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Abstract: In this paper, a study of numerical solutions of a nonlineaybean hydration model which is considered as a Stefan
problem is presented. For this purpose, it is employed foand sixth order compact finite difference schemes for digzing the
spatial derivative and the standard finite difference seh@imdiscretizing the time derivative.To show the efficiginf the methods,
numerical experiments have been done and numerical $yaials been proven. It is noted that the present methods hareeancurate
solution with minimal computational effort (CPU time) fooybean hydration model, by comparison of the results in iteeakure
which is validated experimental data.
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1 Introduction

Many physical problems arising in engineering and scienckide volume variation or movement of system boundaries.
One of the examples of these problems is diffusion models asswelling or drying are studied by many authds2[
3,4,5,6,7,8]. They have been stated that when the water enters the sydtersize of the material increases. Among
them, Coutinho J] has been demonstrated experimentally the increase imetluring the soaking could reach 30%
for soybean. This variation is important in modeling thelsgan hydration process.

Models that including the hydration of grains are descritbldempirical models and phenomenological models.
Empirical models include simple mathematical correlatiort do not describe diffusion steps. In phenomenological
models, elementary steps of diffusion and/or convectiossmi@nsfer is considered|[and these models are represented
with lumped or distributed parameters. Lumped parametgsgesis which do not take into account concentration
variations inside the grain are modeled by ordinary difi¢ied equations. On the other hand, distributed parameter
systems represent concentration gradients that changémeeinside the grain.

Soybean grains behave as distributed parameter systensewihasture profiles inside the grain changes over time and
can be predicted by phenomenological mathematical mo8eise these problems are time-dependent problems, they
are modeled by the parabolic partial differential equatidth an initial condition and two boundary conditions, atass

of initial- boundary value problems. Boundary conditions adopted for the center and the surface of the grain. Irethes
problems, an additional condition can be adapted for mowntwfethe radius, is the moving boundary, is determined as
part of the solution. The behavior of volume increase is diesd by a differential equation which represents the rate o
growth of the radius. Hence, the problem has physical mgafihese problems are called Stefan Problem or moving
boundary problems.
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Due to difficulties in obtaining the analytical solution defan problems many authors have been dedicated to nurherica
solutions of Stefan problem by applying various numericathods including finite differences, finite elements and
integral methods. Earlier studies can be found in Rgf.[

Very recently, Sadoun et all] proposed a modified variable space grid method for heat wdiwh problem and
compared their solution with other solutions in the literat Yigit [11] used finite difference method with variable space
grid and variable time step for one-dimensional solidifaatproblem to the position of the moving front and its
velocity. Also, he developed an analytical method for lingtcase and compared with numerical results. Reutsidy [
13] presented a new meshless method for one dimensional Spefdolem and Stefan type problem with moving
boundaries in spherical coordinates. Mitchell etlall[used the Keller box finite difference method with boundary
immobilization method for the Stefan problem of evapomatid spherical droplets. Lee et allq] proposed a finite
difference moving mesh method for moving boundary solutiod apply their method to the porous medium equation,
Richard’s equation and the Crank-Gupta problem.

The swelling problems as Stefan Problem were taken intowatdwy Davey et al4], McGuinness et alq] and Barry

and Caunced]. They proposed the moisture diffusion model whose diffitgiis an exponential function of moisture
content. In these papers, the models include two moving deries simultaneously. One of them expresses the
movement of the radius and other expresses the movemeng efdter inside the material. These studies propose the
exact solution for the model but they do not extend to anatymioisture profiles obtained during modeling.

Viollaz et al.[L§ and Viollaz and Rovedol[7] used boundary immobilization method for the problem witiiumne
change due to drying or swelling.

Nicolin et al.[3] present a model with volume variation to analyzes the moésprofiles inside the grain. The model has
one moving boundary which represents the behavior of then dna a differential equation which is named Stefan
condition. They solved the problem by explicit finite dité@ce method by validating experimental data.

In this work, it is studied to apply variable space grid metlommbined with fourth and sixth order compact finite
difference method to obtain the solution of the soybean &yoin model proposed by Nicolin et &][ The aim is to
show that compact finite difference schemes which utilizzdsbybean hydration model have less computational effort
(CPU time) with less iteration to reach the more accuratatgwsls. Numerical results are compared with Nicolin et3l.[
and computational times and equilibrium times for the psggbmodels are calculated.

