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Abstract: In this paper, a study of numerical solutions of a nonlinear soybean hydration model which is considered as a Stefan
problem is presented. For this purpose, it is employed fourth and sixth order compact finite difference schemes for discretizing the
spatial derivative and the standard finite difference scheme for discretizing the time derivative.To show the efficiency of the methods,
numerical experiments have been done and numerical stability has been proven. It is noted that the present methods have more accurate
solution with minimal computational effort (CPU time) for soybean hydration model, by comparison of the results in the literature
which is validated experimental data.
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1 Introduction

Many physical problems arising in engineering and science include volume variation or movement of system boundaries.
One of the examples of these problems is diffusion models such as swelling or drying are studied by many authors [1,2,
3,4,5,6,7,8]. They have been stated that when the water enters the system, the size of the material increases. Among
them, Coutinho [1] has been demonstrated experimentally the increase in volume during the soaking could reach 30%
for soybean. This variation is important in modeling the soybean hydration process.

Models that including the hydration of grains are describedby empirical models and phenomenological models.
Empirical models include simple mathematical correlationbut do not describe diffusion steps. In phenomenological
models, elementary steps of diffusion and/or convection mass transfer is considered [7] and these models are represented
with lumped or distributed parameters. Lumped parameters systems which do not take into account concentration
variations inside the grain are modeled by ordinary differential equations. On the other hand, distributed parameter
systems represent concentration gradients that change over time inside the grain.

Soybean grains behave as distributed parameter systems whose moisture profiles inside the grain changes over time and
can be predicted by phenomenological mathematical models.Since these problems are time-dependent problems, they
are modeled by the parabolic partial differential equationwith an initial condition and two boundary conditions, are class
of initial- boundary value problems. Boundary conditions are adopted for the center and the surface of the grain. In these
problems, an additional condition can be adapted for movement of the radius, is the moving boundary, is determined as
part of the solution. The behavior of volume increase is described by a differential equation which represents the rate of
growth of the radius. Hence, the problem has physical meaning. These problems are called Stefan Problem or moving
boundary problems.
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Due to difficulties in obtaining the analytical solution of Stefan problems many authors have been dedicated to numerical
solutions of Stefan problem by applying various numerical methods including finite differences, finite elements and
integral methods. Earlier studies can be found in Ref.[9].

Very recently, Sadoun et al. [10] proposed a modified variable space grid method for heat conduction problem and
compared their solution with other solutions in the literature. Yiğit [11] used finite difference method with variable space
grid and variable time step for one-dimensional solidification problem to the position of the moving front and its
velocity. Also, he developed an analytical method for limiting case and compared with numerical results. Reutskiy [12,
13] presented a new meshless method for one dimensional Stefanproblem and Stefan type problem with moving
boundaries in spherical coordinates. Mitchell et al.[14] used the Keller box finite difference method with boundary
immobilization method for the Stefan problem of evaporation of spherical droplets. Lee et al. [15] proposed a finite
difference moving mesh method for moving boundary solutionand apply their method to the porous medium equation,
Richard’s equation and the Crank-Gupta problem.

The swelling problems as Stefan Problem were taken into account by Davey et al.[4], McGuinness et al.[5] and Barry
and Caunce [6]. They proposed the moisture diffusion model whose diffusivity is an exponential function of moisture
content. In these papers, the models include two moving boundaries simultaneously. One of them expresses the
movement of the radius and other expresses the movement of the water inside the material. These studies propose the
exact solution for the model but they do not extend to analyzing moisture profiles obtained during modeling.

Viollaz et al.[16] and Viollaz and Rovedo [17] used boundary immobilization method for the problem with volume
change due to drying or swelling.

Nicolin et al.[3] present a model with volume variation to analyzes the moisture profiles inside the grain. The model has
one moving boundary which represents the behavior of the grain by a differential equation which is named Stefan
condition. They solved the problem by explicit finite difference method by validating experimental data.

In this work, it is studied to apply variable space grid method combined with fourth and sixth order compact finite
difference method to obtain the solution of the soybean hydration model proposed by Nicolin et al.[3]. The aim is to
show that compact finite difference schemes which utilized for soybean hydration model have less computational effort
(CPU time) with less iteration to reach the more accurate solutions. Numerical results are compared with Nicolin et al.[3]
and computational times and equilibrium times for the proposed models are calculated.

