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1 Introduction and preliminaries

The theory of delay differential equations is important both theoretical and practical interest. For the basic theory of
delay differential equations, the reader is referred to thebooks by Bellman and Cooke [1], Driver [4], El’sgol’ts and
Norkin [5], Hale and Verduyn Lunel [6], Kolmanovski and Myshkis [7] and Lakshmikantham, Wen and Zhang [8].

In this paper, we deal with the stability of the trivial solution for a third order linear autonomous delay differential
equation with constant delay. An asymptotic result for the solutions is obtained. Also, an estimate of the solutions anda
stability criterion for the trivial solution are established. The sufficient conditions for the stability and the asymptotic
stability of the trivial solution and some examples are given. Moreover, a result on the behavior of the solutions is given.
Our results are derived by the use of real roots (with an appropriate property) of the corresponding (in a sense)
characteristic equations. The very interesting asymptotic and stability results were given by Philos and Purnaras [9-10].
The techniques applied in [11,12] are originated in a combination of the methods used in [9,10].

Yeniçerioğlu [12] obtained some results on the qualitative behavior of the solutions of a second order linear autonomous
delay differential equation with a single delay. The main idea in [12] is that of transforming the second order delay
differential equation into a first order delay differentialequation, by the use of a real root of the corresponding
characteristic equation. The same idea will be used in this paper to obtain some general results.

Recently, Cahlon and Schmidt et al. [2] have established thestability criteria for a third order delay differential equation.
This equation is obtained the stability of third order delaydifferential equation using Pontryagin’s theory for
quasi-polynomials. However, we study the stability of the some problem using the method of characteristic roots.

Let us consider initial value problem for third order delay differential equation

y′′′ = p1y′′(t)+ p2y
′′(t − τ)+q1y

′(t)+q2y
′(t − τ)+ v1y(t)+ v2y(t − τ), t ≥ 0 (1)

wherep1, p2, q1, q2, v1, v2 are real numbers,τ is a positive real number. In a previous paper [3], we considered Eq. (1)
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with q2 = 0 andv1 = 0 which arose from a robotic model with damping and delay. There are no practical stability criteria
of the zero solution of (1).

By a solutionof the delay differential equation (1), we mean a twice continuously differentiable real-valuedfunctiony
defined on the interval[−τ,∞), which is thrice continuously differentiable on[0,∞) and satisfies (1) for all t ≥ 0.
Together with the delay differential equation (1), it is customary to specify aninitial conditionof the form

y(t) = φ(t), for − τ ≤ t ≤ 0, (2)

where the initial functionφ(t) is a given twice continuously differentiable real-valued function on the initial interval
[−τ,0].

Equations (1) and (2) constitute aninitial value problem(IVP, for short). It is known that, ( see, for example, Driver[4] )
for any given initial functionφ , there exists a unique solution of the initial value problem(1) and (2) or, more briefly, the
solutionof the IVP (1) and (2).

Along with the delay differential equation (1), we associate the equation

λ 3 = λ 2p1+λq1+ v1+e−λ τ (λ 2p2+λq2+ v2
)
, (3)

which will be called thecharacteristic equation of(1). Eq. (3) is obtained from (1) by looking for solutions of the form
y(t) = eλ t for t ≥−τ.

For a given real rootλ0 of the characteristic equation (3), we consider the (second order) delay differential equation

z′′(t) =(p1−3λ0)z
′(t)+e−λ0τ p2z′(t − τ)+ (q1+2p1λ0−3λ 2

0)z(t)

+e−λ0τ(q2+2p2λ0)z(t − τ)−e−λ0τ(p2λ 2
0 +q2λ0+ v2)

∫ t

t−τ
z(s)ds. (4)

A solutionof the delay differential equation (3) is a continuous real-valued functionz defined on the interval[−τ,∞),
which is twice continuously differentiable on[0,∞) and satisfies (3) for all t ≥ 0.

With the delay differential equation (3), we associate the equation

δ 2 =(p1−3λ0)δ +q1+2p1λ0−3λ 2
0 +(p2 δ +q2+2p2λ0) e−(λ0+δ )τ

−e−λ0τ(p2λ 2
0 +q2λ0+ v2)δ−1(1−e−δτ) (5)

which is said to be thecharacteristic equation of(3). This equation is obtained from (3) by seeking solutions of the
form z(t) = eδ t for t ≥−τ.

For our convenience, we introduce some notations. For a given real rootλ0 of the characteristic equation (3), we set

βλ0
= e−λ0τ ((p2λ 2

0 +q2λ0+ v2)τ −q2−2p2λ0
)
−q1−2p1λ0+3λ 2

0 (6)

and, also, we define

L(λ0;φ) =φ ′′(0)+ (λ0− p1)φ ′(0)− p2φ ′(−τ)+ (λ 2
0 − p1λ0−q1)φ(0)

− (p2λ0+q2)φ(−τ)+e−λ0τ(p2λ 2
0 +q2λ0+ v2)

∫ 0

−τ
e−λ0sφ(s)ds; (7)
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in addition, provided thatβλ0
6= 0, we define

Φ1(λ0;φ)(t) = φ(t)e−λ0t −
L(λ0;φ)

βλ0

for − τ ≤ t ≤ 0. (8)

We will now give a proposition, which plays a crucial role in obtaining our main results.

Proposition 1.Let λ0 be real root of the characteristic equation (3), and letβλ0
and L(λ0;φ) be defined by (6) and (7),

respectively. Suppose thatβλ0
6= 0, and defineΦ1(λ0;φ) by (8). Then a continuous real-valued function y defined on the

interval [−τ,∞) is the solution of the IVP (1) and (2)if and only if the function z defined by

z(t) = y(t)e−λ0t −
L(λ0;φ)

βλ0

for t ≥−τ (9)

is the solution of the delay differential equation (4) which satisfies the initial condition

z(t) = Φ1(λ0;φ)(t) for − τ ≤ t ≤ 0. (10)

Proof.Let y be the solution of the IVP (1) and (2). Define

x(t) = e−λ0ty(t) for t ∈ [−τ,∞), (11)

whereλ0 is a real root of the characteristic equation (3). Then, for everyt ≥ 0, we have

[
x′′(t)+ (3λ0− p1)x

′(t)−e−λ0τ p2x′(t − τ)+ (3λ 2
0 −2p1λ0−q1)x(t)−e−λ0τ(2p2λ0+q2)x(t − τ)

]′

= (p1λ 2
0 +q1λ0+ v1−λ 3

0)x(t)+e−λ0τ(p2λ 2
0 +q2λ0+ v2)x(t − τ). (12)

Moreover, the initial condition (2) can be equivalently written

x(t) = e−λ0tφ(t) for t ∈ [−τ,0]. (13)

Furthermore, by using (3) and taking into account (13), we can verify that (12) is equivalent to

x′′(t)+ (3λ0− p1)x
′(t)−e−λ0τ p2x′(t − τ)+ (3λ 2

0 −2p1λ0−q1)x(t)−e−λ0τ(2p2λ0+q2)x(t − τ)

= (p1λ 2
0 +q1λ0+ v1−λ 3

0)

∫ t

0
x(s)ds+e−λ0τ(p2λ 2

0 +q2λ0+ v2)

∫ t

0
x(s− τ)ds+ x′′(0)+ (3λ0− p1)x

′(0)

−e−λ0τ p2x′(−τ)+ (3λ 2
0 −2p1λ0−q1)x(0)−e−λ0τ(2p2λ0+q2)x(−τ),

x′′(t) = (p1−3λ0)x
′(t)+e−λ0τ p2x′(t − τ)+ (q1+2p1λ0−3λ 2

0 )x(t)+e−λ0τ(q2+2p2λ0)x(t − τ)

+ (p1λ 2
0 +q1λ0+ v1−λ 3

0)

∫ t

0
x(s)ds+e−λ0τ (p2λ 2

0 +q2λ0+ v2)

∫ t−τ

−τ
x(s)ds

+φ ′′(0)−2λ0φ ′(0)+λ 2
0φ(0)+ (3λ0− p1)(φ ′(0)−λ0φ(0))− p2(φ ′(−τ)−λ0φ(−τ))

+ (3λ 2
0 −2p1λ0−q1)φ(0)− (2p2λ0+q2)φ(−τ),

x′′(t) = (p1−3λ0)x
′(t)+e−λ0τ p2x′(t − τ)+ (q1+2p1λ0−3λ 2

0)x(t)

+e−λ0τ(q2+2p2λ0)x(t − τ)+ (p1λ 2
0 +q1λ0+ v1−λ 3

0)

∫ t

0
x(s)ds

+e−λ0τ(p2λ 2
0 +q2λ0+ v2)

∫ t−τ

0
x(s)ds+L(λ0;φ),
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x′′(t) = (p1−3λ0)x
′(t)+e−λ0τ p2x′(t − τ)+ (q1+2p1λ0−3λ 2

0)x(t)

+e−λ0τ(q2+2p2λ0)x(t − τ)−e−λ0τ(p2λ 2
0 +q2λ0+ v2)

∫ t

0
x(s)ds

+e−λ0τ(p2λ 2
0 +q2λ0+ v2)

∫ t−τ

0
x(s)ds+L(λ0;φ),

x′′(t) = (p1−3λ0)x
′(t)+e−λ0τ p2x′(t − τ)+ (q1+2p1λ0−3λ 2

0)x(t)

+e−λ0τ(q2+2p2λ0)x(t − τ)−e−λ0τ(p2λ 2
0 +q2λ0+ v2)

∫ t

t−τ
x(s)ds+L(λ0;φ), (14)

whereL(λ0;φ) was given in (7). Now, we take into account the assumptionβλ0
6= 0 and we define

z(t) = x(t)−
L(λ0;φ)

βλ0

for t ≥−r. (15)

Then, because of definition ofβλ0
by (6), it is a matter of elementary calculations to show thatx satisfies (14) for t ≥ 0 if

and only ifz satisfies (4) for t ≥ 0, i.e., if and only ifz is a solution of the delay differential equation (4). Moreover, we
see that the initial condition (13) is equivalently written as follows

z(t) = e−λ0tφ(t)−
L(λ0;φ)

βλ0

for − τ ≤ t ≤ 0. (16)

We have thus proved thaty is the solution of the IVP (1) and (2) if and only if z is the solution of the delay differential
equation (4) which satisfies the initial condition (16). By (11), we see that (15) coincides with (9). Also, by taking into
account the definition ofΦ1(λ0;φ) by (8), we observe that (16) coincides with the initial condition (10). The proof of the
proposition 1 is completed.

