Y•m

whereY•k =


Y1k
...
Ymk

 . (3)

Also, the derivative of a matrix U ∈Cm×n with respect to a matrix V ∈Cp×q is defined by [7].

∂U
∂V

=


∂U

∂v11
· · · ∂U

∂v1q
...

. . .
...

∂U
∂vp1
· · · ∂U

∂vpq

 ,where
∂U
∂vn

=


∂U11
∂vn
· · · ∂U1n

∂vn
...

. . .
...

∂Um1
∂vn
· · · ∂Umn

∂vn

 . (4)

The derivative of a matrix product V ∈Cp×q and U ∈Cq×v with respect to another matrix W ∈Cm×n is given by [7].

∂VU
∂W

=
∂V
∂W

[In⊗U ]+ [Im⊗V ]
∂U
∂W

, (5)

where the identity matrices of dimensions m and n denoted by Im and In respectively. The chain rule and derivative of a
Kronecker product of matrices V ⊗Uwith respect to a matrix W are given by [7].

∂W
∂V

=

[
∂ [Vec(U)]T

∂V
⊗ Im

]
+

[
Iq⊗

∂W
∂ [Vec(U)]

]
, (6)

∂ (V ⊗U)

∂W
=

∂V
∂W
⊗U +[Im⊗U1]

[
∂U
∂W
⊗V

]
[In⊗U2] , (7)

where V ∈Cp×q, U ∈Cu×v, W ∈Cm×n and U1, U2 are permutation matrices. The frobenius norm of U ∈Cm×n is given
by [8].

‖U‖F =

√
m

∑
i=1

n

∑
j=1

∣∣ui j
∣∣2. (8)

The following relationship between the 2-norm and Frobenius norm holds [8].

‖U‖2 ≤ ‖U‖F ≤
√

n‖U‖2 . (9)

Cubic splines are discussed in [9,10], matrix differential equations are studied in [11,14] and exponential cubic B-splines
are piecewise polynomial functions containing a free parameter and its properties are presented in [15]. The exponential
and trigonometric cubic B-spline methods and spline with different basis as sextic are studied to solve numerical solutions
of various ordinary and partial differential equations [16,22]. This paper is organized as follows; In section 2, we present
the exponential and trigonometric cubic B-spline methods. In section 3, some numerical examples are discussed. Finally,
the conclusion of this study is given in section 4.

2 Description of cubic B-spline methods

Firstly, we assume that the problem domain [a,b] is equally divided into N subintervals [ti, ti+1] , i = 0, 1, ..., N−1 by the
knots ti = a+ ih where a = t0<t1< · · ·<tN−1<tN = b and the step size h = b−a

N .
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2.1 Exponential cubic B-spline method (ECBSM)

The exponential cubic B-spline can be defined as follows

ECBi (t) =



w1

[
(ti−2− t)− 1

η
(sinh(η (ti−2− t)))

]
w2 +w3 (ti− t)+w4eη(ti−t)+w5e−η(ti−t)

w2 +w3 (t− ti)+w4eη(t−ti)+w5e−η(t−ti)

w1

[
(t− ti+2)− 1

η
(sinh(η (t− ti+2)))

]
0

t ∈ [ti−2, ti−1] ,

t ∈ [ti−1, ti] ,
t ∈ [ti, ti+1] ,

t ∈ [ti+1, ti+2] ,

elsewhere.

(10)

(i =−1,0, · · · ,N +1) ,

, where
w1 =

η

2(ηhC−S) ,w2 =
ηhC

ηhC−S ,w3 =
η

2

[
C(C−1)+S2

(ηhC−S)(1−C)

]
,

w4 =
1
4

[
e−ηh(1−C)+S(e−ηh−1)

(ηhC−S)(1−C)

]
,w5 =

1
4

[
eηh(C−1)+S(eηh−1)

(ηhC−S)(1−C)

]
,C =Cosh(ηh) ,S = Sinh(ηh) ,

and η is a free parameter.

We consider the spline function as interpolation to the solutions
kl
u (t) of the problem (1).

kl
u (t) =

N+1

∑
i=−1

kl
ζi (t)ECBi (t) ;1≤ k ≤ n, 1≤ l ≤ m, (11)

where constants
kl
ζi (t)’s are be determined. To solve matrix boundary value problems of second order, we find ECBi,ECB′i

andECB′′i at the nodal points are needed. Their coefficients are summarized in Table 1.