The rest of the paper is as follows: In Section 2, the mathematical model of soybean hydration process is introduced. In
Section 3, fourth and sixth order compact finite difference methods are summarized. In Section 4, variable space grid
method is applied to the problem and numerical algorithm is described for fourth and sixth order compact finite
difference methods. Numerical stability is proven in Section 5 and computational results are given in Section 6 to show
the efficiency of the method on the problem. Paper is concluded in Section 7.

2 Mathematical modeling

The model is obtained by transient mass balance on differential volume element of soybean grains. Since the geometry of
soybeans is assumed spherical, the Eq.(1) that represent water absorption by soybean is developed inspherical coordinates
based on Fick’s Law of Diffusion. It is assumed that diffusion takes place only in radial direction.

∂X
∂ t

= D

(

2
r

∂X
∂ r

+
∂ 2X
∂ r2

)

, (1)
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whereX represents moisture content,r is the radial position which is a function of time andD is the constant diffusion
coefficient.

Eq.(1) is second order partial differential equation. Therefore, one initial condition and two boundary conditions are
required for the solution. These boundary conditions are adopted for the center and the surface of the grain. Eq.(2) which
shows the initial condition is uniform throughout the dry solid at timet = 0:

X(r,0) = X0, for all r. (2)

The boundary conditions are
∂X
∂ r

= 0 for r = 0, t > 0 (3)

X(R(t), t) = Xeq, t > 0. (4)

Eq.(3) defines symmetry of the problem in the center of the grain in any instant of time and Eq.(4) represents moisture
content on the solid-fluid interface (r = R(t)) and it reaches equilibrium moisture content at the beginning of the soaking.

Eq.(5) represents Stefan condition representing the motion of the front. The initial condition (6) that is necessary for the
solution of Eq.(5) states at the beginning of the hydration process the grain has a known radius. For soybean hydration
model,α = D ρDS

ρwater
is obtained by Nicolin et al.[3] andR0 is a constant.

dR(t)
dt

= α
∂X
∂ r

, r = R(t) (5)

R(0) = R0. (6)

The boundary condition is defined by Eq.(3) causes an indetermination in the Eq.(1) since the Eq.(1) is not defined at
the center of the grain due to term(2/r) which becomes infinite whenr approaches to zero. Therefore, L’Hospital rule is
applied to Eq.(1) to obtain the solution for the center. Eq.(7) is valid for the center of the grain [3].

∂X
∂ t

= 3D
∂ 2X
∂ r2 , r = 0. (7)

3 The compact finite difference scheme

In this section, firstly, fourth and sixth order compact finite difference schemes(CFD4 and CFD6) proposed by Lele [18]
are introduced. This method is particular kind of finite difference method which uses a linear combination of given
values of the function on a set of points to approximate its derivatives.

Compact finite difference schemes can be dealing with two kinds of categories. These are explicit compact finite
differences which compute the numerical derivatives at each grid by using large stencils and implicit compact finite
differences which evaluate the numerical derivatives through solving a system of linear equation and by using the smaller
stencil [19,20,21]. In this work, implicit compact finite differences for spatial discretization are used.

3.1 Spatial discretization

Spatial derivatives are computed by the compact finite difference scheme [18]. For simplicity, a uniform 1D mesh
consisting ofN points: r1 < r2 < ... < rN . The mesh size∆r = ri+1 − ri is equal at any instant of time. The first
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derivatives are for all interior points
(

ri, t j
)

, 2≤ i ≤ N −1, are given by Eq.(8):

αX ′(ri+1, t j)+X ′(ri, t j)+αX ′(ri−1, t j) = b X(ri+2,t
j)−X(ri−2,t

j )
4∆ r j + a X(ri+1,t

j )−X(ri−1,t
j)

2∆ r j (8)

which provides anα-family of fourth order tridiagonal schemes with

a =
2
3
(α +2), b =

1
3
(4α −1) (9)

For α = 1
4 andα = 1

3 it is obtained fourth and sixth order tridiagonal schemes inEq.(10) and Eq.(11), respectively:

1
4

X ′
i−1+X ′

i +
1
4

X ′
i+1 =

3
2

Xi+1−Xi−1

2∆r
(10)

1
3

X ′
i−1+X ′

i +
1
3

X ′
i+1 =

1
9

Xi+2−Xi−2

4∆r
+

14
9

Xi+1−Xi−1

2∆r
(11)

where, for simplicity,Xi is taken instead ofX(ri, t j).

The derivatives of the points near the boundaries for non-periodic problems are given by one-sided schemes. The
derivatives formulae at boundary points 1,2,N −1,N are given for fourth order scheme as below, respectively.