The rest of the paper is as follows: In Section 2, the mathiealahodel of soybean hydration process is introduced. In
Section 3, fourth and sixth order compact finite differenagthonds are summarized. In Section 4, variable space grid
method is applied to the problem and numerical algorithmeascdbed for fourth and sixth order compact finite
difference methods. Numerical stability is proven in Smeth and computational results are given in Section 6 to show
the efficiency of the method on the problem. Paper is condim&ection 7.

2 Mathematical modeling

The model is obtained by transient mass balance on diffiefeaiume element of soybean grains. Since the geometry of
soybeans is assumed spherical, the Bdh@at represent water absorption by soybean is developsghierical coordinates
based on Fick’s Law of Diffusion. It is assumed that diffustakes place only in radial direction.

(1)

d_X—D ga_x_;’_dz_x
ot ror  or2 )’
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whereX represents moisture contentis the radial position which is a function of time abdis the constant diffusion
coefficient.

Eq.(@) is second order partial differential equation. Therefanee initial condition and two boundary conditions are
required for the solution. These boundary conditions aoptat! for the center and the surface of the grain. Bqvhich
shows the initial condition is uniform throughout the drjidat timet = O:

X(r,0)=Xo, forall r. (2)

The boundary conditions are
‘;—f:o for r=0, t>0 ®)
X(R(t),t) =Xeq, t>0. 4)

Eq.(3) defines symmetry of the problem in the center of the graiminiastant of time and Eqj represents moisture
content on the solid-fluid interface £ R(t)) and it reaches equilibrium moisture content at the begimof the soaking.

Eq.() represents Stefan condition representing the motioneofrtint. The initial condition) that is necessary for the
solution of Eq.p) states at the beginning of the hydration process the gmsrahknown radius. For soybean hydration
model,a = Dﬁ is obtained by Nicolin et alj] andRy is a constant.

dR(t)  oX
5 =% r=R(t) ®)
R(0) = Ry. (6)

The boundary condition is defined by E®).causes an indetermination in the Hj.§ince the EqJ) is not defined at
the center of the grain due to ter®/r) which becomes infinite whenapproaches to zero. Therefore, L'Hospital rule is
applied to Eq.Q) to obtain the solution for the center. Ef.(s valid for the center of the grair3].

oX %X

W: W’ r=0. (7)

3 The compact finite difference scheme

In this section, firstly, fourth and sixth order compact &nilifference schemes(CFD4 and CFD6) proposed by Udle [
are introduced. This method is particular kind of finite eifnce method which uses a linear combination of given
values of the function on a set of points to approximate itiveves.

Compact finite difference schemes can be dealing with twalkiaf categories. These are explicit compact finite
differences which compute the numerical derivatives ahegid by using large stencils and implicit compact finite
differences which evaluate the numerical derivativesublosolving a system of linear equation and by using the small
stencil [19,20,21]. In this work, implicit compact finite differences for spatdiscretization are used.

3.1 Spatial discretization

Spatial derivatives are computed by the compact finite idiffee schemelp]. For simplicity, a uniform 1D mesh
consisting ofN points:ry; < ry < ... < rn. The mesh sizeAr = rj;1 —r; is equal at any instant of time. The first
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derivatives are for all interior poinl(si,tj), 2<i<N-1, are given by Eq®):

ax/(riJrl’tJ) +X’(ri’tl) + ax’(riibtl) — bX(I’|+2,t 4).Ar>l((r|727t ) _i_ax(rlJrl»tz)Ar)J((rlfl:t ) 8)

which provides arr-family of fourth order tridiagonal schemes with

a=-(a+2), b:%(4a—1) 9)

OOII\)

Fora = %1 anda = % it is obtained fourth and sixth order tridiagonal schemeSdn(L0) and Eq.{1), respectively:

3 _
IR+ X+ 3Ny = 3T (10)

1 L2 14X1— X
At X+ Ky = g R A T )

where, for simplicity,X; is taken instead dK(ri,tJ).

The derivatives of the points near the boundaries for naiegie problems are given by one-sided schemes. The
derivatives formulae at boundary point2IN — 1, N are given for fourth order scheme as below, respectively.