For a given real rootsλ0 , δ0 of the characteristic equations (3) and (5), respectively, we consider the (first order) delay
differential equation

w′(t) =(p1−3λ0−2δ0)w(t)+e−(λ0+δ0)τ p2w(t − τ)−e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)

∫ t

t−τ
w(s)ds

+e−λ0τ(p2λ 2
0 +q2λ0+ v2)

∫ τ

0
e−δ0s

{∫ t

t−s
w(u)du

}
ds. (17)

By a solution of the delay (17), we mean a continuous real-valued functionw defined on the interval[−τ,∞), which is
continuously differentiable on[0,∞) and satisfies (17) for all t ≥ 0. The characteristic equation of the delay differential
equation (17) is

γ =p1−3λ0−2δ0+ p2e−(λ0+δ0+γ)τ −e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)

∫ τ

0
e−γ sds

+e−λ0τ(p2λ 2
0 +q2λ0+ v2)

∫ τ

0
e−δ0s

(∫ s

0
e−γ udu

)
ds

or

γ =p1−3λ0−2δ0+ p2e−(λ0+δ0+γ)τ −e−(λ0+δ0)τ (p2δ0+q2+2p2λ0) γ−1(1−e−γτ)

+e−λ0τ(p2λ 2
0 +q2λ0+ v2) γ−1

{
δ−1

0

(
1−e−δ0τ

)
− (δ0+ γ)−1

(
1−e−(δ0+γ)τ

)}
. (18)

The last equation is obtained from (17) by seeking solutions of the formw(t) = eγ t for t ≥−τ.

For our convenience, we introduce some notations. For a given real rootλ0 of the characteristic equation (3) and a given
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real rootδ0 of the characteristic equation (5), we set

ηλ0,δ0
= e−(λ0+δ0)τ {(p2δ0+q2+2p2λ0)τ − p2}− p1+3λ0+2δ0−e−λ0τ(p2λ 2

0 +q2λ0+ v2)
∫ τ

0
se−δ0sds (19)

and letΦ1(λ0;φ) be defined by (8). Also, we define

R(λ0,δ0;φ) =(Φ1(λ0;φ))
′
(0)− δ0Φ1(λ0;φ)(0)− (p1−3λ0−2δ0)Φ1(λ0;φ)(0)

−e−λ0τ p2Φ1(λ0;φ)(−τ)+e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)

∫ 0

−τ
e−δ0sΦ1(λ0;φ)(s)ds

−e−λ0τ(p2λ 2
0 +q2λ0+ v2)

∫ τ

0
e−δ0s

{∫ 0

−s
e−δ0uΦ1(λ0;φ)(u)du

}
ds, (20)

where(Φ1(λ0;φ))
′
is derivative ofΦ1(λ0;φ); in addition, provided thatηλ0,δ0

6= 0, we define

Φ2(λ0,δ0;φ)(t) = e−δ0tΦ1(λ0;φ)(t)−
R(λ0,δ0;φ)

ηλ0,δ0

for t ∈ [−τ,0]. (21)

We will now give a proposition, which plays a crucial role in obtaining our main results.

Proposition 2. Let δ0 be real root of the characteristic equation (5), and letηλ0,δ0
and R(λ0,δ0;φ) be defined by (19)

and (20), respectively. Suppose thatηλ0,δ0
6= 0 and defineΦ2(λ0,δ0;φ) by (21). Then a continuous real-valued function

z defined on the interval[−τ,∞) is the solution of the delay differential equation (4) which satisfies the initial condition
(10) if and only if the function w defined by

w(t) = e−δ0tz(t)−
R(λ0,δ0;φ)

ηλ0,δ0

for t ≥−τ (22)

is the solution of the delay differential equation (17) which satisfies the initial condition

w(t) = Φ2(λ0,δ0;φ)(t) for − τ ≤ t ≤ 0. (23)

Proof.Let nowzbe the solution of (4) and (10) andδ0 be a real root of the characteristic equation (5). Define

v(t) = e−δ0 tz(t) for all t ∈ [−τ,∞). (24)

Then, for everyt ≥ 0, we have

v′′(t) =(p1−3λ0−2δ0)v
′(t)+e−(λ0+δ0)τ p2v′(t − τ)+ (δ0p1−3λ0δ0+q1+2p1λ0−3λ 2

0 − δ 2
0 )v(t)

+e−(λ0+δ0)τ(δ0p2+q2+2p2λ0)v(t − τ)−e−λ0τ(p2λ 2
0 +q2λ0+ v2)

∫ τ

0
e−δ0sv(t − s)ds. (25)

Moreover, the initial condition (16) can be equivalently written

v(t) = e−δ0tΦ1(λ0;φ)(t) for t ∈ [−τ,0], (26)

whereΦ1 was given in (8). Furthermore, by using (5) and taking into account (26), we can verify that (25) is equivalent to

v′(t) =v′(0)+ (p1−3λ0−2δ0)v(t)− (p1−3λ0−2δ0)v(0)+e−(λ0+δ0)τ p2v(t − τ)−e−(λ0+δ0)τ p2v(−τ)

+ (δ0p1−3λ0δ0+q1+2p1λ0−3λ 2
0 − δ 2

0 )

∫ t

0
v(s)ds+e−(λ0+δ0)τ(δ0p2+q2+2p2λ0)

∫ t

0
v(s− τ)ds

−e−λ0τ(p2λ 2
0 +q2λ0+ v2)

∫ τ

0
e−δ0s

{∫ t

0
v(u− s)du

}
ds,
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v′(t) =(Φ1(λ0;φ))
′
(0)− δ0Φ1(λ0;φ)(0)+ (p1−3λ0−2δ0)v(t)− (p1−3λ0−2δ0)Φ1(λ0;φ)(0)

+e−(λ0+δ0)τ p2v(t − τ)−e−λ0τ p2Φ1(λ0;φ)(−τ)+ (δ0p1−3λ0δ0+q1+2p1λ0

−3λ 2
0 − δ 2

0 )
∫ t

0
v(s)ds+e−(λ0+δ0)τ(δ0p2+q2+2p2λ0)

{∫ 0

−τ
v(s)ds+

∫ t−τ

0
v(s)ds

}

−e−λ0τ(p2λ 2
0 +q2λ0+ v2)

∫ τ

0
e−δ0s

{∫ 0

−s
v(u)du+

∫ t−s

0
v(u)du

}
ds,

v′(t) =(p1−3λ0−2δ0)v(t)+e−(λ0+δ0)τ p2v(t − τ)

−
{

e−(λ0+δ0) (p2δ0+q2+2p2λ0)− δ−1
0

(
1−e−δ0τ

)(
p2λ 2

0 +q2λ0+ v2
)

e−λ0τ
} ∫ t

0
v(s)ds

+e−(λ0+δ0)τ (δ0p2+q2+2p2λ0)
∫ t−τ

0
v(s)ds

−e−λ0τ(p2λ 2
0 +q2λ0+ v2)

∫ τ

0
e−δ0s

{∫ t−s

0
v(u)du

}
ds+R(λ0,δ0;φ),

v′(t) =(p1−3λ0−2δ0)v(t)+e−(λ0+δ0)τ p2v(t − τ)−e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)

∫ t

t−τ
v(s)ds

+e−λ0τ(p2λ 2
0 +q2λ0+ v2)

∫ τ

0
e−δ0sds

∫ t

0
v(s)ds

−e−λ0τ(p2λ 2
0 +q2λ0+ v2)

∫ τ

0
e−δ0s

{∫ t−s

0
v(u)du

}
ds+R(λ0,δ0;φ),

v′(t) =(p1−3λ0−2δ0)v(t)+e−(λ0+δ0)τ p2v(t − τ)−e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)

∫ t

t−τ
v(s)ds

+e−λ0τ(p2λ 2
0 +q2λ0+ v2)

∫ τ

0
e−δ0s

{∫ t

t−s
v(u)du

}
ds+R(λ0,δ0;φ), (27)

whereR(λ0,δ0;φ) was given in (20).

Next, we take into account the assumptionηλ0,δ0
6= 0 and we define

w(t) = v(t)−
R(λ0,δ0;φ)

ηλ0,δ0

for t ≥−τ. (28)

Then, because of definition ofηλ0,δ0
by (19), it is a matter of elementary calculations to show thatv satisfies (27) for t ≥ 0

if and only if w satisfies (17) for t ≥ 0, i.e., if and only ifw is a solution of the delay differential equation (17). Moreover,
we see that the initial condition (26) is equivalently written as follows

w(t) = e−δ0tΦ1(λ0;φ)(t)−
R(λ0,δ0;φ)

ηλ0,δ0

for − τ ≤ t ≤ 0. (29)

We have thus proved thatz is the solution of (4) and (10) if and only if w is the solution of the delay differential equation
(17) which satisfies the initial condition (29). By (24), we see that (28) coincides with (22). Also, by taking into account
the definition ofΦ2(λ0,δ0;φ) by (21), we observe that (29) coincides with the initial condition (23). The proof of the
proposition 2 is completed.

Let C( [−τ,0], IR) be the Banach space of all continuous real-valued functionson the interval[−τ,0], endowed with the
usual sup-norm

‖Ψ‖= max
−τ≤t≤0

|Ψ (t)| for Ψ ∈C( [−τ,0], IR) .
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Moreover, letC2 ( [−τ,0], IR) be the set of all twice continuously differentiable real-valued functions on the interval
[−τ,0]. This set is a Banach space with the norm

‖Ψ‖C2 = max
{
‖Ψ‖ ,

∥∥Ψ ′
∥∥ ,

∥∥Ψ ′′
∥∥} for Ψ ∈C2 ( [−τ,0], IR) .

As it concerns the IVP (1) and (2) studied in this paper, the initial functionφ belongs toC2 ( [−τ,0], IR). So, the notation
‖φ‖C2 used in Section 3 is defined by

‖φ‖C2 = max
{
‖φ‖

∥∥φ ′
∥∥ ∥∥φ ′′

∥∥}≡ max

{
max

−τ≤t≤0
|φ(t)| , max

−τ≤t≤0

∣∣φ ′(t)
∣∣ , max

−τ≤t≤0

∣∣φ ′′(t)
∣∣
}
.

Before closing this section, we will give three well-known definitions. The trivial solution of the delay differential equation
(1) is said to be “stable” (at 0) if for everyε > 0, there exists aℓ = ℓ(ε) > 0 such that, for anyφ ∈C2 ( [−τ,0], IR) with
‖φ‖C2 < ℓ, the solutiony of the IVP (1) and (2) satisfies

|y(t)|< ε for all t ∈ [−τ,∞).

Otherwise, the trivial solution of (1) is said to be “unstable” (at 0). Moreover, the trivial solution of (1) is called
“asymptotically stable” (at 0) if it is stable in the above sense and, in addition, there exists aℓ0 > 0 such that, for any
φ ∈C2 ( [−τ,0], IR) with ‖φ‖C2 < ℓ0, the solutiony of the IVP (1)-(2) satisfies

lim
t→∞

|y(t)|= 0; i.e., lim
t→∞

y(t) = 0.