X ′
i +3X ′

i+1 =
1

∆r

(

−
17
6

Xi +
3
2

Xi+1+
3
2

Xi+2−
1
6

Xi+3

)

(12)

1
4

X ′
i−1+X ′

i +
1
4

X ′
i+1 =

1
∆r

(

−
3
4

Xi−1+
3
4

Xi+1

)

(13)

1
4

X ′
i−1+X ′

i +
1
4

X ′
i+1 =

1
∆r

(

3
4

Xi+1−
3
4

Xi−1

)

(14)

3X ′
i−1+X ′

i =
1

∆r

(

17
6

Xi −
3
2

Xi−1−
3
2

Xi−2+
1
6

Xi−3

)

. (15)

Sixth order schemes formulas at boundary points 1,N and near the boundary points 2,N −1 are

X ′
i +5X ′

i+1 =
1

∆ r

(

− 197
60 Xi −

5
12Xi+1+5Xi+2−

5
3Xi+3+

5
12Xi+4−

1
20Xi+5

)

(16)

2
11X ′

i−1+X ′
i +

2
11X ′

i+1 =
1

∆ r

(

− 20
33Xi−1−

35
132Xi +

34
33Xi+1−

7
33Xi+2+

2
33Xi+3−

1
132Xi+4

)

(17)

2
11X ′

i−1+X ′
i +

2
11X ′

i+1 =
1

∆ r

(

20
33Xi+1+

35
132Xi −

34
33Xi−1+

7
33Xi−2−

2
33Xi−3+

1
132Xi−4

)

(18)

5X ′
i−1+X ′

i =
1

∆ r

(197
60 Xi +

5
12Xi−1−5Xi−2+

5
3Xi−3−

5
12Xi−4+

1
20Xi−5

)

. (19)

The fourth order scheme (10) with (12)-(15) can be written in the form of vector-matrix as below,

A1X ′ =
1

∆r
B1X
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whereX = (X1,X2, ...,XN)
T . The second order derivative terms are obtained by applyingthe first operator twice:

A1X ′′ =
1

∆r
B1X

′

where,

A1 =

























1 3
1
4 1 1

4
1
4 1 1

4
. ..

. . .
. . .
1
4 1 1

4
1
4 1 1

4
3 1

























B1 =

























− 17
6

3
2

3
2 − 1

6
3
4 0 3

4
3
4 0 3

4
. . .

. . .
. . .
3
4 0 3

4
3
4 0 3

4
1
6 − 3

2 − 3
2

17
6

























.

The vector-matrix form of sixth order scheme (11) with (16)-(19) is as follows:

A2X ′ =
1

∆r
B2X

whereX = (X1,X2, ...,XN)
T .The second order derivative terms are obtained by applyingthe first operator twice,

A2X ′′ =
1

∆r
B2X

′

where,

A2 =

























1 5
2
11 1 2

11
1
3 1 1

3
. . .

. . .
. . .
1
3 1 1

3
2
11 1 2

11
5 1

























B2 =































− 197
60 − 5

12 5 − 5
3

5
12 − 1

20
− 20

33 − 35
132

34
33 − 7

33
2
33 − 112

132
− 1

36 − 14
18 0 14

8
1
36

0 − 1
36 − 14

18 0 14
18

1
36

. . .
. . .

. . .
. . .

. . .

− 1
36 − 14

18 0 14
18

1
36

112
132 − 2

33
7
33 − 34

33
35
132

20
33

1
20 − 5

12
5
3 −5 5

2
197
60































.

First and second derivatives at all grid points are obtainedby solving the band system.
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3.2 Application of Soybean hydration model

In numerical solution of the problem (1)-(7), three-point fourth order and sixth order compact finite difference scheme
are used for derivatives of the radial coordinate where the interval is[0,R(t)]. Time derivatives are discretized by forward
finite difference scheme.