Table 1: values of ECBi,ECB′i and ECB′′i

ti−2 ti−1 ti ti+1 ti+2
ECBi 0 β1 1 β1 0
ECB′i 0 −β2 0 β2 0
ECB′′i 0 β3 β4 β3 0

where

β1 =
S−ηh

2(ηhC−S)
, β2 =

η (C−1)
2(ηhC−S)

, β3 =
η2S

2(ηhC−S)
, β4 =

−η2S
ηhC−S

.

Using equations (10) - (11), the values of
kl
ui and their derivatives up to second order at the knots are

kl
ui = β1

kl
ζi−1+

kl
ζi+β1

kl
ζi+1

kl
u′i =−β2

kl
ζi−1+β2

kl
ζi+1

kl
u′′i = β3

kl
ζi−1+β4

kl
ζi+β3

kl
ζi+1

 , i = 0,1, ...,N. (12)

Substituting from (12) in (1), we find

β3
kl

ζi−1+β4
kl
ζi+β3

kl
ζi+1 = f

(
ih,β1

kl
ζi−1+

kl
ζi+β1

kl
ζi+1,−β2

kl
ζi−1+β2

kl
ζi+1

)
,
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i = 0,1, ...,N, k = 1,2, ...,nandl = 1,2, ...,m, (13)

and the boundary conditions are given as

β1
kl

ζ−1+
kl
ζ0+β1

kl
ζ1 =

kl
ua,

β1
kl

ζN−1+
kl
ζN +β1

kl
ζN+1 =

kl
ub .

(14)

Solving the system of equations (14) in
kl

ζ−1 and
kl

ζN+1, the linear algebraic system of equations (13) can be converted to
the following matrix form

kl
A

kl
ζ =

kl
F ,1≤ k ≤ n, 1≤ l ≤ m, (15)

where
kl
A is an (N +1)× (N +1) matrix,

kl
ζ is an (N +1) dimensional vector with components

kl
ζi and the right hand side

kl
F

is an (N +1) dimensional vector.

kl
ζ =

[
kl
ζ0,

kl
ζ1, ...,

kl
ζN

]T

,
kl
F =

[
kl
f ∗0 ,

kl
f1, ...,

kl
fN−1,

kl
f ∗N

]T

. (16)

2.2 Trigonometric cubic B-spline method (TCBSM)

The trigonometric cubic B-spline can be defined as follows

TCBi (t) =
1
ρ



ϕ3 (ti−2)

ϕ (ti−2) [ϕ (ti−2)ϑ (ti)+ϕ (ti−1)ϑ (ti+1)]+ϕ2 (ti−1)ϑ (ti+2)

ϑ (ti+2) [ϑ (ti+2)ϕ (ti)+ϑ (ti+1)ϕ (ti−1)]+ϑ 2 (ti+1)ϕ (ti−2)

ϑ 3 (ti+2)

0

t ∈ [ti−2, ti−1] ,

t ∈ [ti−1, ti] ,
t ∈ [ti, ti+1] ,

t ∈ [ti+1, ti+2] ,

elsewhere.

(17)

(i =−1,0,1, · · · ,N +1) ,

where

ρ = sin
(

h
2

)
sin(h)sin

(
3h
2

)
, ϕ (ti) = sin

(
t− ti

2

)
, ϑ (ti) = sin

(
ti− t

2

)
.

We consider the spline function as interpolation to the solutions
kl
u (t) of the problem (1)

kl
u (t) =

N+1

∑
i=−1

kl
τi (t)Bi (t) ;1≤ k ≤ n, 1≤ l ≤ m, (18)

where constants
kl
τi (x)’s are be determined. To solve matrix boundary value problems of second order, we find TCBi,TCB′i

andTCB′′i at the nodal points are needed. Their coefficients are summarized in Table 2.
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Table 2: values of TCBi,TCB′i andTCB′′i

ti−2 ti−1 ti ti+1 ti+2
TCBi 0 Ω1 Ω2 Ω1 0
TCB′i 0 −Ω3 0 Ω3 0
TCB′′i 0 Ω4 Ω5 Ω4 0

where
Ω1 =

sin2( h
2 )

sin(h)sin( 3h
2 )

, Ω2 =
2

1+cos(h) , Ω3 =
3

4sin( 3h
2 )

, Ω4 =
3(1+3cos(h))

16sin2( h
2 )(2cos( h

2 )+cos( 3h
2 ))

,

Ω5 =
−3cos2( h

2 )
sin2( h

2 )(2+4cos(h))
.