X 43K = 1 (%7& Xt Ko %ms) (12)
%K’71+>§’+ %X’H = % (—gxaﬁ %m) (13)
%)ﬁ’,1+><{+ %x’ﬂ = A—lr (gml - ‘§1Xi1> (14)
K4 X = 1 (167“;*1—;*2%*3)- (15)

Sixth order schemes formulas at boundary pointé 4nd near the boundary pointd\e— 1 are

197 5 5 1
X, +5X,+1 Ar ( X| 2Xi+1+5xi+2— §Xi+3+ 1—2Xi+4— 7)Xi+5) (16)
1_2]_Xi/—1+xi/ + %_Xi/—&-l = % (_g_gxi—l 132x| + ng—l - 313)(i+2+ 3_23xi+3 - %32Xi+4) (17)
1_21Xi/_1 + X|/+ 1_21Xi,+1 - % (g_gxl—&-l"i_ 132X| g)(i—l+ %3Xi—2 - 3_23Xi—3+ %zxi—4) (18)

5X/ 1+ X = ﬁ (197X| + 12X| 1—5X_2+ %Xi—B— 1%Xi—4+ %Xi_5) . Q9

The fourth order schemd Q) with (12)-(15) can be written in the form of vector-matrix as below,

1
A X = —BX
1 Aol
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whereX = (X1, Xo,...,Xn)T. The second order derivative terms are obtained by apptyi@drst operator twice:

1 /
A X" = =ByX
1 Arl
where,
13 i
1 1
i1
i1z
A1: . . ..
1 1
R
213
L 3 1)
173 3 _1 1
362% 6
i 91
20 3
B1= ' K
3 3
O
2 0 3
1 3 _ 317
L 6 2 2 6-

The vector-matrix form of sixth order schemiel) with (16)-(19) is as follows:
1
ApX' = —BpX
2 Ar 02

whereX = (X1, %, ...,Xn) . The second order derivative terms are obtained by appthiadjrst operator twice,

1,
AoX" = —BoX
Ar
where,
s i
2 2
11 } o
313
A2: . ...
1 1
553,
11l
L 5 1]
_197 .5 5 _5 5 _1 ]
60 12 3 12 20
20 35 34 7 F i1
33 132 33 33 33 132
_1I 14y 1 1
ST A
0 —3% -1 0 13 =
B: = . .
114 g 14 1
36 18 18 36
12 2 7 34 35 20
132 33 33 33 132 33
i .5 5 ¢ 5 i
20 12 3 2 60

First and second derivatives at all grid points are obtaimesblving the band system.
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3.2 Application of Soybean hydration model

In numerical solution of the probleni)-(7), three-point fourth order and sixth order compact finitiedénce scheme
are used for derivatives of the radial coordinate wherenterval is[0, R(t)]. Time derivatives are discretized by forward
finite difference scheme.

4 Numerical algorithm

To express the volume variation Nicolin et 8].ised Variable Space Grid method(VSGM) which was proposad&y
and Landis 22] in Eq.(1). In this method, the number of space intervals between d fdaindaryx = 0 and moving
boundaryx = R(t) is kept constant and equal kb Thus, the moving boundary lies on thith grid. The model analyzes
the time partial derivation by tracking a given line instedi@ constant. For the lineith grid point:

OX, oX dr X

ﬁh*ﬂhawﬁh- (20)

General grid point at moves according to EQ{). The authors have used the method studied on Cartesiadicatas
[23,24). Eq.(1) is in spherical coordinates but since the diffusion takasgonly radial direction, mass transfer is similar
to in Cartesian coordinates. Therefore, Bd)(can be used for this model.

dri _ ri dR(t)
dt  R(t) dt - (21)
Substituting the Eq20) and Eq.R1) into Eq.Q), it is obtained
X 1 dR(t) 9X 20X 92X
3 RO dt ar D(FW+W : (22)

To solve the model the radial coordinate is divided itNopoints (i = 1,2,..,N). The number of time intervals is
determined by the amount of absorption water. When the wip@lm reaches %99 of the equilibrium moisture content,
the process is cut off.