2 An Asymptotic results

Our purpose in this section is to establish the following theorem.

Theorem 1.Let λ0 be real root of the characteristic equation (3), and letβλ0
and L(λ0;φ) be defined by (6) and (7),

respectively. Furthermore, letδ0 be real root of the characteristic equation (5), and let ηλ0,δ0
, R(λ0,δ0;φ) and

Φ2(λ0,δ0;φ) be defined by (19), (20) and (21), respectively. Moreover, letγ0 be a real root of the characteristic equation
(18). Suppose thatβλ0

6= 0 and ηλ0,δ0
6= 0. ( Note that, because ofβλ0

6= 0, we always haveδ0 6= 0 and γ0 6= −δ0.
Furthermore, because ofηλ0,δ0

6= 0, we always haveγ0 6= 0. ) Set

ξλ0,δ0,γ0
=e−(λ0+δ0+γ0)τ p2τ −e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)

∫ τ

0
e−γ0ssds

+e−λ0τ (p2λ 2
0 +q2λ0+ v2

)∫ τ

0
e−δ0s

{∫ s

0
e−γ0uudu

}
ds (30)

and, also, define

K(λ0,δ0,γ0;φ) =Φ2(λ0,δ0;φ)(0)+e−(λ0+δ0+γ0)τ p2

∫ 0

−τ
e−γ0sΦ2(λ0,δ0;φ)(s)ds

−e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)
∫ τ

0
e−γ0s

{∫ 0

−s
e−γ0uΦ2(λ0,δ0;φ)(u)du

}
ds

+e−λ0τ (p2λ 2
0 +q2λ0+ v2

)∫ τ

0
e−δ0s

{∫ s

0
e−γ0u

{∫ 0

−u
e−γ0ωΦ2(λ0,δ0;φ)(ω)dω

}
du

}
ds. (31)

Assume that

µλ0,δ0,γ0
=e−(λ0+δ0+γ0)τ |p2| τ +e−(λ0+δ0)τ |p2δ0+q2+2p2λ0|

∫ τ

0
e−γ0ssds

+e−λ0τ ∣∣p2λ 2
0 +q2λ0+ v2

∣∣
∫ τ

0
e−δ0s

{∫ s

0
e−γ0uudu

}
ds< 1. (32)
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( This assumption guarantees that 1+ ξλ0,δ0,γ0
> 0. ) Then the solutiony of the IVP (1) and (2) satisfies

lim
t→∞

{
e−γ0 t

[
e−(λ0+δ0)ty(t)−

L(λ0;φ)
βλ0

e−δ0t −
R(λ0,δ0;φ)

ηλ0,δ0

]}
=

K(λ0,δ0,γ0;φ)
1+ ξλ0,δ0,γ0

. (33)

Before we prove the above theorem, we will present some observations, which are concerned with a real rootλ0 of the
characteristic equation (3), a real rootδ0 of the characteristic equation (5) and a real rootγ0 of the characteristic equation
(18).

Let F(δ ) denote the characteristic function of (5), i.e.,

F(δ ) =δ 2− (p1−3λ0)δ − p2δ e−(λ0+δ )τ −q1−2p1λ0+3λ 2
0

− (q2+2p2λ0)e
−(λ0+δ )τ +e−λ0τ(p2λ 2

0 +q2λ0+ v2)δ−1(1−e−δτ).

Sinceδ = 0 is a removable singularity ofF(δ ), we can regardF(δ ) as a entire function with

F(0) = e−λ0τ ((p2λ 2
0 +q2λ0+ v2)τ −q2−2p2λ0

)
−q1−2p1λ0+3λ 2

0 ≡ βλ0
.

Hence, if we assume thatβλ0
6= 0, then we always haveδ0 6= 0. LetG(γ) denote the characteristic function of (18), i.e.,

G(γ) =− γ + p1−3λ0−2δ0+ p2e−(λ0+δ0+γ)τ −e−(λ0+δ0)τ (p2δ0+q2+2p2λ0) γ−1(1−e−γτ)

+e−λ0τ (p2λ 2
0 +q2λ0+ v2) γ−1

{
δ−1

0

(
1−e−δ0τ

)
− (δ0+ γ)−1

(
1−e−(δ0+γ)τ

)}
.

Sinceγ = 0 is a removable singularity ofG(γ), we can regardG(γ) as a entire function with

G(0) =p1−3λ0−2δ0+ p2e−(λ0+δ0)τ −e−(λ0+δ0)τ (p2δ0+q2+2p2λ0) τ

+e−λ0τ(p2λ 2
0 +q2λ0+ v2)δ−2

0

(
1−e−δ0τ − δ0τ e−δ0τ

)
≡ ηλ0,δ0

.

Hence, if we assume thatηλ0,δ0
6= 0, then we always haveγ0 6= 0. Furthermore, sinceγ = −δ0 (δ0 6= 0) is a removable

singularity ofG(γ), we can regardG(γ) as a entire function with

G(−δ0) =δ0+ p1−3λ0−2δ0+ p2e
−λ0τ +e−(λ0+δ0)τ (p2δ0+q2+2p2λ0) δ−1

0

(
1−eδ0τ

)

−e−λ0τ(p2λ 2
0 +q2λ0+ v2)δ−1

0

(
δ−1

0

(
1−e−δ0τ

)
− τ
)

or

δ0G(−δ0) =− δ 2
0 + δ0(p1−3λ0)+ δ0p2e−λ0τ +e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)

−e−λ0τ (p2δ0+q2+2p2λ0)−e−λ0τ(p2λ 2
0 +q2λ0+ v2)δ−1

0

(
1−e−δ0τ

)
+e−λ0τ (p2λ 2

0 +q2λ0+ v2)τ.

By using (5), we derive

δ0G(−δ0) =−
(
q1+2p1λ0−3λ 2

0

)
−e−λ0τ (q2+2p2λ0)+e−λ0τ(p2λ 2

0 +q2λ0+ v2)τ ≡ βλ0
.

But, by the definition ofβλ0
6= 0, a root of the characteristic equation (18) must becomeγ0 6= −δ0. Consequently, it must

beδ0 6= 0 real root of the characteristic equation (5) andγ0 6= 0, γ0 6=−δ0 real root of the characteristic equation (18).

Defineµλ0,δ0,γ0
by (32). It is clearµλ0,δ0,γ0

is positive. So, (32) can equivalently be written as follows

0< µλ0,δ0,γ0
< 1. (34)

© 2018 BISKA Bilisim Technology



NTMSCI 6, No. 2, 200-225 (2018) /www.ntmsci.com 208

Furthermore, for the real constantξλ0,δ0,γ0
defined by (30), we have

∣∣ξλ0,δ0,γ0

∣∣≤
∣∣∣e−(λ0+δ0+γ0)τ p2τ

∣∣∣+
∣∣∣∣e

−(λ0+δ0)τ (p2δ0+q2+2p2λ0)

∫ τ

0
e−γ0ssds

∣∣∣∣

+

∣∣∣∣e
−λ0τ (p2λ 2

0 +q2λ0+ v2
)∫ τ

0
e−δ0s

{∫ s

0
e−γ0uudu

}
ds

∣∣∣∣ ,

≤ e−(λ0+δ0+γ0)τ |p2|τ +e−(λ0+δ0)τ |p2δ0+q2+2p2λ0|

∫ τ

0
e−γ0ssds

+e−λ0τ ∣∣p2λ 2
0 +q2λ0+ v2

∣∣
∫ τ

0
e−δ0s

{∫ s

0
e−γ0uudu

}
ds≡ µλ0,δ0,γ0

.

That is,

|ξλ0,δ0,γ0
| ≤ µλ0,δ0,γ0

. (35)

Thus, if we assume that (32) is satisfied, i.e., that (34) holds, then (35) gives|ξλ0,δ0,γ0
|< 1. This guarantees, in particular,

that

1+ ξλ0,δ0,γ0
> 0.

Proof. Let ybe the solution of the IVP (1) and (2). Define the functionz by (9). By Proposition 1.1, the fact thaty is

the solution of the IVP (1) and (2) is equivalent to the fact thatz is the solution of the delay differential equation (4)

which satisfies the initial condition (10). Furthermore, define the functionw by (22). By Proposition 2, the fact thatz

is the solution of the delay differential equation (4) and (10) is equivalent to the fact thatw is the solution of the delay

differential equation (17) which satisfies the initial condition (23). Set

Ω(t) = e−γ0 tw(t) for all t ∈ [−τ,∞). (36)

Then, using the fact thatγ0 is a real root of the characteristic equation (18), from (17) we obtain, for everyt ≥ 0,

Ω ′(t) =(p1−3λ0−2δ0− γ0)Ω(t)+e−(λ0+δ0+γ0)τ p2Ω(t − τ)

−e−(λ0+δ0)τ (p2δ0+q2+2p2λ0))

∫ τ

0
e−γ0sΩ(t − s)ds

+e−λ0τ(p2λ 2
0 +q2λ0+ v2)

∫ τ

0
e−δ0s

{∫ s

0
e−γ0u Ω(t −u)du

}
ds. (37)

Moreover, the initial condition (29) can be equivalently written

Ω(t) = e−γ0 tΦ2(λ0,δ0;φ)(t) for t ∈ [−τ,0], (38)

whereΦ2(λ0,δ0;φ) is defined by (21). Furthermore, using the fact thatγ0 is a real root of (18) and taking into account

(38), we can verify that (37) is equivalent to

Ω(t) =(p1−3λ0−2δ0− γ0)

∫ t

0
Ω(s)ds+e−(λ0+δ0+γ0)τ p2

∫ t

0
Ω(s− τ)ds

−e−(λ0+δ0)τ (p2δ0+q2+2p2λ0))

∫ τ

0
e−γ0s

{∫ t

0
Ω(u− s)du

}
ds

+e−λ0τ(p2λ 2
0 +q2λ0+ v2)

∫ τ

0
e−δ0s

{∫ s

0
e−γ0u

{∫ t

0
Ω(ω −u)dω

}
du

}
ds+Ω(0),
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Ω(t) =(p1−3λ0−2δ0− γ0)

∫ t

0
Ω(s)ds+e−(λ0+δ0+γ0)τ p2

∫ t−τ

−τ
Ω(s)ds

−e−(λ0+δ0)τ (p2δ0+q2+2p2λ0))

∫ τ

0
e−γ0s

{∫ t−s

−s
Ω(u)du

}
ds

+e−λ0τ(p2λ 2
0 +q2λ0+ v2)