4 Numerical algorithm

To express the volume variation Nicolin et al.[3] used Variable Space Grid method(VSGM) which was proposed Murray
and Landis [22] in Eq.(1). In this method, the number of space intervals between a fixed boundaryx = 0 and moving
boundaryx = R(t) is kept constant and equal toN. Thus, the moving boundary lies on theNth grid. The model analyzes
the time partial derivation by tracking a given line insteadof a constantr. For the lineith grid point:

∂X
∂ t

|i =
∂X
∂ r

|t
dr
dt

|i+
∂X
∂ t

|r. (20)

General grid point atr moves according to Eq.(21). The authors have used the method studied on Cartesian coordinates
[23,24]. Eq.(1) is in spherical coordinates but since the diffusion takes place only radial direction, mass transfer is similar
to in Cartesian coordinates. Therefore, Eq.(21) can be used for this model.

dri

dt
=

ri

R(t)
dR(t)

dt
. (21)

Substituting the Eq.(20) and Eq.(21) into Eq.(1), it is obtained

∂X
∂ t

=
ri

R(t)
dR(t)

dt
∂X
∂ r

+D

(

2
r

∂X
∂ r

+
∂ 2X
∂ r2

)

. (22)

To solve the model the radial coordinate is divided intoN points (i = 1,2, ..,N). The number of time intervals is
determined by the amount of absorption water. When the wholegrain reaches %99 of the equilibrium moisture content,
the process is cut off.

Discretization of Eq. (2) is given by
X1

i = X0, i = 1,2, ...,N. (23)

To discretization of the boundary condition which is given by Eq.(3) for the center of the grain, it is used explicit finite
difference approximation:

X j
2 = X j

0 . (24)

Central finite difference approximation is used in Eq.(7) which represents moisture content at the center of the grain
(r = 0),

X j+1
1 = X j

1 +
3D∆ t
(∆r j)2

(

X j
2 −2X j

1 +X j
0

)

. (25)

To eliminate the termX j
0 it is used Eq.(24) and obtained:

X j+1
1 = X j

1 +
6D∆ t
(∆r j)2 (X

j
2 −X j

1). (26)

Discretization of the moisture diffusion equation for internal nodes(2 ≤ i ≤ N) is given by Eq.(27) with the position
of each grid point defined byr j

i = (i−1)∆r j . First and second derivatives(Xr)
j
i and(Xrr)

j
i in Eq.(27),respectively, are
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constructed row-by-row by using compact finite difference scheme explained above, i.e.,(Xr)
j
i =

1
∆ r j A−1BX j

i .

X j+1
i = X j

i +

(

∆ tr j
i v j

R j∆r j +
2D∆ t

r j
i (∆r j)

)

(Xr)
j
i +

D∆ t
(∆r j)2 (Xrr)

j
i . (27)

Since radial coordinate size increases with each time step due to soaking, the mesh size is defined by∆r j = R j/N.

The termv j which appears in Eq.(27) represents the motion of the boundary, is the radius. The velocity of motion of the
radius which is represented by Eq.(5) is discretized as

v j =

(

dR
dt

) j

=
ρDS

ρwater
DX j

ri. (28)

The boundary condition on the spherical grain surface is presented by

X j
N = Xeq. (29)

The position of the radius at the next time step is calculatedby the following approximation:

R j+1 = R j +∆ tv j.

5 Numerical stability

In Section 4, it is demonstrated how compact finite difference scheme applies to soybean hydration model. If Eqs.(26),
(27) and (29) are written in vector-matrix form, it yields:

X j+1 = X j +CX j +DX j, j = 1,2, ...,N −1 (30)

where

C =

































− 6Ddt
(∆ r j)2

6Ddt
(∆ r j)2

0 0 ... 0

α j
2a21 α j

2a22 α j
2a23 α j

2a24 ... α j
2a2N

α j
3a31 α j

3a32 α j
3a33 α j

3a34 ... α j
3a3N

. . .
. . .

. . .
. . .

. . .
. . .

α j
N−1aN−11 α j

N−1aN−12 α j
N−1aN−13 α j

N−1aN−14 ... α j
N−1aN−1N

0 0 0 0 ... 0

































D =

































0 0 0 0 ... 0

β jb21 β jb22 β jb23 β jb24 ... β jb2N

β jb31 β jb32 β jb33 β jb34 ... β jb3N

. . .
. . .

. . .
. . .

. . .
. . .

β jbN−11 β jbN−12 β jbN−13 β jbN−14 ... β jbN−1N

0 0 0 0 ... 0
































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andai js are component of matrixA−1B andbi js are component of matrixA−1BA−1B. Also, α j
i =

(

r j
i v j

R j + 2D
r j
i

)

∆ t
∆ r j and

β j = Ddt
(∆ r j)2

.

It is seen that the matricesC andD vary with the variable coefficientsα andβ . But during numerical calculation, it is
observed that the coefficients do not vary rapidly and changemuch. As a result, the matrix properties do not change at
different space and time values. For this reason, to prove the stability of the scheme the variable coefficients can be fixed
at certain space and time points. Thus, the system is writtenat any consecutive time points as follows:

X j+1 = (I + γE +ηF)X j (31)

= (I+ γE +ηF)2 X j−1

= . . .