Using equations (17) - (18), the values of
kl
ui and their derivatives up to second order at the knots are

kl
ui = Ω1

kl
τi−1+Ω2

kl
τi+Ω1

kl
τi+1

kl
u′i =−Ω3

kl
τi−1+Ω3

kl
τi+1

kl
u′′i = Ω4

kl
τi−1+Ω5

kl
τi+Ω4

kl
τi+1

 , i = 0,1, ...,N. (19)

Substituting from (19) in (1) we find

Ω4
kl

τi−1+Ω5
kl
τi+Ω4

kl
τi+1 = f

(
ih,Ω1

kl
τi−1+Ω2

kl
τi+Ω1

kl
τi+1,−Ω3

kl
τi−1+Ω3

kl
τi+1

)
,

i = 0,1, ...,N, k = 1,2, ...,nandl = 1,2, ...,m, (20)

and the boundary conditions are given as

Ω1
kl

τ−1+Ω2
kl
τ0+Ω1

kl
τ1 =

kl
ua,

Ω1
kl

τN−1+Ω2
kl
τN +Ω1

kl
τN+1 =

kl
ub .

(21)

Solving the system of equations (21) in
kl

τ−1 and
kl

τN+1, the linear algebraic system of equations (20) can be converted to
the following matrix form

kl
A

kl
τ =

kl
F ,1≤ k ≤ n, 1≤ l ≤ m, (22)

where
kl
A is an (N +1)× (N +1) matrix,

kl
τ is an (N +1) dimensional vector with components

kl
τi and the right hand side

kl
F

is an (N +1) dimensional vector,

kl
τ =

[
kl
τ0,

kl
τ1, ...,

kl
τN

]T

,
kl
F =

[
kl
f ∗0 ,

kl
f1, ...,

kl
fN−1,

kl
f ∗N

]T

. (23)

3 Numerical examples

In this section, three examples of matrix differential equations of second order are presented to show efficiency and
accuracy of the proposed methods using Frobenius norm of the difference between approximate solution and exact solution
at each point in the interval [0,1] taking h = 0.1and the results are generated with Mathematical using Find Root function
to solve the emerging algebraic equations.
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Example 1. We examine non-linear differential vector system [13].

u′′1 (t) = 1− cos(t)+ sin(u′2 (t))+ cos(u′2 (t))
u′′2 (t) =

1
4+u1(t)

2 − 1
5−sin2(t)

u1 (0) = 1, u1 (1) = cos(1) ,
u2 (0) = 0, u2 (1) = π

 0≤ t ≤ 1. (24)

This example has an exact solution U (t) =

(
cos(t)
πt

)
. Thus, we can contrast our numerical estimates with the exact

solution to get the exact errors of the approximation which briefed in Table 3 and figure 1. For free equilibrium points
u j ≡ 0,( j = 1,2, ...,4), we find that the Jacobian matrix of (24).


0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 0

 , (25)

and its eigenvalues are evaluated from the equation
λ

4 = 0

where λ j = 0, then the equilibrium points u j = 0 of (24) are unstable ( j = 1,2, ...,4).

Table 3: Comparison of maximum absolute errors for Example 1.

t Exponential Cubic B-
spline errors
(ECBSM)

Trigonometric Cubic B-
spline errors
(TCBSM)

Cubic spline errors
(CSM) [13]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
6.82552×10−5

1.19923×10−4

1.55258×10−4

1.74684×10−4

1.78781×10−4

1.68287×10−4

1.44083×10−4

1.07188×10−4

5.87418×10−5

4.44089×10−16

1.11022×10−16

3.63629×10−5

6.77517×10−5

9.32094×10−5

1.11637×10−4

1.21817×10−4

1.22433×10−4

1.12078×10−4

8.92682×10−5

5.24493×10−5

0

0
4.16114×10−6

1.66032×10−5

3.72028×10−5

6.57658×10−5

1.02012×10−4

1.45563×10−4

1.96167×10−4

2.52912×10−4

3.15643×10−4

3.83638×10−4
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Fig. 1: Comparison of maximum absolute errors for non-linear differential vector system in the interval [0, 1] with step
size h = 0.1.

Example 2. We investigate incomplete differential system of second order [13].