∫ τ

0
e−δ0s

{∫ s

0
e−γ0u

{∫ t−u

−u
Ω(ω)dω

}
du

}
ds+Ω(0),

Ω(t) =−e−(λ0+δ0+γ0)τ p2

∫ t

t−τ
Ω(s)ds+e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)

∫ τ

0
e−γ0s

{∫ t

t−s
Ω(u)du

}
ds

−e−λ0τ(p2λ 2
0 +q2λ0+ v2)

∫ τ

0
e−δ0s

{∫ s

0
e−γ0u

{∫ t

t−u
Ω(ω)dω

}
du

}
ds+K(λ0,δ0,γ0;φ), (39)

whereK(λ0,δ0,γ0;φ) is defined by (31). Next, we define

Θ(t) = Ω(t)−
K(λ0,δ0,γ0;φ)

1+ ξλ0,δ0,γ0

, for t ≥−τ, (40)

whereξλ0,δ0,γ0
is defined by (30). Then we can see that (39) reduces to the following equivalent equation

Θ(t) =−e−(λ0+δ0+γ0)τ p2

∫ t

t−τ
Θ(s)ds+e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)

∫ τ

0
e−γ0s

{∫ t

t−s
Θ(u)du

}
ds

−e−λ0τ(p2λ 2
0 +q2λ0+ v2)

∫ τ

0
e−δ0s

{∫ s

0
e−γ0u

{∫ t

t−u
Θ(ω)dω

}
du

}
ds (41)

for all t ≥ 0. On the other hand, the initial condition (38) can be equivalently written

Θ(t) = e−γ0 tΦ2(λ0,δ0;φ)(t)−
K(λ0,δ0,γ0;φ)

1+ ξλ0,δ0,γ0

, for t ∈ [−τ,0]. (42)

Now, we shall prove that

lim
t→∞

Θ(t) = 0. (43)

Define

M(λ0,δ0,γ0;φ) = max
−τ≤t≤0

∣∣∣∣e
−γ0 tΦ2(λ0,δ0;φ)(t)−

K(λ0,δ0,γ0;φ)
1+ ξλ0,δ0,γ0

∣∣∣∣ . (44)

It follows from (42) and (44) that

|Θ(t)| ≤ M(λ0,δ0,γ0;φ) for − τ ≤ t ≤ 0. (45)

We will show thatM(λ0,δ0,γ0;φ) is a bound of the functionΘ on the whole interval[−τ,∞), i.e., that

|Θ(t)| ≤ M(λ0,δ0,γ0;φ) for all t ≥−τ. (46)

For this purpose, we consider an arbitrary positive real numberε. We claim that
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|Θ(t)|< M(λ0,δ0,γ0;φ)+ ε for every t ≥−τ. (47)

Otherwise, since (45) implies that|Θ(t)|< M(λ0,δ0,γ0;φ)+ ε for − τ ≤ t ≤ 0, there exists a pointt∗ > 0 such that

|Θ(t)|< M(λ0,δ0,γ0;φ)+ ε, for − τ ≤ t < t∗ and |Θ(t∗)|= M(λ0,δ0,γ0;φ)+ ε.

Then, by taking into account the definition ofµλ0,δ0,γ0
by (32) and using (34), from (41) we obtain

M(λ0,δ0,γ0;φ)+ ε =|Θ(t∗)|

≤e−(λ0+δ0+γ0)τ |p2|
∫ t∗

t∗−τ
|Θ(s)|ds+e−(λ0+δ0)τ |p2δ0+q2+2p2λ0|

∫ τ

0
e−γ0s

{∫ t∗

t∗−s
|Θ(u)|du

}
ds

+e−λ0τ ∣∣p2λ 2
0 +q2λ0+ v2

∣∣
∫ τ

0
e−δ0s

{∫ s

0
e−γ0u

{∫ t∗

t∗−u
|Θ(ω)|dω

}
du

}
ds

≤

{
e−(λ0+δ0+γ0)τ |p2|τ +e−(λ0+δ0)τ |p2δ0+q2+2p2λ0|

∫ τ

0
e−γ0ssds

+e−λ0τ ∣∣p2λ 2
0 +q2λ0+ v2

∣∣
∫ τ

0
e−δ0s

{∫ s

0
e−γ0uudu

}
ds

}
(M(λ0,δ0,γ0;φ)+ ε)

=µλ0,δ0,γ0
M(λ0,δ0,γ0;φ)

<M(λ0,δ0,γ0;φ)+ ε.

We have thus arrived at a contradiction, which establishes our claim, i.e., that (47) holds true. As (47) is satisfied for all

real numbersε > 0, it follows that (46) is always fulfilled. Furthermore, by using (46), from (41) we get, for everyt ≥ 0,

|Θ(t)| ≤e−(λ0+δ0+γ0)τ p2

∫ t

t−τ
|Θ(s)|ds+e−(λ0+δ0)τ |p2δ0+q2+2p2λ0|

∫ τ

0
e−γ0s

{∫ t

t−s
|Θ(u)|du

}
ds

+e−λ0τ ∣∣p2λ 2
0 +q2λ0+ v2

∣∣
∫ τ

0
e−δ0s

{∫ s

0
e−γ0u

{∫ t

t−u
|Θ(ω)|dω

}
du

}
ds

≤

{
e−(λ0+δ0+γ0)τ |p2|τ +e−(λ0+δ0)τ |p2δ0+q2+2p2λ0|

∫ τ

0
e−γ0ssds

+e−λ0τ ∣∣p2λ 2
0 +q2λ0+ v2

∣∣
∫ τ

0
e−δ0s

{∫ s

0
e−γ0uudu

}
ds

}
M(λ0,δ0,γ0;φ).

Thus, by taking into account the definition ofµλ0,δ0,γ0
, by (32), we have

|Θ(t)| ≤ µλ0,δ0,γ0
M(λ0,δ0,γ0;φ) for every t ≥ 0. (48)

By using (41) and taking into account the definition ofµλ0,δ0,γ0
by (32) as well as taking into account (46) and (48), one

can prove, by an easy induction, that the functionΘ satisfies

|Θ(t)| ≤
(
µλ0,δ0,γ0

) nM(λ0,δ0,γ0;φ), for all t ≥ nτ − τ, (n= 0,1, ...). (49)

Because of (34), we have

lim
n→∞

[µλ0,δ0,γ0
]n = 0. (50)
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In view of (50), it follows from (49) that lim
t→∞

Θ(t) = 0, i.e., (43) holds true.

Finally, by (22), (36) and (40), we have

Θ(t) = e−γ0 t
[
e−(λ0+δ0)ty(t)−

L(λ0;φ)
βλ0

e−δ0t −
R(λ0,δ0;φ)

ηλ0,δ0

]
−

K(λ0,δ0,γ0;φ)
1+ ξλ0,δ0,γ0

, (51)

for t ≥ −τ. In view of this equality, (33) coincides with (43). So, the solutiony of the IVP (1) and (2) satisfies (33). The

proof of the theorem is complete.

3 An estimate of the solutions and a stability criterion

Our results in this section are Theorem 3.1 below and its corollary.

Theorem 2.Let λ0 be a real root of the characteristic equation (3), and suppose thatβλ0
6= 0, whereβλ0

is defined by

(6). Let δ0 be a real root of the characteristic equation (5), suppose thatηλ0,δ0
6= 0, whereηλ0,δ0

is defined by (19).

Furthermore, letγ0 be a real root of the characteristic equation (18), and letξλ0,δ0,γ0
be defined by (30). ( Note that,

because ofβλ0
6= 0, we always haveδ0 6= 0 andγ0 6=−δ0. Furthermore, because ofηλ0,δ0

6= 0, we always haveγ0 6= 0. )

Set

m(λ0,δ0,γ0) = max
{

1 , eλ0τ , eδ0τ , eγ0τ , e(λ0+δ0)τ
}
. (52)

Assume thatµλ0,δ0,γ0
< 1 holds, whereµλ0,δ0,γ0

is defined by (32). ( This assumption guarantees that 1+ ξλ0,δ0,γ0
> 0. )

Then the solutiony of the IVP (1) and (2) satisfies

|y(t)| ≤

{
kλ0

|βλ0
|
eλ0t +

m(λ0,δ0,γ0)hλ0,δ0

|ηλ0,δ0
|

e(λ0+δ0)t +m(λ0,δ0,γ0)g(λ0,δ0,γ0)dλ0,δ0
e(λ0+δ0+γ0) t

}
‖φ‖C2 , (53)

for all t ≥ 0, where

kλ0
= 1+ |λ0− p1|+ |p2|+ |λ 2

0 − p1λ0−q1|+ |p2λ0+q2|+e−λ0τ ∣∣p2λ 2
0 +q2λ0+ v2

∣∣
∫ 0

−τ
e−λ0sds, (54)

hλ0,δ0
=

(
1+

kλ0∣∣βλ0

∣∣

){
(1+ |λ0|+ |δ0|)+ |p1−3λ0−2δ0| +e−λ0τ |p2|

+e−(λ0+δ0)τ |p2δ0+q2+2p2λ0|

∫ 0

−τ
e−δ0sds

}
, (55)

dλ0,δ0
= 1+

kλ0

|βλ0
|
+

hλ0,δ0

|ηλ0,δ0
|

(56)

g(λ0,δ0,γ0) = µλ0,δ0,γ0
m(λ0,δ0,γ0)+

1+ µλ0,δ0,γ0

1+ ξλ0,δ0,γ0

ℓλ0,δ0,γ0
, (57)
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and

ℓλ0,δ0,γ0
=

{
1+e−(λ0+δ0+γ0)τ |p2|

∫ 0

−τ
e−γ0sds+e−(λ0+δ0)τ |p2δ0+q2+2p2λ0|

∫ τ

0
e−γ0s

{∫ 0

−s
e−γ0udu

}
ds

+e−λ0τ ∣∣p2λ 2
0 +q2λ0+ v2

∣∣
∫ τ

0
e−δ0s

{∫ s

0
e−γ0u

{∫ 0

−u
e−γ0ωdω

}
du

}
ds

}
. (58)

The constantg(λ0,δ0,γ0) is greater than 1.

Corollary 1. Let λ0, δ0 and γ0 be real roots of the characteristic equations (3), (5) and (18), respectively. Suppose that

βλ0
6= 0 andηλ0,δ0

6= 0, whereβλ0
andηλ0,δ0

are defined by (6) and (19), respectively. (Note that, because ofβλ0
6= 0, we

always haveδ0 6= 0 andγ0 6=−δ0. Furthermore, because ofηλ0,δ0
6= 0, we always haveγ0 6= 0 ).