Discretization of Eq.Z) is given by
X=X, i=1,2,..,N. (23)

To discretization of the boundary condition which is givgnly.@3) for the center of the grain, it is used explicit finite
difference approximation: _ _
X) = XJ. (24)
Central finite difference approximation is used in E}j\vhich represents moisture content at the center of thengrai
(r=0),
i 3DAt

- S
X} :x1+(m—j)2(x2b2x{+xg). (25)

To eliminate the term(oj it is used Eq.24) and obtained:

6 . .
(A[:J-A)tz (% =X}). (26)

X]J:+1 _ X]J_ +

Discretization of the moisture diffusion equation for imtal nodes(2 <i < N) is given by Eq.27) with the position
of each grid point defined by = (i — 1)Arl. First and second derivativéX;)! and (X;)! in Eq.(27),respectively, are
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constructed row-by-row by using compact finite differencleesne explained above, i.(e(.;)iJ = iAleXij.

i i [atrlvi 2Dt i DAt i
KJ+1:>§J+<RJ.AH+W>( )3+(Arj)2(x”){. (27)

Since radial coordinate size increases with each time stepalsoaking, the mesh size is definedty = Rl /N.

The termvi which appears in EQR() represents the motion of the boundary, is the radius. Theeitg of motion of the
radius which is represented by E5).{s discretized as

' dR\!  pps o
= =) = =2 !
v ( gt ) Docte DX;;. (28)

The boundary condition on the spherical grain surface isgred by

X = Xeg. (29)
The position of the radius at the next time step is calculbiethe following approximation:

Rt = Rl + AtV

5 Numerical stability

In Section 4, it is demonstrated how compact finite diffeeeacheme applies to soybean hydration model. If 2g.(
(27) and Q9) are written in vector-matrix form, it yields:

XHtl=xl4tcxi+px!, j=12,...,N—-1 (30)
where r 6Ddt 6Ddt ]
7(A_rj)7 W O 0 v 0
aéaﬂ C{éazz C{éazg a’_a24 a’_aZN

alasn  aax  ajass  adasa .. ajas

aqu,laNfll aqu,laNle G,{l,lame G,{l,laNfu G,{l,laNle
0 0 0 0 0

0 0 0 0o .. 0

Bj:b21 B‘:bzz BJ:b23 BJ:b24 Bjisz
B'bzr  B'bzx  B'bzz  Blbzs ... Blban

Blbn-11 Blby-12 BIbn_13 Blbn_14 ... BlbN_1n
0 0 0 0o .. 0
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. : - Jyi
anda;js are component of matri& B andbj;s are component of matri& *BA~!B. Also, a] = (%— + 2??) % and
i

j — _Ddt
BJ* (Arj)Z'

It is seen that the matric&€s andD vary with the variable coefficients and 3. But during numerical calculation, it is
observed that the coefficients do not vary rapidly and chamgeh. As a result, the matrix properties do not change at
different space and time values. For this reason, to pra¥sttibility of the scheme the variable coefficients can bealfixe
at certain space and time points. Thus, the system is wattany consecutive time points as follows:

XI*L= (I 4 yE + nF)X) (31)

= (I +yE+nF)?XxI~1

= (I +yE+nF)*X°
where,yis the fixedaij at certain space and time points apis the fixedB! at certain time points,

- eDdt_ _ 6Ddt 7
@ey gy 90 0 e 0

azy az a3 a2 ... axN
az1 azz a3z azg ... AN
E:

an-11  aN-12 aN-13 GN-14 ... AN-IN
i 0 0 0 0 .. 0 |

o o o0 o0 0 |

bo1  bap boz bos ... bon

ba1 bz b3z bas ... ban
F:

bn-11 bn—12 bn—13 bN—14 ... bnoaN
0 0 0 O .. O

whereAr! in components of the first row of matri is determined by the same time pointdnand 8 coefficients.
According to the theory of finite difference metho®], consistent and stable finite difference method impliss it
convergence. For this, the magnitude of eigenvalligsA E + nF) must be less than or equal to 1. The eigenvalues of
the matrix for differentN values and differeny andn coefficients are plotted in Figure 1 and Figure 2 by calcntati
with MATLAB.

6 Results

The model 1)-(7) is solved by fourth and sixth compact finite difference soheén radial coordinates and forward finite
difference in time coordinates.

It is performed the computations using the software MATLABOR2a on ASUS machine Intel Core i7 2.4 GHz 6 GB
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Fig. 1: Eigenvalues for CFD4 method for differesmtand values at values dfl = 60,80 and 100.

memory. The computational domain for space is consideredr0< R(t), is evaluated by over time and different
numbers of uniform mesh point are used for numerical caticuls.

