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Abstract: A wide class of third order linear autonomous delay difféi@requations with distributed type delays is considersal.
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1 Introduction and preliminaries

The theory of delay differential equations is importanttbtiteoretical and practical interest. For the basic thedry o
delay differential equations, the reader is referred toltbeks by Bellman and Cooke [1], Driver [4], El'sgol'ts and
Norkin [5], Hale and Verduyn Lunel [6], Kolmanovski and Myd& [7] and Lakshmikantham, Wen and Zhang [8].

In this paper, we deal with the stability of the trivial seart for a third order linear autonomous delay differential
equation with constant delay. An asymptotic result for thi@tsons is obtained. Also, an estimate of the solutionsand
stability criterion for the trivial solution are estableth The sufficient conditions for the stability and the asiotip
stability of the trivial solution and some examples are givdoreover, a result on the behavior of the solutions ismgive
Our results are derived by the use of real roots (with an gpfate property) of the corresponding (in a sense)
characteristic equations. The very interesting asymptotd stability results were given by Philos and Purnaras)]9-
The techniques applied in [11,12] are originated in a comtim of the methods used in [9,10].

Yenigerioglu [12] obtained some results on the qualabehavior of the solutions of a second order linear autaumm
delay differential equation with a single delay. The maieadn [12] is that of transforming the second order delay
differential equation into a first order delay differentieduation, by the use of a real root of the corresponding
characteristic equation. The same idea will be used in ggiepto obtain some general results.

Recently, Cahlon and Schmidt et al. [2] have establishedtttality criteria for a third order delay differential eafion.
This equation is obtained the stability of third order deldiferential equation using Pontryagin's theory for
guasi-polynomials. However, we study the stability of thene problem using the method of characteristic roots.

Let us consider initial value problem for third order delaffedential equation

Y =p1y'(t) + pay' (t— 1)+ quy (t) + Gy (t — T) +vay(t) +Voy(t — T), t >0 1)

whereps, p2, 01, 02, V1, V2 are real numberg, is a positive real number. In a previous paper [3], we comedi€q. ()
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with g, = 0 andvy = 0 which arose from a robotic model with damping and delayré&laee no practical stability criteria
of the zero solution ofX).

By a solutionof the delay differential equatiori), we mean a twice continuously differentiable real-valfigtctiony
defined on the interval—1,), which is thrice continuously differentiable df,«) and satisfies1) for all t > 0.
Together with the delay differential equatial) (it is customary to specify ainitial condition of the form

yt)=g(t), for —1<t<0, 2

where the initial functionp(t) is a given twice continuously differentiable real-valueshétion on the initial interval
[7.[50]'

Equations {) and @) constitute arinitial value problem(IVP, for short). It is known that, ( see, for example, Driyé})
for any given initial functionp, there exists a unique solution of the initial value probldjrand @) or, more briefly, the
solutionof the IVP (1) and Q).

Along with the delay differential equatio), we associate the equation
A =2A%p+Aqi+vite T (A2 +Ade+ Vo), (3

which will be called thecharacteristic equation of(1). Eqg. @) is obtained from 1) by looking for solutions of the form
y(t)=efort > —1.

For a given real roak( of the characteristic equatioB)( we consider the (second order) delay differential equati
Z'(t) =(p1—3A0)Z(t) + € 1" poZ (t — T) + (G + 2paAo — 3A§) (1)

t
+e 727 (02 + 2p2A0)2(t — T) — €T (P2AG + GpAo + Vo) /t Z(s)ds (4)
—T

A solution of the delay differential equatior8) is a continuous real-valued functi@defined on the intervgl-t, ),
which is twice continuously differentiable d, «) and satisfies3) for all t > 0.

With the delay differential equatior8), we associate the equation

52 =(p1 — 3A0)3 + 01 + 2P1Ao — 3AZ + (P2 8 + 2 + 2PAg) & (R0 +d)T
— e T (DA + Ao+ V2) 3 H(1—e %) (5)

which is said to be theharacteristic equation of(3). This equation is obtained fronB) by seeking solutions of the
formz(t) = ed fort > —1.