Assume thatµλ0,δ0,γ0
< 1 holds, whereµλ0,δ0,γ0

is defined by (32). Then the trivial solution of the delay differential

equation (1) is stable ifλ0 ≤ 0 , λ0 + δ0 ≤ 0, λ0 + δ0 + γ0 ≤ 0 it is asymptotically stable ifλ0 < 0 , λ0 + δ0 < 0,

λ0+ δ0+ γ0 < 0.

Proof.(Proof of Theorem 2.) First of all, we observe that, for any real numbera, it holds max
−τ≤t≤0

e−at = max{1, eaτ}. So,

using (52), we immediately see that for−τ ≤ t ≤ 0

e−λ0t ≤ m(λ0,δ0,γ0), (59)

e−δ0t ≤ m(λ0,δ0,γ0), (60)

e−γ0t ≤ m(λ0,δ0,γ0), (61)

e−(λ0+δ0)t ≤ m(λ0,δ0,γ0). (62)

These inequalities will be frequently used later.

DefineL(λ0;φ) by (7). Then

|L(λ0;φ)| ≤|φ ′′(0)|+ |λ0− p1||φ ′(0)|+ |p2||φ ′(−τ)|+ |λ 2
0 − p1λ0−q1||φ(0)|

+ |p2λ0+q||φ(−τ)|+e−λ0τ ∣∣p2λ 2
0 +q2λ0+ v2

∣∣
∫ 0

−τ
e−λ0s|φ(s)|ds

≤
{∥∥φ ′′

∥∥+(|λ0− p1|+ |p2|)
∥∥φ ′
∥∥ +

(
|λ 2

0 − p1λ0−q1|+ |p2λ0+q2|

+e−λ0τ ∣∣p2λ 2
0 +q2λ0+ v2

∣∣
∫ 0

−τ
e−λ0sds

}
‖φ‖ .

By (54), we have

|L(λ0;φ)| ≤ kλ0
‖φ‖C2 . (63)

Consider the functionΦ1(λ0;φ) defined by (8). Then, by (59), we have

‖Φ1(λ0;φ)‖ ≤ m(λ0,δ0,γ0) ‖φ‖+
|L(λ0;φ)|∣∣βλ0

∣∣

and so, in view of (63),

‖Φ1(λ0;φ)‖ ≤ m(λ0,δ0,γ0)‖φ‖+
kλ0∣∣βλ0

∣∣ ‖φ‖C2 .
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Therefore,

‖Φ1(λ0;φ)‖ ≤

(
m(λ0,δ0,γ0)+

kλ0∣∣βλ0

∣∣

)
‖φ‖C2 . (64)

Furthermore, ∥∥∥(Φ1(λ0;φ))
′
∥∥∥≤ m(λ0,δ0,γ0)

( ∥∥φ ′
∥∥+ |λ0| ‖φ‖

)

where(Φ1(λ0;φ))
′
is derivative ofΦ1(λ0;φ), and therefore,

∥∥∥(Φ1(λ0;φ))
′
∥∥∥≤ m(λ0,δ0,γ0)(1+ |λ0|) ‖φ‖C2 . (65)

Let us consider the constantR(λ0,δ0;φ) defined by (20). Then, by (64) and (65), we have

|R(λ0,δ0;φ)| ≤
∣∣∣(Φ1(λ0;φ))

′
(0)
∣∣∣+ |δ0| |Φ1(λ0;φ)(0)|+ |p1−3λ0−2δ0| |Φ1(λ0;φ)(0)|

+e−λ0τ |p2| |Φ1(λ0;φ)(−τ)|+e−(λ0+δ0)τ |p2 δ0+q2+2p2λ0|

∫ 0

−τ
e−δ0s|Φ1(λ0;φ)(s)|ds

≤
∥∥∥(Φ1(λ0;φ))

′
∥∥∥+ |δ0| ‖Φ1(λ0;φ)‖+ |p1−3λ0−2δ0| ‖Φ1(λ0;φ)‖+e−λ0τ |p2| ‖Φ1(λ0;φ)‖

+e−(λ0+δ0)τ |p2 δ0+q2+2p2λ0|

∫ 0

−τ
e−δ0s‖Φ1(λ0;φ)‖ds

≤

{
m(λ0,δ0,γ0)(1+ |λ0|)+ |δ0|

(
m(λ0,δ0,γ0)+

kλ0∣∣βλ0

∣∣

)
+e−λ0τ |p2|

(
m(λ0)+

kλ0∣∣βλ0

∣∣

)

+e−(λ0+δ0)τ |p2 δ0+q2+2p2λ0|

∫ 0

−τ
e−δ0s

(
m(λ0,δ0,γ0)+

kλ0∣∣βλ0

∣∣

)
ds

}
‖φ‖C2

≤m(λ0,δ0,γ0)

{
1+ |λ0|+ |δ0|

(
1+

kλ0∣∣βλ0

∣∣

)
+ |p1−3λ0−2δ0|

(
1+

kλ0∣∣βλ0

∣∣

)
+e−λ0τ |p2|

(
1+

kλ0∣∣βλ0

∣∣

)

+e−(λ0+δ0)τ |p2δ0+q2+2p2λ0|
∫ 0

−τ
e−δ0s

(
1+

kλ0

|βλ0
|

)
ds

}
‖φ‖C2

≤m(λ0,δ0,γ0)

(
1+

kλ0∣∣βλ0

∣∣

)
{(1+ |λ0|+ |δ0| ) + |p1−3λ0−2δ0| +e−λ0τ |p2|

+e−(λ0+δ0)τ |p2δ0+q2+2p2λ0|

∫ 0

−τ
e−δ0sds

}
‖φ‖C2 .

By (52) and (55), we have

|R(λ0,δ0;φ)| ≤ m(λ0,δ0,γ0)hλ0,δ0
‖φ‖C2 . (66)

Consider the functionΦ2(λ0,δ0;φ) defined by (21). Then, by (8), (60) and (62), we have

‖Φ2(λ0,δ0;φ)‖ ≤ m(λ0,δ0,γ0)‖φ‖+
|L(λ0;φ)|∣∣βλ0

∣∣ m(λ0,δ0,γ0)+
|R(λ0,δ0;φ)|∣∣ηλ0,δ0

∣∣

and so, in view of (63) and (66),

‖Φ2(λ0,δ0;φ)‖ ≤ m(λ0,δ0,γ0)‖φ‖C2 +m(λ0,δ0,γ0)
kλ0∣∣βλ0

∣∣ ‖φ‖C2 +
hλ0,δ0∣∣ηλ0,δ0

∣∣ ‖φ‖C2 .
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Therefore,

‖Φ2(λ0,δ0;φ)‖ ≤ m(λ0,δ0,γ0)

{
1+

kλ0∣∣βλ0

∣∣ +
hλ0,δ0∣∣ηλ0,δ0

∣∣

}
‖φ‖C2 ≡ m(λ0,δ0,γ0)dλ0,δ0

‖φ‖C2 . (67)

Let us consider the constantK(λ0,δ0,γ0;φ) defined by (31). Then, by (67), we have

|K(λ0,δ0,γ0;φ)| ≤|Φ2(λ0,δ0;φ)(0)|+e−(λ0+δ0+γ0)τ |p2|

∫ 0

−τ
e−γ0s|Φ2(λ0,δ0;φ)(s)|ds

+e−(λ0+δ0)τ |p2δ0+q2+2p2λ0|

∫ τ

0
e−γ0s

{∫ 0

−s
e−γ0u |Φ2(λ0,δ0;φ)(u)|du

}
ds

+e−λ0τ ∣∣p2λ 2
0 +q2λ0+ v2

∣∣
∫ τ

0
e−δ0s

{∫ s

0
e−γ0u

{∫ 0

−u
e−γ0ω |Φ2(λ0,δ0;φ)(ω)|dω

}
du

}
ds

≤‖Φ2(λ0,δ0;φ)‖+e−(λ0+δ0+γ0)τ |p2|

∫ 0

−τ
e−γ0s‖Φ2(λ0,δ0;φ)‖ds

+e−(λ0+δ0)τ |p2δ0+q2+2p2λ0|

∫ τ

0
e−γ0s

{∫ 0

−s
e−γ0u‖Φ2(λ0,δ0;φ)‖du

}
ds

+e−λ0τ ∣∣p2λ 2
0 +q2λ0+ v2

∣∣
∫ τ

0
e−δ0s

{∫ s

0
e−γ0u

{∫ 0

−u
e−γ0ω ‖Φ2(λ0,δ0;φ)‖dω

}
du

}
ds

≤m(λ0,δ0,γ0)

{
1+e−(λ0+δ0+γ0)τ |p2|

∫ 0

−τ
e−γ0sds

+e−(λ0+δ0)τ |p2δ0+q2+2p2λ0|
∫ τ

0
e−γ0s

{∫ 0

−s
e−γ0udu

}
ds

e−λ0τ ∣∣p2λ 2
0 +q2λ0+ v2

∣∣
∫ τ

0
e−δ0s

{∫ s

0
e−γ0u

{∫ 0

−u
e−γ0ω dω

}
du

}
ds

}
dλ0,δ0

‖φ‖C2 .

By (58), we have

|K(λ0,δ0,γ0;φ)| ≤ m(λ0,δ0,γ0)ℓλ0,δ0,γ0
dλ0,δ0

‖φ‖C2 . (68)

Let ξλ0,δ0,γ0
be defined by (30), ( Note that, because ofµλ0,δ0,γ0

< 1 by (32), we always have 1+ξλ0,δ0,γ0
> 0.) and define

M(λ0,δ0,γ0;φ) by (44). Then, by using (61), we have

M(λ0,δ0,γ0;φ) ≤ m(λ0,δ0,γ0) ‖Φ2(λ0,δ0;φ)‖+
|K(λ0,δ0,γ0;φ)|

1+ ξλ0,δ0,γ0

.

So, by virtue of (67) and (68),

M(λ0,δ0,γ0;φ)≤ m(λ0,δ0,γ0)

(
m(λ0,δ0,γ0)+

ℓλ0,δ0,γ0

1+ ξλ0,δ0,γ0

)
dλ0,δ0

‖φ‖C2 . (69)

Now, let y be the solution of the IVP (1) and (2), and define the functionsz by (9) andw by (22). Also, we define the

functionsΩ andΘ by (38) and (42), respectively. Note that (30) ( which is a consequence of the assumption (32) ) states

that 1+ξλ0,δ0,γ0
> 0. Then, as in the proof of the Theorem 1, we show that (48) and (51) are satisfied. We shall prove that

y satisfies (53), where the constantsm(λ0,δ0,γ0), kλ0
, hλ0,δ0

, dλ0,δ0
, g(λ0,δ0,γ0) andℓλ0,δ0,γ0

are defined by (52), (54),

(55), (56), (57) and (58), respectively.
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From (51) it follows that

y(t) =
L(λ0;φ)

βλ0

eλ0t +
R(λ0,δ0;φ)

ηλ0,δ0

e(λ0+δ0)t +

[
Θ(t)+

K(λ0,δ0,γ0;φ)
1+ ξλ0,δ0,γ0

]
e(λ0+δ0+γ0)t

for t ≥ 0 and consequently

|y(t)| ≤
|L(λ0;φ)|∣∣βλ0

∣∣ eλ0t +
|R(λ0,δ0;φ)|∣∣ηλ0,δ0

∣∣ e(λ0+δ0)t +

[
|Θ(t)|+

|K(λ0,δ0,γ0;φ)|
1+ ξλ0,δ0,γ0

]
e(λ0+δ0+γ0)t .