Constants in the modeB[26] are given as below:

Dx10~1(n?/s)

pos(kgps/m°)

Pwater (KOwater /M)

Xeq(KQwater /KQDs)

Xo(KQwater /Kgps)

3.277

1.057

1.000

1.651

0.126

The correct choice of the number of spatial poifrisis essential for adequate representation of the numeotaiens.
While a small number of divisions of spatial coordinate megd to non-realistic approximations due to rounding error,
the profiles are obtained by simulation with an extremelgganumber of divisions are impracticable due to processing
time. The best way is for determining the smallest numbeisafrdtization points that could preserve the represelitiabi
of numerical solution of the mathematical model.

As a numerical experiment, it is experimented the modelNoralues between 10 and 50. FigBeshows moisture
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Fig. 2: Eigenvalues for CFD6 method for differemtandf3 values at values dfl = 60,80 and 100.

content values as a function of the radius for various vatid¢sne are obtained for extreme twé values (forN = 10
andN = 50) by using CFD4 and CFD6. As is seen, the greatest moisturet variations occur near the surface at the
beginning of the soaking and oscillations occur at smalkinfapproximately around 5000 s). The calculations with
these values do not show realistic numerical solutions vdwenpared to the results that Nicolin et d].jalidated with
experimental data. However, the results obtained witheshf 60< N < 100 show a realistic approach.Nf values
larger than 100, as mentioned above, CPU times increaseléde 5). When we run the problem extremely lafge
values such as 30Z N < 334 the obtained equilibrium time diverges from the experital equilibrium time for CFDA4.
WhenN > 335 CFD4 solutions anN > 280 CFD6 solutions are degenerated, see FigurEigure5 shows moisture
profiles as a function of the radius for various values of tame Figure6 shows moisture profiles as a function of time
for various values of the radius.

To compare the numerical solutions which are obtained mwlirk with experimental moisture content data in R27] [
the mean values for the models are averaged over the voluairelyr using Eq32),

JRX.rdr
S &radr

Xm (32)
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Fig. 4: Solutions of the model as a function of the radius by CFD4)(krfd CFD6 (right) folN = 335 and\ = 280.

and in Figure?, the average profiles are compared with experimental nreigtontent data. On the other hand, mean
squared errors calculated by E2B) between numerical solution and experimental moisturderdrdata are listed in
Table 1. Mean squared errors show that the experimentabdataumerical solutions are in good agreement.

MSE =2 5 (R —Xn)’

(33)

wheren is number of dataX is the experimental data an¢, is the average moisture content is calculated by 3. (

Table 1: Mean squared errors for differeNtvalues.

Nicolin et al.[3] CFD4 CFD6
N MSEx10° MSEx10° MSEx1C®
60 1.927796 1.993219 1.986565
80 1.951536 1.988650 1.985040
100 1.963276 1.988205 1.987798
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Fig. 5: Solutions of the model as a function of the radius by Nicotimle[3], CFD4 and CFD6 folN = 100 at various
times.
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Fig. 6: Solutions of the model as a function of time by Nicolin et3l.[CFD4 and CFD6 folN = 100 at various the
radius.

Also, absolute errors and relative errors which are listetiible 2 are calculated as in below, respectively:

eIt x| (34)
S 17 N A\
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n

&

=N

(39)

Errors of three methods which are calculated with diffefémalues are very close to each other. The values calculated
for N = 100 are given in Table 2.