For our convenience, we introduce some notations. For angea rootAq of the characteristic equatioB)( we set
Bry = €T ((P2Ag + G2Ao +V2) T — G2 — 2p2Ao) — G — 2P1Ao + 3A¢ (6)
and, also, we define

L(Ao; @) =¢"(0) + (Ao — 1)@ (0) — p2¢? (—T) + (A§ — prAo — o) @(0)

0
— (P2Ao+ A2)@(—T) + € T (PAE + GpAo + V) [ ) e "05¢(s)ds (7)
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in addition, provided thaB, , # 0, we define

®1(Ag; @) (t) = @(t)e ot — LA09) o g <t<o. (8)
o

We will now give a proposition, which plays a crucial role intaining our main results.

Proposition 1. Let Ag be real root of the characteristic equatioB)( and letf,, and L(Ao; ) be defined byq) and (7),
respectively. Suppose tha{, # 0, and define®;(Ag; @) by 8). Then a continuous real-valued function y defined on the
interval [—1,) is the solution of the IVP1) and Q)if and only if the function z defined by

2(t) = y(t)e Mot — LAi®) o s g ()
Ao

is the solution of the delay differential equatiah) (vhich satisfies the initial condition
Z(t) = P1(Ag;@)(t) for —1<t<O. (10)
Proof. Lety be the solution of the IVP1) and @). Define
x(t) = e Mly(t) for te[-T,0), (11)

whereAq is a real root of the characteristic equati@h (Then, for every > 0, we have

!

[%’ (t) + (3Ao— pu)X (t) — €720 poX (t — T) + (A& — 2paAo — du)X(t) — € 7 (2p2Ao + O2)X(t — T)

= (P1A + d1do+ Vi — AG)X(t) + €7 (P2AG + G2Ao + V2)X(t — T). (12)
Moreover, the initial conditionZ) can be equivalently written

x(t) =eMgt) for te[-1,0. (13)
Furthermore, by using3j and taking into accouni@), we can verify that12) is equivalent to
X' (1) + (3h0— L)X (t) — € 20T poxX/ (t — T) + (3A& — 2p1Ao — Gu)X(t) — € 20T (2ppAg + G)X(t — T)
= (PAd+ Guho+vi — A3) /O X(8)ds+ e 0T (pA 2+ Gpo 1 Vo) | /0 X(s— 1)ds+x"(0) + (3% — pLIX(0)
— & poX (—T) + (325 — 2p1Ao — ) X(0) — & " (2ppAg + G2)X(— 1),

X'(t) = (p1— 3A0)X (t) + € 2T poX (t — T) + (g1 + 2p1Ao — 3AE)X(t) + €07 (g + 2p2Ao)X(t — T)
t t—1
4 (PAZ+ aho+vi— AD) /0 X(8)dS+ €27 (PaAZ + QoA + Vo) / x(s)ds
-7

+¢"(0) — 2409/ (0) + AF9(0) + (3A0 — P1) (¢/ (0) — A0@(0)) — p2(¢ (—T) — Ao(—T))
+ (37§ — 2p1Ao — G1) @(0) — (2p2Ao + G2) P(—T),

X'(t) = (pr— 3A0)X (t) + € 20T poX (t — T) + (1 + 2p1Ao — 3AE)X(1)

t
+e 7 (gp + 2ppAo)X(t — T) + (P1AG + Quho + Vi — AG) /0 x(s)ds

t—T
+ €T (PaAZ + Ao + Vo) /0 X(s)ds+L(Ao; @),
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X'(t) = (pr— 3A0)X (t) + e 2T poxX/ (t — ) + (01 + 2p1Ao — BAG)X(t)

t
+&7 G2+ 202A0)(t — ) — & (p2AG + Ao+ vo) [ x(s)as

-
+e (A8 + QAo + Vo) /o X(s)ds+L(Ao; @),

X' (t) = (p1— 3A0)X (t) + € " pxX/(t — T) + (G + 2P1Ao — 3A)X(1)
t
+e 27 (G + 2p2A0)X(t — T) — €T (0248 + QAo + Vo) / X(s)ds+L(Ao; 9), (14)

Jt—1

whereL (Ao; @) was given in 7). Now, we take into account the assumptgyy # 0 and we define

Z(t) =x(t) — L) for

o

t>-—r. (15)

Then, because of definition @, by (6), it is a matter of elementary calculations to show thaatisfies {4) fort > O if
and only ifz satisfies 4) fort > 0, i.e., if and only ifzis a solution of the delay differential equatiof).(Moreover, we
see that the initial conditiorl@) is equivalently written as follows

z(t) = *)\otq)(t) — %}\,@) for —1<t<O0. (16)

We have thus proved thatis the solution of the IVPX) and @) if and only if zis the solution of the delay differential
equation ¢) which satisfies the initial conditiorlg). By (11), we see that15) coincides with 9). Also, by taking into
account the definition o1 (Ag; @) by (8), we observe thatl) coincides with the initial conditionlQ). The proof of the
proposition 1 is completed.