Thus, using (48), we obtain

|y(t)| ≤
|L(λ0;φ)|∣∣βλ0

∣∣ eλ0t +
|R(λ0,δ0;φ)|∣∣ηλ0,δ0

∣∣ e(λ0+δ0)t +

[
µλ0,δ0,γ0

M(λ0,δ0,γ0;φ)+
|K(λ0,δ0,γ0;φ)|

1+ ξλ0,δ0,γ0

]
e(λ0+δ0+γ0) t (70)

for t ≥ 0. Using (63) and (66), we obtain
|L(λ0;φ)|∣∣βλ0

∣∣ ≤
kλ0∣∣βλ0

∣∣ ‖φ‖C2 (71)

and
|R(λ0,δ0;φ)|∣∣ηλ0,δ0

∣∣ ≤
m(λ0,δ0,γ0)hλ0,δ0∣∣ηλ0,δ0

∣∣ ‖φ‖C2 . (72)

Moreover, by the use of (68) and (69), we get

µλ0,δ0,γ0
M(λ0,δ0,γ0;φ)+

|K(λ0,δ0,γ0;φ)|
1+ ξλ0,δ0,γ0

≤µλ0,δ0,γ0
m(λ0,δ0,γ0)

(
m(λ0,δ0,γ0)+

ℓλ0,δ0,γ0

1+ ξλ0,δ0,γ0

)
dλ0,δ0

‖φ‖C2

+
m(λ0,δ0,γ0)ℓλ0,δ0,γ0

dλ0,δ0

1+ ξλ0,δ0,γ0

‖φ‖C2 .

So, because of (57), we have

µλ0,δ0,γ0
M(λ0,δ0,γ0;φ)+

|K(λ0,δ0,γ0;φ)|
1+ ξλ0,δ0,γ0

≤ m(λ0,δ0,γ0)dλ0,δ0
g(λ0,δ0,γ0)‖φ‖C2 . (73)

Using (71), (72) and (73), we immediately see that (70) implies (53). Hence, (53) has been proved.

Finally, we will establish that the constantg(λ0,δ0,γ0) is greater than 1. By (35) and since 1+ ξλ0,δ0,γ0
> 0, we have

0< 1+ ξλ0,δ0,γ0
≤ 1+

∣∣ξλ0,δ0,γ0

∣∣≤ 1+ µλ0,δ0,γ0
,

which ensures that

1≤
1+ µλ0,δ0,γ0

1+ ξλ0,δ0,γ0

.

Furthermore, from (58) we have

ℓλ0,δ0,γ0
> 1.

Thus, we obtain

1<
1+ µλ0,δ0,γ0

1+ ξλ0,δ0,γ0

ℓλ0,δ0,γ0
.
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Hence, it follows from the definition ofg(λ0,δ0,γ0) by (57) that g(λ0,δ0,γ0) is always greater than 1. The proof of the

theorem is now complete.

Proof.(Proof of the Corollary 1.) Lety be the solution of the IVP (1) and (2). By Theorem 1, the solutiony satisfies (53),

whereβλ0
, ηλ0,δ0

, m(λ0,δ0,γ0), kλ0
, hλ0,δ0

, dλ0,δ0
andg(λ0,δ0,γ0), are defined by (6), (19), (52), (54), (55), (56) and (57),

respectively. The constantg(λ0,δ0,γ0) is greater than 1.

Assume first thatλ0 ≤ 0 , λ0+ δ0 ≤ 0 andλ0+ δ0+ γ0 ≤ 0. Then (53), gives

|y(t)| ≤

{
kλ0

|βλ0
|
+

m(λ0,δ0,γ0)hλ0,δ0∣∣ηλ0,δ0

∣∣ +m(λ0,δ0,γ0)dλ0,δ0
g(λ0,δ0,γ0)

}
‖φ‖C2 for t ≥ 0.

So, if we set

S(λ0,δ0,γ0) =
kλ0

|βλ0
|
+

m(λ0,δ0,γ0)hλ0,δ0∣∣ηλ0,δ0

∣∣ +m(λ0,δ0,γ0)dλ0,δ0
g(λ0,δ0,γ0),

then we have

|y(t)| ≤ S(λ0,δ0,γ0)‖φ‖C2 for every t ≥ 0.

Sincem(λ0,δ0,γ0)> 1, dλ0,δ0
> 1andg(λ0,δ0,γ0)> 1, we always haveS(λ0,δ0,γ0)> 1. Thus, we obtain

|y(t)| ≤ S(λ0,δ0,γ0)‖φ‖C2 for all t ≥−τ.

Using this inequality, we can immediately verify that the trivial solution of (1) is stable (at 0).

Next, let us suppose thatλ0 < 0 , λ0 + δ0 < 0 andλ0 + δ0 + γ0 < 0. Then the trivial solution of (1) is stable (at 0).

Furthermore, we see that it follows from (53) that the solutiony satisfies

lim
t→∞

y(t) = 0.

Hence, the trivial solution of (1) is asymptotically stable (at 0). The proof of Corollary 1 iscompleted.

4 Examples

Example 1.Consider

y′′′(t) =

(
e−8

2

)(
y′′(t)+ y′(t)

)
+

1
2e2

(
y′′(t −1)− y′(t −1)

)
+

(
1

e−1

)
(y(t)− y(t−1)) , t ≥ 0 (74)

y(t) =φ(t), −1≤ t ≤ 0,

whereφ(t) is an arbitrary twice continuously differentiable initialfunction on the interval[−1,0]. In this example we

apply the characteristic equations (3), (5) and (18). That is, the characteristic equation (3) is

λ 3 =
(
λ 2+λ

)
(

e−8
2

+
e−λ

2e2

)
+

(
1

e−1

)(
1−e−λ

)
(75)

© 2018 BISKA Bilisim Technology

www.ntmsci.com


217 A. F. Yenicerioglu: Behavior of the solutions to third orderlinear autonomous delay differential equations

and we see thatλ = 0, λ =−1 andλ =−2 are real roots of (75). Let λ = 0. Then, forλ0 = 0 the characteristic equation

(5) is

δ 2 = (δ +1)

(
e−8

2
+

e−δ

2e2

)
+

(
1

e−1

)(
1−e−δ

δ

)
. (76)

Therefore,δ =−1,δ = −2 are real roots of (76). Let δ =−1. Then, forλ0 = 0 andδ0 = −1 the characteristic equation

(18) is

γ =
e−4

2
+

e1−γ

2e2 −
1
γ
+

1
(e−1)

1−e1−γ

γ(γ −1)
, (77)

and we see thatγ = γ0 =−1 is a real root of (77) and the conditions of Corollary 1 are satisfied. That is,

δ0 =−1 6= 0,γ0 =−1 6= 0,γ0 6=−δ0

and

µλ0,δ0,γ0
= µ0,−1,−1

∼= 0.86142< 1.

Sinceλ0 = 0, λ0+ δ0 =−1< 0 andλ0+ δ0+ γ0 =−2< 0 the zero solution of (74) is stable.

Example 2.Consider

y′′′(t) =−13y′′(t)+
1
e3 y′′(t −0.5)−50y′(t)+

6
e3 y′(t −0.5)−56y(t)+

8
e3 y(t −0.5), t ≥ 0,

y(t) = φ(t), −0.5≤ t ≤ 0,

whereφ(t) is an arbitrary twice continuously differentiable initialfunction on the interval[−0.5, 0]. In this example we

apply the characteristic equations (3), (5) and (18). That is, the characteristic equation (3) is

λ 3 =−13λ 2−50λ −56+
e−

λ
2

e3

(
λ 2+6λ +8

)
, (78)

and we seeλ =−2,λ =−4 andλ =−6 are real roots of (78). Letλ =−2. Then , forλ0 =−2 the characteristic equation

(5) is

δ 2 =−7δ −10+ (δ +2)e−
(δ+4)

2 . (79)

Therefore, we see thatδ =−2 andδ =−4 are roots of (79). Letδ =−2. Then, forλ0 =−2 andδ0 =−2 the characteristic

equation (18) is

γ =−3+e−
γ+2

2 , (80)

and we find thatγ = γ0 = −2 is a real root of (80). Corresponding to the rootsλ0 = −2, δ0 = −2 andγ0 = −2, the

conditions of Corollary 1 are satisfied. That is,

δ0 =−2 6= 0,γ0 =−2 6= 0,γ0 6=−δ0

µλ0,δ0,γ0
= µ−2,−2,−2 =

1
2
< 1.

Sinceλ0 =−2< 0, λ0+δ0 =−4< 0 andλ0+δ0+ γ0 =−6< 0 the zero solution of the given equation is asymptotically

stable.
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5 A result on the behavior of the solutions

We begin this section with the following lemma.

Lemma 1.Suppose that

p2 < 0, (p2δ0+q2+2p2λ0)> 0 and
(
p2λ 2

0 +q2λ0+ v2
)
< 0. (81)

Let λ0, δ0 andγ0 be real roots of the characteristic equations (3), (5) and (18), respectively, and defineξλ0,δ0,γ0
by (30).

Then1+ ξλ0,δ0,γ0
> 0 if (18) has another real root less thanγ0, and1+ ξλ0,δ0,γ0

< 0 if (18) has another real root greater

thanγ0.