Table 2: Absolute and Relative Error at different times fére= 100

Nicolin et al.[3] CFD4 CFD6
r(m) t(s) Absolute Error  Relative Error  Absolute Error  Relative ErroAbsolute Error  Relative Error
0.001 27 0.0 0.0 0.0 0.0 2.775557e-17 2.202823e-16
4548  1.390885e-06  1.096337e-05 1.352781le-06 1.066689e-01.352473 1.066382e-05
19113 2.713013e-05 7.128857e-05 2.717108e-05 7.1370M0e2.717115e-05 7.137799e-05
45511 1.656995e-05 1.724013e-05 1.657417e-05 1.723298e-1.657425e-05 1.723289e-05
91026 5.302804e-06  3.784680e-06 5.297441e-06 3.7799%8e5.297453e-06 3.779467e-06
teg 2.851582e-07 1.742971e-07 2.855206e-07 1.745186e-0755208e-07 1.745183e-07
0.002 27 0.0 0.0 2.013140e-12 1.597730e-11 1.040613e-02588&30e-09
4548  5.543744e-05 2.414386e-04 5.548694e-05 2.424086eH548642e-05 2.424134e-04
19113 2.844106e-05 3.635749e-05 2.846550e-05 3.637@b4e2.846574e-05 3.637913e-05
45511 1.125378e-05 9.469479%e-06 1.125424e-05 9.4662G0e1.125428e-05 9.466319e-06
91026 3.666935e-06 2.485237e-06 3.663415e-06 2.482251e3.663423e-06 2.482257e-06
teg 2.058661e-07 1.255135e-07 2.061279e-07 1.256731e-0761270e-07 1.256729e-07
0.003 27 0.010978 0.009780 0.010615 0.009662 0.011113 08461
4548  5.239481e-05 4.192512e-05 5.257732e-05 4.208453eH258039%e-05 4.208723e-05
19113 1.130235e-05 8.318473e-06 1.130781e-05 8.321@7F5e-1.130790e-05 8.321951-06
45511 4.424064e-06  3.018096e-06 4.423744e-06 3.017832e4.423762e-06 3.017525e-06
91026 1.636938e-06 1.042253e-06 1.635525e-06 1.0412@18e-1.635528e-06 1.041250e-06
teg 9.916444e-08 6.025364e-08 9.929071e-08 6.033036e-0829@68e-08 6.033027e-08

Table 3 shows the position of the radius and its velocity fimohn et al. [3], CFD4 method and CFD6 method at different
time values and differeM values. In Figure, the increase in the size of the grain is shown. Nicolin §8hdemonstrated
numericallyRmax has= 37.4% and experimentally 40.6% the increasing. In the calculations of this work, the éase

in the radius %37.47 for both method, CFD4 and CFD6. Heneerdbults are obtained by CFD4 and CFD6 schemes
approximate the result of Nicolin et aB][very well.
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Table 3: Comparison of the position of the radius and velocity of thdius at different times for differef values.

Position of Radius

Velocity of Radius

N t(s) Nicolin et al.[3] CFD4 CFD6 Nicolin et al.3] CFD4 CFD6
60 27 0.003027 0.003032 0.003034  7.188910e-07 6.5818B5e-05.210668e-07
4548 0.003341 0.003337 0.003337  3.347523e-08 3.352286e-0 3.352582e-08
19113 0.003626 0.003623 0.003623  1.283695e-08 1.284080e- 1.284044e-08
45511 0.003854 0.003851 0.003851 5.888267e-09 5.8852%7e- 5.885261e-09
91026 0.004023 0.004019 0.004019 2.206632e-09 2.202824e- 2.202519e-09
teg 0.004129 0.004124 0.004124  1.377649e-10 1.378431e-10 78418e-10
80 27 0.003029 0.003031 0.003030  6.479504e-07 4.5853A42e-0 3.246622e-07
4548 0.003340 0.003337 0.003337  3.347523e-08 3.352486e-0 3.352675e-08
19113 0.003626 0.003623 0.003623  1.283695e-08 1.284087e- 1.284044e-08
45511 0.003854 0.003851 0.003851  5.888267e-09 5.885222e- 5.885234e-09
91026 0.004023 0.004019 0.004019 2.206632e-09 2.202090e- 2.202491e-09
teg 0.004129 0.004124 0.004124  1.377649e-10 1.378418e-10 7843%e-10
100 27 0.003029 0.003029 0.003027 5.882738e-07 4.082022e- 3.717675e-07
4548 0.003339 0.003337 0.003337  3.349053e-08 3.352584e-0 3.352743e-08
19113 0.003625 0.003623 0.003623  1.283846e-08 1.284089e- 1.2840473e-08
45511 0.003853 0.003851 0.003851 5.887775e-09 5.885243e- 5.885230e-09
91026 0.004021 0.004019 0.004019 2.205708e-09 2.202097e- 2.202480e-09
teg 0.004127 0.004124 0.004124  1.377806e-10 1.378441e-10 7843Be-10
x 107
44 T T T T
42F B
_4 - .
__ Micolinet al.[3]
18 (%37 56) _
= ___CFD4
T (%37 .46
3B _._ . .CFD5 1
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Fig. 8: Grain radius is calculated by Nicolin et a][ CFD4 and CFD6 foN = 100.