U ′′ (t)+AU (t) = 0,0≤ t ≤ 1. (26)

Where A =

(
1 0
2 1

)
and corresponding exact solution U (t) =

(
sin(t) 0

t cos(t) sin(t)

)
. Thus, we can observe the exact errors

of the approximation which briefed in Table 4 and figure 2.

For the only equilibrium point u j = 0,( j = 1,2, ...,8), we find that the Jacobian matrix of (26) is



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
−2 0 −1 0 0 0 0 0
0 −2 0 −1 0 0 0 0


(27)

and its eigenvalues are evaluated from the equation

λ
8 +4λ

6 +6λ
4 +4λ

2 +1 = 0,

where λ j =±i, then (26) has a unique equilibrium point u j = 0 is an stable ( j = 1,2, ...,8).

Example 3. We consider the following problem of second order polynomial matrix equation [13].

U ′′ (t)+A0U ′ (t)+A1U (t) = 0,0≤ t ≤ 1. (28)
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Table 4: Comparison of maximum absolute errors for Example 2.

t Exponential Cubic B-
spline errors
(ECBSM)

Trigonometric Cubic B-
spline errors
(TCBSM)

Cubic spline
errors (CSM) [13]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

9.03349×10−16

1.28910×10−4

2.48964×10−4

3.51531×10−4

4.28431×10−4

4.72145×10−4

4.76020×10−4

4.34449×10−4

3.43038×10−4

1.98746×10−4

1.92296×10−16

3.88578×10−15

3.06544×10−5

5.91219×10−5

8.32875×10−5

1.01178×10−4

1.11029×10−4

1.11351×10−4

1.00979×10−4

7.91308×10−5

4.54413×10−5

1.11022×10−16

0
1.0072×10−6

6.3032×10−6

2.0059×10−5

4.6213×10−5

8.8359×10−5

1.4964×10−4

2.3267×10−4

3.3941×10−4

4.7114×10−4

6.2838×10−4

Fig. 2: Comparison of maximum absolute errors for incomplete differential system of second order in the interval [0, 1]
with step size h = 0.1.

Where A0 =

(
−1 1
0 −2

)
,A1 =

(
0 0
0 1

)
and the exact solution U (t) =

(
et −1+ et − tet

0 et

)
. Thus, we are illustrated the

exact errors at each point in Table 5 and figure 3.
For free equilibrium points u j ≡ 0,( j = 1,2, ...,8), we find that the Jacobian matrix of (28) is



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1
0 0 −1 0 0 0 2 0
0 0 0 −1 0 0 0 2


(29)
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and its eigenvalues are evaluated from the equation

λ
8−6λ

7 +15λ
6−20λ

5 +15λ
4−6λ

3 +λ
2 = 0

where λ1,2 = 0 and λ j = 1,( j = 3, ...,8), then the equilibrium points u j ≡ 0 of (28) are unstable.; ( j = 1,2, ...,8).

Table 5: Comparison of maximum absolute errors for Example 3.

t Exponential Cubic B-
spline errors
(ECBSM)

Trigonometric Cubic B-
spline errors
(TCBSM)

Cubic spline
errors (CSM) [13]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2.04743×10−15

9.31479×10−5

1.76710×10−4

2.47641×10−4

3.02360×10−4

3.36670×10−4

3.45675×10−4

3.23672×10−4

2.64039×10−4

1.59105×10−4

4.57756×10−16

2.22044×10−16

3.81878×10−4

7.44554×10−4

1.07301×10−3

1.34804×10−3

1.54528×10−3

1.63419×10−3

1.57674×10−3

1.32589×10−3

8.23872×10−4

4.44089×10−16

0
1.53895×10−5

6.67523×10−5

1.63924×10−4

3.18789×10−4

5.45654×10−4

8.61682×10−4

1.28740×10−3

1.84731×10−3

2.57055×10−3

3.49171×10−3

Fig. 3: Comparison of maximum absolute errors for second order polynomial matrix equation in the interval [0, 1] with
step size h = 0.1.

4 Conclusion

In this article, we have examined scheme treat numerically with the second-order matrix differential equations by
exponential and trigonometric cubic B-splines. From the computational results, we can see that the exponential and

c© 2018 BISKA Bilisim Technology



JACM 3, No. 1, 1-10 (2018) / www.ntmsci.com/jacm 10

trigonometric cubic B-splines as summarized in tables (3-5) and figures (1-3) enjoy high accuracy and easy to be
implemented by finding Frobenius norm and are compared with [13].
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