= (I+ γE +ηF) j+1 X0

where,γ is the fixedα j
i at certain space and time points andη is the fixedβ j at certain time points,

E =

































− 6Ddt
(∆ r j)2(γ)

6Ddt
(∆ r j)2(γ) 0 0 ... 0

a21 a22 a23 a24 ... a2N

a31 a32 a33 a34 ... a3N

. . .
. . .

. . .
. . .

. . .
. . .

aN−11 aN−12 aN−13 aN−14 ... aN−1N

0 0 0 0 ... 0

































F =

































0 0 0 0 ... 0

b21 b22 b23 b24 ... b2N

b31 b32 b33 b34 ... b3N

. . .
. . .

.. .
. . .

. . .
.. .

bN−11 bN−12 bN−13 bN−14 ... bN−1N

0 0 0 0 ... 0

































where∆r j in components of the first row of matrixE is determined by the same time point inα andβ coefficients.
According to the theory of finite difference method [25], consistent and stable finite difference method implies its
convergence. For this, the magnitude of eigenvalues(I +λ E +ηF) must be less than or equal to 1. The eigenvalues of
the matrix for differentN values and differentγ andη coefficients are plotted in Figure 1 and Figure 2 by calculating
with MATLAB.

6 Results

The model (1)-(7) is solved by fourth and sixth compact finite difference scheme in radial coordinates and forward finite
difference in time coordinates.

It is performed the computations using the software MATLAB R2012a on ASUS machine Intel Core i7 2.4 GHz 6 GB
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Fig. 1: Eigenvalues for CFD4 method for differentα andβ values at values ofN = 60,80 and 100.

memory. The computational domain for space is considered 0≤ r ≤ R(t), is evaluated by over time and different
numbers of uniform mesh point are used for numerical calculations.

Constants in the model [3,26] are given as below:

Dx10−11(m2/s) ρDS(kgDS/m3) ρwater(kgwater/m3) Xeq(kgwater/kgDS) X0(kgwater/kgDS) R0(m)
3.277 1.057 1.000 1.651 0.126 0.003

The correct choice of the number of spatial points(r) is essential for adequate representation of the numerical solutions.
While a small number of divisions of spatial coordinate may lead to non-realistic approximations due to rounding error,
the profiles are obtained by simulation with an extremely large number of divisions are impracticable due to processing
time. The best way is for determining the smallest number of discretization points that could preserve the representability
of numerical solution of the mathematical model.

As a numerical experiment, it is experimented the model forN values between 10 and 50. Figure3 shows moisture
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Fig. 2: Eigenvalues for CFD6 method for differentα andβ values at values ofN = 60,80 and 100.

content values as a function of the radius for various valuesof time are obtained for extreme twoN values (forN = 10
andN = 50) by using CFD4 and CFD6. As is seen, the greatest moisture content variations occur near the surface at the
beginning of the soaking and oscillations occur at small times (approximately around 5000 s). The calculations with
these values do not show realistic numerical solutions whencompared to the results that Nicolin et al.[3] validated with
experimental data. However, the results obtained with values of 60≤ N ≤ 100 show a realistic approach. IfN values
larger than 100, as mentioned above, CPU times increase (seeTable 5). When we run the problem extremely largeN
values such as 307≤ N ≤ 334 the obtained equilibrium time diverges from the experimental equilibrium time for CFD4.
WhenN ≥ 335 CFD4 solutions andN ≥ 280 CFD6 solutions are degenerated, see Figure4. Figure5 shows moisture
profiles as a function of the radius for various values of timeand Figure6 shows moisture profiles as a function of time
for various values of the radius.
To compare the numerical solutions which are obtained in this work with experimental moisture content data in Ref. [27]
the mean values for the models are averaged over the volume grain by using Eq.(32),

Xm =

∫ R
0 X .r2dr
∫ R

0 r2dr
(32)
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Fig. 3: Solutions of the model as a function of the radius by CFD4 (left) and CFD6 (right) forN = 10 andN = 50.

Fig. 4: Solutions of the model as a function of the radius by CFD4 (left) and CFD6 (right) forN = 335 andN = 280.

and in Figure7, the average profiles are compared with experimental moisture content data. On the other hand, mean
squared errors calculated by Eq.(33) between numerical solution and experimental moisture content data are listed in
Table 1. Mean squared errors show that the experimental dataand numerical solutions are in good agreement.