For a given real root&g, & of the characteristic equation3)(@and 6), respectively, we consider the (first order) delay
differential equation

t
W (t) =(p1— 3Ag — 280)W(t) + & Aot ®T powy(t — 1) — e Aot (b, 5+ gp + 2pAo) / w(s)ds

t—1
T t
+efA°T(I02A02+Q2)\o+V2)/O ea"s{/t

—-S

w(u)d u} ds a7
By a solution of the delayl(7), we mean a continuous real-valued functierlefined on the intervdl-t, ), which is
continuously differentiable ofD,«) and satisfies1(7) for all t > 0. The characteristic equation of the delay differential
equation 17) is
T
Yy =p1— 3Ao— 28+ pre” Aot BINT _ o= (Ro+&)T (5,5, 4+ gy + 2paAo) / e sds
0
T S
+ €207 (AZ + Ao + V2) / g %S (/ e ’'d u> ds
0 0
or

Yy =p1—3ho— 20+ ppe” Mo OINT e~ (M0t Q)T (0,5 1 o+ 2ppAo) YL (1—€7Y7)
+ e*’\Or(pgx\g + C|2)\0+V2) V71 { 561 (17 eﬁéor) — (5o+ V)il (1* ef(c‘50+y)r) } . (18)

The last equation is obtained frorh7j by seeking solutions of the form(t) = e"* fort > —1.

For our convenience, we introduce some notations. For angaa rootAq of the characteristic equatioB)(and a given
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real rootdy of the characteristic equatioB)( we set

T
Mrod =€ N0FO)T (080 + G2+ 2P2A0) T — P2} — P1+ 3o+ 28 — €727 (poAG + GoAo + Vo) /O se®ds  (19)
and let®; (Ag; @) be defined byg). Also, we define

R(%0, &; @) =(®1(A0; @)’ (0) — &P1(Ao; 9)(0) — (p1— 3Ao — 286) P1(Ao; 9) (0)
&7 Doy (0 0) (1) + &0 (0o 4 02+ 20200) [ €100 )3

T
— e M7 (P2A§ + G2Ao + Vo) /O Ch { /

e Uy (A; (p)(u)du} ds (20)

where(®1(Ao; qo))’ is derivative of®;(Ag; @); in addition, provided that,, 5 # 0, we define

R(Ao, do; @)

®2(Ao, %0; 9)(t) = &X' P1(A0; @) (t) - Mo

for te[-1,0]. (21)
We will now give a proposition, which plays a crucial role ibtaining our main results.

Proposition 2. Let & be real root of the characteristic equatiob)( and letn,, 5, and RAo, d; @) be defined by1(9)
and 0), respectively. Suppose thay, 5, 7 0 and define®, (Ao, do; ) by (21). Then a continuous real-valued function
z defined on the intervédd-1, ) is the solution of the delay differential equatiot) (vhich satisfies the initial condition
(10) if and only if the function w defined by

R(Ao, &; @)

w(t) = e %'z(t) — 0
20,%0

for t>-1 (22)

is the solution of the delay differential equatiditv) which satisfies the initial condition
w(t) = P2(Ap, d0;@)(t) for —T <t <O0. (23)
Proof. Let nowz be the solution of4) and (L0) and&y be a real root of the characteristic equatibp Define
v(t) = e ®'zt) forall te[-T,0). (24)
Then, for every > 0, we have
V/(t) =(p1— 3o — 28V (t) + & Ao+ DT pov/(t — 1) + (Spp1 — 3A0d + 1 + 2p1Ao — 3A& — B)V(t)
+e Aot RIT(Fypp + G + 2P2A0)V(t — T) — €727 (PAE + Ao +V2) /(: e O%(t—s)ds (25)
Moreover, the initial condition1(6) can be equivalently written
v(t) = ey (Ag; @)(t) for te[-1,0], (26)
where®; was given in 8). Furthermore, by usingf and taking into accoun2g), we can verify thatZ5) is equivalent to
V(1) =V (0) + (1 — 3h0 — 280)V(t) — (P1— 3Ao — 280)V(0) +- & W @) pyy(t — 1) — e Aot ®ITpy(—1)
+(Bop1— 3A0do + G1 + 2P1ho — 345 — &) /Ot v(s)ds+ e Yot (&p, + 0o + 2p2A0) /Ot V(s—T1)ds