To show accuracy of the methods convergence rates are atdudy

XAr*XAr/Z )
r=log( ——= ) /log2.
o (XAr/Z Xar /4 /g

From the results in Table 4, although error order of CFD4 aR®€do not behave a®(h*) andO(h®), respectively,
CFD4 and CFD6 are more accurate than Nicolin et3l. [

Equilibrium time (eq) is defined the time at which the center of the grain reach&s&3he equilibrium moisture content.
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Table 4: Convergence results for Nicolin et &} CFD4 and CFD6.

Nicolin et al. 3] CFD4 CFD6
t Ar max(Xar — X Xar—Xar/2 _ Xar—Xar/2 _ Xar —Xar/2
ar — Xar/2) XoreRera Convergence rate max(Xar — Xar/2) oY Convergence rate max(Xar — Xar/2) Ko7 Ko s Convergence rate

19113 1/10 0.014464 3.574730 1.837834 0.001727 8.145801 026856 0.001219 7.085736 2.824917
1/20 0.004046 4.159013 2.056241 2.121289e-04 7.899908 8123% 1.721430e-04 7.79285 2.96621525
1/40 9.728773e-04 4.159013 2.339704 2.685207e-05 592090 2.565816 2.208985e-05 2.614956 1.386787
1/80 1.921927e-04 - - 4.535133e-06 - - 8.447501e-06 - -
1/160 - - - - - - - - -

45511 1/10 0.002895 1.930698 0.949122 0.001831 6.866960  779@71 0.001623 6.947927 2.796582
1/20 0.001499 1.926042 0.945639 2.666580e-04 6.653554 3422p 2.336222e-04 6.782086 2.761729
1/40 7.787053e-04 2.081232 1.057437 4.007752e-05 8.80760  3.138750 3.444695e-05 18.809912 4.233420
1/80 3.741559e-04 - - 4.550331e-06 - - 1.831319e-06 - -
1/160 - - - - - - - - -

91026 1/10 0.006976 2.839293 1.505532 0.001125 6.735154 7517211 9.521441e-04 6.677889 2.739391
1/20 0.002457 2.653240 1.407755 1.671038e-04 6.298509 55016 1.425816e-04 6.350026 2.666762
1/40 9.260486e-04 2.564316 1.358574 2.653069e-05 4.20660 2.294724 2.245370e-05 5.006112 2.323690
1/80 3.611288e-04 - - 5.407141e-06 - - 4.485257e-06 - -
1/160 - - - - - - - - -

teg 1/10 0.001381 3.063930 1.615383 1.399843e-04 6.390913 76222 1.202204e-04 6.458128 2.691116
1/20 4.509273e-04 2.845108 1.508483 2.190365e-05 6.35710 2.598628 1.861256e-05 6.077461 2.603468
1/40 1.584921e-04 2.717706 1.442389 3.616192e-06 3.67600 1.954570 3.062555e-06 3.469529 3.469528
1/80 5.831834e-05 - - 9.329687e-07 8.827005e-07 -
1/160 - - - -

In Table 5, the equilibrium time is listed for three methods & is shown thate is shorter than Nicolin et al3] but are
realistic with less iteration. Also, CPU times at differé&hvalues for all the methods are given in Table 5 and these are
shorter than Nicolin et al.3] for all N values.

Table 5: Equilibrium times and CPU times for differeNtvalues.

Nicolin et al.[3] CFD4 CFD6
N teq CPU teq CPU teq CPU
60 234662 293.124552 234148 96.316208 234148 10.052013
80 234507 329.169541 234146 120.966301 234145 18.794400
100 234423 368.56395 234144 125.140448 234144 22.644993.

7 Conclusion

In this paper, fourth and sixth order compact finite differeschemes are used for soybean hydration model. It is worth
to mention that the compact finite difference scheme utlite this problem is always stable since the modulus of the
spectral radius of iteration matrix is always 1. On the otteerd, the numbeiate = log (%) provides a measure

for the comparison of the rate of convergence of differearitive methods wheN is sufficiently large, so, the obtained
results confirm that our approach is asymptotically conset@nd this also an indication that the number of iteration i
required to reduce the error for sufficiently lafyeFor this reason, the solutions are obtained by fourth axttl sirder
compact finite differences are compatible to the availablet®ns in the literature and our approach reaches edjiuitib

time with less iteration with minimal computational eff@@PU time).
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