MSE =
1
n

n

∑
i=1

(

X̂i −Xmi
)2

(33)

wheren is number of data,̂X is the experimental data andXm is the average moisture content is calculated by Eq.(32).

Table 1: Mean squared errors for differentN values.

Nicolin et al.[3] CFD4 CFD6
N MSEx103 MSEx103 MSEx103

60 1.927796 1.993219 1.986565
80 1.951536 1.988650 1.985040
100 1.963276 1.988205 1.987798
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Fig. 5: Solutions of the model as a function of the radius by Nicolin et al. [3], CFD4 and CFD6 forN = 100 at various
times.

Fig. 6: Solutions of the model as a function of time by Nicolin et al.[3], CFD4 and CFD6 forN = 100 at various the
radius.

Also, absolute errors and relative errors which are listed in Table 2 are calculated as in below, respectively:

ε =| X j+1
i −X j

i | (34)
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Fig. 7: Comparison of experimental data and numerical solution by obtained CFD4 (left) and CFD6 (right).

η =
ε

X j
i

. (35)

Errors of three methods which are calculated with differentN values are very close to each other. The values calculated
for N = 100 are given in Table 2.

Table 2: Absolute and Relative Error at different times forN = 100.

Nicolin et al.[3] CFD4 CFD6
r(m) t(s) Absolute Error Relative Error Absolute Error Relative Error Absolute Error Relative Error
0.001 27 0.0 0.0 0.0 0.0 2.775557e-17 2.202823e-16

4548 1.390885e-06 1.096337e-05 1.352781e-06 1.066619e-05 1.352473 1.066382e-05
19113 2.713013e-05 7.128857e-05 2.717108e-05 7.137700e-05 2.717115e-05 7.137799e-05
45511 1.656995e-05 1.724013e-05 1.657417e-05 1.723278e-05 1.657425e-05 1.723289e-05
91026 5.302804e-06 3.784680e-06 5.297441e-06 3.779458e-06 5.297453e-06 3.779467e-06

teq 2.851582e-07 1.742971e-07 2.855206e-07 1.745186e-07 2.855201e-07 1.745183e-07
0.002 27 0.0 0.0 2.013140e-12 1.597730e-11 1.040613e-09 8.258830e-09

4548 5.543744e-05 2.414386e-04 5.548694e-05 2.424036e-04 5.548642e-05 2.424134e-04
19113 2.844106e-05 3.635749e-05 2.846550e-05 3.637864e-05 2.846574e-05 3.637913e-05
45511 1.125378e-05 9.469479e-06 1.125424e-05 9.466270e-06 1.125428e-05 9.466319e-06
91026 3.666935e-06 2.485237e-06 3.663415e-06 2.482251e-06 3.663423e-06 2.482257e-06

teq 2.058661e-07 1.255135e-07 2.061279e-07 1.256731e-07 2.061277e-07 1.256729e-07
0.003 27 0.010978 0.009780 0.010615 0.009662 0.011113 0.010345

4548 5.239481e-05 4.192512e-05 5.257732e-05 4.208453e-05 5.258039e-05 4.208723e-05
19113 1.130235e-05 8.318473e-06 1.130781e-05 8.321875e-06 1.130790e-05 8.321951-06
45511 4.424064e-06 3.018096e-06 4.423744e-06 3.017512e-06 4.423762e-06 3.017525e-06
91026 1.636938e-06 1.042253e-06 1.635525e-06 1.041248e-06 1.635528e-06 1.041250e-06

teq 9.916444e-08 6.025364e-08 9.929071e-08 6.033036e-08 9.929056e-08 6.033027e-08

Table 3 shows the position of the radius and its velocity for Nicolin et al. [3], CFD4 method and CFD6 method at different
time values and differentN values. In Figure8, the increase in the size of the grain is shown. Nicolin et al.[3] demonstrated
numericallyRmax has≈ 37.4% and experimentally≈ 40.6% the increasing. In the calculations of this work, the increase
in the radius %37.47 for both method, CFD4 and CFD6. Hence, the results are obtained by CFD4 and CFD6 schemes
approximate the result of Nicolin et al. [3] very well.
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Table 3: Comparison of the position of the radius and velocity of the radius at different times for differentN values.