Proof.Let G(γ) denote the characteristic function of (18), i.e.,

G(γ) =γ − (p1−3λ0−2δ0)− p2e
−(λ0+δ0+γ)τ +e−(λ0+δ0)τ (p2δ0+q2+2p2λ0) γ−1(1−e−γτ)

−e−λ0τ(p2λ 2
0 +q2λ0+ v2) γ−1

{
δ−1

0

(
1−e−δ0τ

)
− (δ0+ γ)−1

(
1−e−(δ0+γ)τ

)}

or

G(γ) =γ − (p1−3λ0−2δ0)− p2e
−(λ0+δ0+γ)τ +e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)

∫ τ

0
e−γsds

−e−λ0τ (p2λ 2
0 +q2λ0+ v2

)∫ τ

0
e−δ0s

(∫ s

0
e−γudu

)
ds (82)

for γ ∈ R. We obtain immediately

G
′
(γ) =1+ p2τe−(λ0+δ0+γ)τ −e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)

∫ τ

0
se−γsds

+e−λ0τ (p2λ 2
0 +q2λ0+ v2

)∫ τ

0
e−δ0s

(∫ s

0
ue−γudu

)
ds (83)

for γ ∈ R. Furthermore,

G′′ (γ) =− p2τ2e−(λ0+δ0+γ)τ +e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)
∫ τ

0
s2e−γsds

−e−λ0τ (p2λ 2
0 +q2λ0+ v2

)∫ τ

0
e−δ0s

(∫ s

0
u2e−γudu

)
ds

for γ ∈ R. So, taking into account (81), we conclude that

G
′′
(γ)> 0 for γ ∈R. (84)

Now, assume that (18) has another real rootγ1 with γ1 < γ0 (respectively,γ1 > γ0 ). From the definition of the functionG

by (82) it follows thatG(γ1) = G(γ0) = 0, and consequently Rolle’s Theorem guarantees the existence of a pointα with

γ1 < α < γ0 (resp.,γ1 > α > γ0 ) such thatG
′
(α) = 0. But, (84) implies thatG′ is positive on (α,∞) (resp.,G′ is negative

on (−∞,α)). Thus we must haveG′ (γ0)> 0 (resp.,G′(γ0)< 0). By taking into account the definition ofξλ0,δ0,γ0
by (30),

from (83) we obtain

G′ (γ0) = 1+ ξλ0,δ0,γ0

and so the proof of the lemma is complete.
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Now, we will establish the following theorem.

Theorem 3.Suppose that statement (81) is true. Letλ0 be real root of the characteristic equation (3), and letβλ0
and

L(λ0;φ) be defined by (6) and (7), respectively. Furthermore, letδ0 be real root of the characteristic equation (5) and

let ηλ0,ä0
and R(λ0,δ0;φ) be defined (19) and (20), respectively. Suppose thatβλ0

6= 0 and ηλ0,δ0
6= 0. Moreover, let

γ0 be a real root of the characteristic equation (18), and letξλ0,δ0,γ0
and K(λ0,δ0,γ0;φ) be defined by (30) and (31),

respectively. Also, letγ1 be real root of (18) with γ1 6= γ0. ( Note that, because ofβλ0
6= 0, we haveδ0 6= 0 andγ0 6= −δ0,

γ1 6=−δ0. Furthermore, because ofηλ0,δ0
6= 0, we haveγ0 6= 0 andγ1 6= 0. Moreover, note that Lemma 1. guarantees that

1+ ξλ0,δ0,γ0
6= 0.

Then the solutiony of the IVP (1) and (2) satisfies

C1 (λ0,δ0,γ0,γ1;φ)≤ e−γ1t
[
e−(λ0+δ0)ty(t)−e−δ0t L(λ0;φ)

βλ0

−
R(λ0,δ0;φ)

ηλ0,δ0

−eγ0t K (λ0,δ0,γ0;φ)
1+ ξλ0,δ0,γ0

]

≤C2 (λ0,δ0,γ0,γ1;φ) (85)

for all t ≥ 0, where

C1 (λ0,δ0,γ0,γ1;φ) = min
−τ≤t≤0

e−γ1t
[
e−(λ0+δ0)tφ (t)−e−δ0t L(λ0;φ)

βλ0

−
R(λ0,δ0;φ)

ηλ0,δ0

−eγ0t K (λ0,δ0,γ0;φ)
1+ ξλ0,δ0,γ0

]
(86)

and

C2 (λ0,δ0,γ0,γ1;φ) = max
−τ≤t≤0

e−γ1t
[
e−(λ0+δ0)tφ (t)−e−δ0t L(λ0;φ)

βλ0

−
R(λ0,δ0;φ)

ηλ0,δ0

−eγ0t K (λ0,δ0,γ0;φ)
1+ ξλ0,δ0,γ0

]
. (87)

We see immediately that inequalities (85) can equivalently be written as follows

C1 (λ0,δ0,γ0,γ1;φ)e(γ1−γ0)t ≤ e−γ0t
[
e−(λ0+δ0)ty(t)−e−δ0t L(λ0;φ)

βλ0

−
R(λ0,δ0;φ)

ηλ0,δ0

]
−

K (λ0,δ0,γ0;φ)
1+ ξλ0,δ0,γ0

≤C2 (λ0,δ0,γ0,γ1;φ)e(γ1−γ0)t , t ≥ 0. (88)

Hence, ifγ1 < γ0, then the solutiony of the IVP (1) and (2) satisfies (33). Also, we observe that (85) is equivalent to

eλ0t
[
C1 (λ0,δ0,γ0,γ1;φ)e(δ0+γ1)t +

L(λ0;φ)
βλ0

+
R(λ0,δ0;φ)

ηλ0,δ0

eδ0t +
K (λ0,δ0,γ0;φ)

1+ ξλ0,δ0,γ0

e(δ0+γ0)t
]
≤ y(t)

≤ eλ0t
[
C2 (λ0,δ0,γ0,γ1;φ)e(δ0+γ1)t +

L(λ0;φ)
βλ0

+
R(λ0,δ0;φ)

ηλ0,δ0

eδ0t +
K (λ0,δ0,γ0;φ)

1+ ξλ0,δ0,γ0

e(δ0+γ0)t
]

for all t ≥ 0.

Proof. (Proof of Theorem 3.) Lety be the solution of the IVP (1) and (2), and consider the functionz defined by (9).

Consider also the functionsΩ andΘ defined by (7) and (40), respectively. Note that, by Lemma 5.1, we necessarily have

1+ ξλ0,δ0,γ0
6= 0. As it has been shown in the proof of the Theorem 1, the fact that y satisfies (1) for t ≥ 0 is equivalent to

the fact thatΘ satisfies (41) 2.12 for allt ≥ 0.

Now we define

h(t) = e(γ0−γ1) tΘ(t) for t ≥−τ. (89)
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Then we see that(41) holds for t ≥ 0 if and only ifh satisfies

h(t) =−e−(λ0+δ0+γ0)τ p2

∫ 0

−τ
e(γ1−γ0)sh(s+ t)ds

+e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)

∫ τ

0
e−γ0s

∫ 0

−s
e(γ1−γ0)uh(t +u)du ds (90)

−e−λ0τ (p2λ 2
0 +q2λ0+ v2

)∫ τ

0
e−δ0s

[∫ s

0
e−γ0u

∫ 0

−u
e(γ1−γ0)wh(t +w)dw du

]
ds

for all t ≥ 0. By combining (51) and (89), we have

h(t) = e−γ1t
[
e− λ0+δ0 ty(t)−e−δ0t L(λ0;φ)

βλ0

−
R(λ0,δ0;φ)

ηλ0,δ0

−eγ0t K (λ0,δ0,γ0;φ)
1+ ξλ0,δ0,γ0

]
(91)

for t ≥−τ. As solutiony satisfies the initial condition (2), we can use (91) as well as the definitions ofC1 (λ0,δ0,γ0,γ1;φ)
andC2 (λ0,δ0,γ0,γ1;φ) by (86) and (87), respectively, to see that

C1 (λ0,δ0,γ0,γ1;φ) = min
−τ≤t≤0

h(t) and C2 (λ0,δ0,γ0,γ1;φ) = max
−τ≤t≤0

h(t) . (92)

In view of (91) and (92), the double inequality (85) can equivalently written as follows

min
−τ≤s≤0

h(s)≤ h(t)≤ max
−τ≤s≤0

h(s) for all t ≥ 0. (93)

All we have to prove that (93) hold. We will use the fact thath satisfies (90) for all t ≥ 0 in order to show that (93) is valid.

We restrict ourselves to proving that

h(t)≥ min
−τ≤s≤0

h(s) for every t ≥ 0. (94)

The proof of the inequality

h(t)≤ max
−τ≤s≤0

h(s) for every t ≥ 0

can be obtained in a similar way, and so it is omitted. In the rest of the proof we will establish (94). In order to so, we

consider an arbitrary real numberA with A< min−τ≤s≤0h(s), i.e., with

h(t)> A for − τ ≤ t ≤ 0 (95)

We will show that

h(t)> A for all t ≥ 0. (96)

To this end, let us assume that (96) fails to hold. Then, because of (95), there exists a pointt0 > 0 so that

h(t)> A for − τ ≤ t < t0, and h(t0) = A.

Thus, by using (81) and (18), from (90) we obtain
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A=h(t0) =−e−(λ0+δ0+γ0)τ p2

∫ 0

−τ
e(γ1−γ0)sh(s+ t0)ds

+e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)
∫ τ

0
e−γ0s

∫ 0

−s
e(γ1−γ0)uh(t0+u)du ds

−e−λ0τ (p2λ 2
0 +q2λ0+ v2

)∫ τ

0
e−δ0s

[∫ s

0
e−γ0u

∫ 0

−u
e(γ1−γ0)wh(t0+w)dw du

]
ds

>A

(
−e−(λ0+δ0+γ0)τ p2

∫ 0

−τ
e(γ1−γ0)sds+e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)

∫ τ

0
e−γ0s

∫ 0

−s
e(γ1−γ0)udu ds

−e−λ0τ (p2λ 2
0 +q2λ0+ v2

)∫ τ

0
e−δ0s

[∫ s

0
e−γ0u

∫ 0

−u
e(γ1−γ0)wdw du

]
ds

)

=
A

γ1− γ0

(
−e−(λ0+δ0+γ0)τ p2

[
1−e−(γ1−γ0)τ

]
+e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)

∫ τ

0

[
e−γ0s−e−γ1s]ds

−e−λ0τ (p2λ 2
0 +q2λ0+ v2

)∫ τ

0
e−δ0s

[∫ s

0

[
e−γ0u−e−γ1u]du

]
ds

)

=
A

γ1− γ0

(
p2

[
e−(λ0+δ0+γ1)τ −e−(λ0+δ0+γ0)τ

]

+e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)
[
γ−1
1

(
e−γ1τ −1

)
− γ−1

0

(
e−γ0τ −1

)]

−e−λ0τ (p2λ 2
0 +q2λ0+ v2

)
γ−1

1

[
(γ1+ δ0)

−1
(

1−e−(γ1+ä0)τ
)
− δ−1

0

(
1−e−δ0τ

)]

−γ−1
0

[
(γ0+ δ0)

−1
(

1−e−(γ0+δ0)τ
)
− δ−1

0

(
1−e−δ0τ

)] } )

=
A

γ1− γ0

(
− p2e−(λ0+δ0+γ0)τ+e−(λ0+δ0)τ (p2δ0+q2+2p2λ0) γ−1

0

(
1−e−γ0τ)

−e−λ0τ (p2λ 2
0 +q2λ0+ v2

)
γ−1
0

[
δ−1

0

(
1−e−δ0τ

)
− (γ0+ δ0)

−1
(

1−e−(γ0+δ0)τ
)]

+ p2e−(λ0+δ0+γ1)τ−e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)γ−1
1

(
1−e−γ1τ)

+e−λ0τ (p2λ 2
0 +q2λ0+ v2

)
γ−1
1

[
δ−1

0

(
1−e−δ0τ

)
− (γ1+ δ0)

−1
(

1−e−(γ1+δ0)τ
)])

=
A

γ1− γ0
(p1−3λ0−2δ0− γ0+ γ1− p1+3λ0+2δ0) = A.