Position of Radius Velocity of Radius
N t(s) Nicolin et al.[3] CFD4 CFD6 Nicolin et al.[3] CFD4 CFD6
60 27 0.003027 0.003032 0.003034 7.188910e-07 6.581855e-07 5.210668e-07

4548 0.003341 0.003337 0.003337 3.347523e-08 3.352256e-08 3.352582e-08
19113 0.003626 0.003623 0.003623 1.283695e-08 1.284040e-08 1.284044e-08
45511 0.003854 0.003851 0.003851 5.888267e-09 5.885257e-09 5.885261e-09
91026 0.004023 0.004019 0.004019 2.206632e-09 2.202524e-09 2.202519e-09

teq 0.004129 0.004124 0.004124 1.377649e-10 1.378431e-10 1.378416e-10
80 27 0.003029 0.003031 0.003030 6.479504e-07 4.585342e-07 3.246622e-07

4548 0.003340 0.003337 0.003337 3.347523e-08 3.352446e-08 3.352675e-08
19113 0.003626 0.003623 0.003623 1.283695e-08 1.284037e-08 1.284044e-08
45511 0.003854 0.003851 0.003851 5.888267e-09 5.885222e-09 5.885234e-09
91026 0.004023 0.004019 0.004019 2.206632e-09 2.202490e-09 2.202491e-09

teq 0.004129 0.004124 0.004124 1.377649e-10 1.378418e-10 1.378439e-10
100 27 0.003029 0.003029 0.003027 5.882738e-07 4.082022e-07 3.717675e-07

4548 0.003339 0.003337 0.003337 3.349053e-08 3.352564e-08 3.352743e-08
19113 0.003625 0.003623 0.003623 1.283846e-08 1.284039e-08 1.2840473e-08
45511 0.003853 0.003851 0.003851 5.887775e-09 5.885213e-09 5.885230e-09
91026 0.004021 0.004019 0.004019 2.205708e-09 2.202477e-09 2.202480e-09

teq 0.004127 0.004124 0.004124 1.377806e-10 1.378441e-10 1.378438e-10

Fig. 8: Grain radius is calculated by Nicolin et al. [3], CFD4 and CFD6 forN = 100.

To show accuracy of the methods convergence rates are calculated by

r = log

(

X∆ r −X∆ r/2

X∆ r/2−X∆ r/4

)

/log2.

From the results in Table 4, although error order of CFD4 and CFD6 do not behave asO(h4) andO(h6), respectively,
CFD4 and CFD6 are more accurate than Nicolin et al. [3].
Equilibrium time (teq) is defined the time at which the center of the grain reaches 99% of the equilibrium moisture content.
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Table 4: Convergence results for Nicolin et al.[3], CFD4 and CFD6.

Nicolin et al. [3] CFD4 CFD6

t ∆r max(X∆ r −X∆ r/2)
X∆r−X∆r/2

X∆r/2−X∆r/4
Convergence rate max(X∆ r −X∆ r/2)

X∆r−X∆r/2
X∆r/2−X∆r/4

Convergence rate max(X∆ r −X∆ r/2)
X∆r−X∆r/2

X∆r/2−X∆r/4
Convergence rate

19113 1/10 0.014464 3.574730 1.837834 0.001727 8.145801 3.026056 0.001219 7.085736 2.824917
1/20 0.004046 4.159013 2.056241 2.121289e-04 7.899908 2.981835 1.721430e-04 7.79285 2.96621525
1/40 9.728773e-04 4.159013 2.339704 2.685207e-05 5.920900 2.565816 2.208985e-05 2.614956 1.386787
1/80 1.921927e-04 - - 4.535133e-06 - - 8.447501e-06 - -
1/160 - - - - - - - - -

45511 1/10 0.002895 1.930698 0.949122 0.001831 6.866960 2.779671 0.001623 6.947927 2.796582
1/20 0.001499 1.926042 0.945639 2.666580e-04 6.653554 2.734125 2.336222e-04 6.782086 2.761729
1/40 7.787053e-04 2.081232 1.057437 4.007752e-05 8.807606 3.138750 3.444695e-05 18.809912 4.233420
1/80 3.741559e-04 - - 4.550331e-06 - - 1.831319e-06 - -
1/160 - - - - - - - - -

91026 1/10 0.006976 2.839293 1.505532 0.001125 6.735154 2.751711 9.521441e-04 6.677889 2.739391
1/20 0.002457 2.653240 1.407755 1.671038e-04 6.298509 2.655010 1.425816e-04 6.350026 2.666762
1/40 9.260486e-04 2.564316 1.358574 2.653069e-05 4.906602 2.294724 2.245370e-05 5.006112 2.323690
1/80 3.611288e-04 - - 5.407141e-06 - - 4.485257e-06 - -
1/160 - - - - - - - - -

teq 1/10 0.001381 3.063930 1.615383 1.399843e-04 6.390913 2.676022 1.202204e-04 6.458128 2.691116
1/20 4.509273e-04 2.845108 1.508483 2.190365e-05 6.057103 2.598628 1.861256e-05 6.077461 2.603468
1/40 1.584921e-04 2.717706 1.442389 3.616192e-06 3.876006 1.954570 3.062555e-06 3.469529 3.469528
1/80 5.831834e-05 - - 9.329687e-07 - - 8.827005e-07 - -
1/160 - - - - - - - - -

In Table 5, the equilibrium time is listed for three methods and it is shown thatteq is shorter than Nicolin et al. [3] but are
realistic with less iteration. Also, CPU times at differentN values for all the methods are given in Table 5 and these are
shorter than Nicolin et al. [3] for all N values.

Table 5: Equilibrium times and CPU times for differentN values.

Nicolin et al.[3] CFD4 CFD6
N teq CPU teq CPU teq CPU
60 234662 293.124552 234148 96.316208 234148 10.052013
80 234507 329.169541 234146 120.966301 234145 18.794400
100 234423 368.56395 234144 125.140448 234144 22.644993.

7 Conclusion

In this paper, fourth and sixth order compact finite difference schemes are used for soybean hydration model. It is worth
to mention that the compact finite difference scheme utilized for this problem is always stable since the modulus of the

spectral radius of iteration matrix is always 1. On the otherhand, the numberrate = log
(

X∆r−X∆r/2
X∆r/2−X∆r/4

)

provides a measure

for the comparison of the rate of convergence of different iterative methods whenN is sufficiently large, so, the obtained
results confirm that our approach is asymptotically convergent and this also an indication that the number of iteration is
required to reduce the error for sufficiently largeN. For this reason, the solutions are obtained by fourth and sixth order
compact finite differences are compatible to the available solutions in the literature and our approach reaches equilibrium
time with less iteration with minimal computational effort(CPU time).

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors have contributed to all parts of the article. Allauthors read and approved the final manuscript.

© 2018 BISKA Bilisim Technology

www.ntmsci.com


199 S. Gulen and T. Ozis: Compact finite difference schemes for soybean hydration model as Stefan problem

References

[1] M. R. Coutinho, Modeling, Simulation and Analysis of theHydration of Soy Beans,Thesis (Doctorate in Chemical Engineering),

State University of Maringa, Brazil (2006).

[2] D. J. Nicolin, M.R.Coutinho, C.M.G.Andrade, L. M. M. Jorge, Hsu model analysis considering grain volume variation during

soybean hydration, J. Food Eng.,111 (2012) 496-504.

[3] D. J. Nicolin, R. M. M. Jorge, L. M. M. Jorge, Moving boundary modeling of conventional and transgenic soybean hydration:

Moisture profile and moving front experimental validation,J. Heat Mass Trans. 90 (2015) 568-567.

[4] M.J.Davey, K.A.Landman, M.J.McGuinness, H.N.Jin, Mathematical modeling of rice cooking and dissolution in beer production,

AIChE J. 48 (2002) 1811-1826.

[5] M.J.McGuinness, C.P.Please, N. Fowkes, P. McGowan, L. Ryder, D. Forte, Modelling the wetting and cooking of a singlecereal

grain, IMA J. Manage Math. 11 (2000) 49-70.

[6] S.I.Barry, J. Caunce, Exact and numerical solutions to aStefan problem with two moving boundaries, Appl. Math. Model. 32

(2008) 83-98.

[7] M. R. Coutinho, W. A. dosS. Conceião, P. R. Paraiso, C. M.G. Andrade, E. S. Jorge, R. Filho Maciel, L. M. M. Jorge, Application

of the Hsu model to soybean grain hydration, Food. Sci Technol. 30 (2010) 19-29.

[8] D. J. Nicolin, M. R. Coutinho, C. M. G. Andrade, L. M. M. Jorge, Soybean Hydration:Investigation of Distributed Parameter

Models with Respect to Surface Boundary Conditions, Chem. Eng. Comm. 200 (2013) 959-976.

[9] J. Crank, Free and Moving Boundary Problems, Clarendon Press, Oxford, 1984.

[10] N. Sadoun, E.K.Si-Ahmed, J. Legrand, On Heat Conduction with Phase Change:Accurate Explicit Numerical Method,J.Appl.

Fluid Mech. 5 (2012) 105-112.
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