We have thus arrived at a contradiction and so (96) is true. Since (96) is satisfied for all real numbersA with

A< min−τ≤s≤0h(s), it follows that (94) is always fulfilled. The proof of the theorem is complete.

6 Sufficient conditions for the characteristic equation to have a real root with the property

required

In this section, we give some conditions, under which the characteristic equation (18) has a real rootγ0 with the property

(32).

Lemma 2.Let λ0 andδ0 be real root of the characteristic equations (3) and (5), respectively. Assume that

− p2e
−(p1−2λ0−δ0−

1
τ )τ +e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)

∫ τ

0
e−(p1−3λ0−2δ0−

1
τ )sds

−e−λ0τ (p2λ 2
0 +q2λ0+ v2

)∫ τ

0
e−δ0s

(∫ s

0
e−(p1−3λ0−2δ0−

1
τ )udu

)
ds<

1
τ

(97)
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and

|p2|τ e−(p1−2λ0−δ0−
1
τ )τ +e−(λ0+δ0)τ |p2δ0+q2+2p2λ0|

∫ τ

0
se−(p1−3λ0−2δ0−

1
τ )sds

+e−λ0τ ∣∣p2λ 2
0 +q2λ0+ v2

∣∣
∫ τ

0
e−δ0s

(∫ s

0
ue−(p1−3λ0−2δ0−

1
τ )udu

)
ds≤ 1. (98)

Then, in the interval
(
p1−3λ0−2δ0−

1
τ ,∞

)
, the characteristic equation (18) has a unique rootγ0; this root satisfies

(32), and the rootγ0 is less than p1−3λ0−2δ0+
1
τ , provided that

− p2e−(p1−2λ0−δ0+
1
τ )τ +e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)

∫ ô

0
e−(p1−3λ0−2δ0+

1
τ )sds

−e−λ0τ (p2λ 2
0 +q2λ0+ v2

)∫ τ

0
e−δ0s

(∫ s

0
e−(p1−3λ0−2δ0+

1
τ )udu

)
ds>−

1
τ
. (99)

Proof.Consider the real-valued functionG defined by (82). The derivativeG′ of G is given by (83). It follows from (82)

that

G

(
p1−3λ0−2δ0−

1
τ

)
=

(
p1−3λ0−2δ0−

1
τ

)
− (p1−3λ0−2δ0)

− p2e−(p1−2λ0−δ0−
1
τ )τ +e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)

∫ τ

0
e−(p1−3λ0−2δ0−

1
τ )sds

−e−λ0τ (p2λ 2
0 +q2λ0+ v2

)∫ τ

0
e−δ0s

(∫ s

0
e−(p1−3λ0−2δ0−

1
τ )udu

)
ds

=−
1
τ
− p2e−(p1−2λ0−δ0−

1
τ )τ +e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)

∫ τ

0
e−(p1−3λ0−2δ0−

1
τ )sds

−e−λ0τ (p2λ 2
0 +q2λ0+ v2

)∫ τ

0
e−δ0s

(∫ s

0
e−(p1−3λ0−2δ0−

1
τ )udu

)
ds

≤−
1
τ
+

1
τ
= 0

and consequently, by (97), it holds

G

(
p1−3λ0−2δ0−

1
τ

)
< 0. (100)

Moreover, from (82) we obtain, forγ ≥ p1−3λ0−2δ0−
1
τ ,

G(γ)≥γ − (p1−3λ0−2δ0)−|p2|e
−(λ0+δ0+γ)τ −e−(λ0+δ0)τ |p2δ0+q2+2p2λ0|

∫ τ

0
e−γsds

−e−λ0τ ∣∣p2λ 2
0 +q2λ0+ v2

∣∣
∫ τ

0
e−δ0s

(∫ s

0
e−γudu

)
ds

≥γ − (p1−3λ0−2δ0)−|p2|e
−(p1−2λ0−δ0−

1
τ )τ −e−(λ0+δ0)τ |p2δ0+q2+2p2λ0|

∫ τ

0
e−(p1−3λ0−2δ0−

1
τ )sds

−e−λ0τ ∣∣p2λ 2
0 +q2λ0+ v2

∣∣
∫ τ

0
e−δ0s

(∫ s

0
e−(p1−3λ0−2δ0−

1
τ )udu

)
ds.

Therefore,

G(∞) = ∞. (101)
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Furthermore, using (83), we have, for everyγ > p1−3λ0−2δ0−
1
τ ,

G
′
(γ)≥1−|p2|τe−(λ0+δ0+γ)τ −e−(λ0+δ0)τ |p2δ0+q2+2p2λ0|

∫ τ

0
se−γsds

−e−λ0τ ∣∣p2λ 2
0 +q2λ0+ v2

∣∣
∫ τ

0
e−δ0s

(∫ s

0
ue−γudu

)
ds

≥1−|p2|τe−(p1−2λ0−δ0−
1
τ )τ −e−(λ0+δ0)τ |p2δ0+q2+2p2λ0|

∫ τ

0
se−(p1−3λ0−2δ0−

1
τ )sds

−e−λ0τ ∣∣p2λ 2
0 +q2ë0+ v2

∣∣
∫ τ

0
e−δ0s

(∫ s

0
ue−(p1−3λ0−2δ0−

1
τ )udu

)
ds

≥1−1= 0.

Consequently, in view of (98), it holds G
′
(γ) > 0 for all γ > p1 − 3λ0 − 2δ0 −

1
τ , which implies thatG is strictly

increasing on
(
p1−3λ0−2δ0−

1
τ , ∞

)
. By using this fact as well as (100) and (101), we conclude that, in the intreval(

p1−3λ0−2δ0−
1
τ , ∞

)
, the equationG(γ) = 0 (which coincides with (18)) has a unique real rootγ0. This root satisfies

(32). Indeed, by using again (98), we have

µλ0,δ0,γ0
< |p2|τe−(p1−2λ0−δ0−

1
τ )τ+e−(λ0+δ0)τ |p2δ0+q2+2p2λ0|

∫ τ

0
se−(p1−3λ0−2δ0−

1
τ )sds

+e−λ0τ ∣∣p2λ 2
0 +q2λ0+ v2

∣∣
∫ τ

0
e−δ0s

(∫ s

0
ue−(p1−3λ0−2δ0−

1
τ )udu

)
ds≤ 1.

Finally, let us assume that (99) holds. Then it follows from (82) that

G

(
p1−3λ0−2δ0+

1
τ

)
=

1
τ
− p2e−(p1−2λ0−δ0+

1
τ )τ +e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)

∫ τ

0
e−(p1−3λ0−2δ0+

1
τ )sds

−e−λ0τ (p2λ 2
0 +q2λ0+ v2

)∫ τ

0
e−δ0s

(∫ s

0
e−(p1−3λ0−2δ0+

1
τ )udu

)
ds

>
1
τ
−

1
τ
= 0.

As G
(
p1−3λ0−2δ0+

1
τ
)
> 0 , we see thatγ0 must be less thanp1− 3λ0− 2δ0+

1
τ . This completes the proof of the

lemma.

Lemma 3. Suppose that statement (81) is true. Letλ0 and δ0 be real root of the characteristic equations (3) and (5),

respectively. Then we have

(a) In the interval[p1−3λ0−2δ0,∞), the characteristic equation (18) has no roots.

(b) Assume that (97) holds. Then (i)γ = p1−3λ0−2δ0−
1
τ is not a root of the characteristic equation (18). (ii) In the

interval
(
p1−3λ0−2δ0−

1
τ , p1−3λ0−2δ0

)
, (18) has a unique root. (iii) In the interval

(
−∞, p1−3λ0−2δ0−

1
τ
)
,

(18) has a unique root.

Proof.

(a) Let γ̂ be real root of the characteristic equation. Using (18), we can immediately see that

p2e−(λ0+δ0+γ̂)τ −e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)

∫ τ

0
e−γ̂sds

+e−λ0τ (p2λ 2
0 +q2λ0+ v2

)∫ τ

0
e−δ0s

(∫ s

0
e−γ̂udu

)
ds< 0.
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Hence, from (18) it follows thatγ̂ − (p1−3λ0−2δ0)< 0, i.e.,γ̂ < (p1−3λ0−2δ0) . We have thus proved that every

real root of (18) is always less thanp1−3λ0−2δ0 .

(b) Consider the real-valued functionG defined by (82). As in the proof of Lemma 1, we see that (84) holds and

consequently

G is convex on R. (102)

Next, we observe that, as in the proof of Lemma 2, assumption (97) means that (100) holds true. Inequality (100)

implies, in particular, thatγ = p1 − 3λ0− 2δ0 −
1
τ is not a root of the characteristic equation (18). From (82) we

obtain

G(p1−3λ0−2δ0) =− p2e−(p1−2λ0−δ0)τ +e−(λ0+δ0)τ (p2δ0+q2+2p2λ0)

∫ τ

0
e−(p1−3λ0−2δ0)sds

−e−λ0τ (p2λ 2
0 +q2λ0+ v2

)∫ τ

0
e−δ0s

(∫ s

0
e−(p1−3λ0−2δ0)udu

)
ds.

So, by using (81), we conclude that

G(p1−3λ0−2δ0)> 0. (103)

Furthermore, from (82) we getG(γ) ≥ γ − (p1−3λ0−2δ0)− p2e−(λ0+δ0+γ)τ for γ ∈ R. Using this inequality, it is

not difficult to show that

G(−∞) = ∞. (104)

From (100), (102) and (103) it follows that, in the interval
(
p1−3λ0−2δ0−

1
τ , p1−3λ0−2δ0

)
, the characteristic

equation (18) has a unique root. Moreover, (100), (102) and (104) guarantee that, in the interval(
−∞ , p1−3λ0−2δ0−

1
τ
)
, (18) has also a unique root. The proof of the lemma is complete.
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