T t
7eiAOT(p2/\02+q2/\O+V2)/O e%s{/o v(us)du}ds
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V(t) = (@1(Ao; @) (0) — 3o®1(A0; 9)(0) + (P — 3Ao — 280)V(t) — (P1— 3Ao — 280) P1(Ao; ) (0)
+e Mot poy(t — 1) — e P @y (Ao; @) (—T) + (SoP1 — 3Aodo + G1 + 2P1ho

*3/\62*53)/0 V(s)ds+ e ot (50p2+CI2+2I02/\0){/OTV(S)dSqL/OtTv(s)ds}
t-s

T 0

—S

V(t) =(p1— 3Ag— 28p)V(t) + & Aot @) T poy(t — 1)
t

{1 (et 20200) - (1€ ) (p2AF +pho ) w5

t—1
+e Aot DT (& py +gp + 2p2Ao) / v(s)ds

T ‘t—s
— e M (poAg +Q2)\o+v2)/0 eéos{/o V(U)du}d5+ R(%0,%: ),

t
V(1) =(p1— 3o — 25)V(t) + & Aot @) poy(t — 1) — e Ao+ DT (30 4 g2 4 2p2Ao) /ti v(s)ds

T t
+ €T (PAg + QAo + Vo) / e’éosds/ v(s)ds
0 0

T t—s
e 0T (P2 + QAo + V) /O e%S{ /0 v(u)du}der R(Ao, %; @),

t
V(1) =(p1— 3Ag— 28p)V(t) + & Aot @) T poy(t — 1) — e ot (0,50 + g + 2p2Ag) / v(s)ds
t—1
t
+e/\or(p2/\02+q2/\o+vz)/Te605{/ v(u)du}ds+ R(Ao, %0; @), (27)
0 t—s
whereR(Ag, d; @) was given in 20).

Next, we take into account the assumptipy 5, # 0 and we define

R(Ao, d0; @)

w(t) =v(t) — Mhos,

for t>-—1. (28)
Then, because of definition gf,, 5, by (19), itis a matter of elementary calculations to show thsatisfies 27) fort > 0
if and only if w satisfies {7) fort > 0, i.e., if and only ifw is a solution of the delay differential equatiati/y. Moreover,
we see that the initial conditior2) is equivalently written as follows

R(Ag, &0; @)

w(t) = e~ ¥ b1 (Ag; ) (t) - Mo

for —1<t<O0. (29)

We have thus proved thais the solution of4) and (L0) if and only if w is the solution of the delay differential equation
(17) which satisfies the initial conditior2). By (24), we see that48) coincides with 22). Also, by taking into account
the definition of @, (Ao, &; @) by (21), we observe that?@) coincides with the initial condition23). The proof of the
proposition 2 is completed.

LetC([-T1,0],IR) be the Banach space of all continuous real-valued functiartbe interval—1,0], endowed with the
usual sup-norm
¥ = max |¥ () for WeC([-1,0],IR).
—1<t<0
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Moreover, letC?([—1,0],IR) be the set of all twice continuously differentiable realsea functions on the interval
[-T1,0]. This set is a Banach space with the norm

[%lez =max{|¥1]  [w]| . ["][} for weC([-1,0LIR).

As it concerns the IVP1) and @) studied in this paper, the initial functignbelongs taC? ([-1,0],IR). So, the notation
l@|lc2 used in Section 3 is defined by

l@licz = max{ [|¢ll || ¢ ||<lf’H}maX{ max |@(t)| , max [¢@/(t)], max |¢(t)] }

—1<t<0 —1<t<0 —1<t<0

Before closing this section, we will give three well-knowefiditions. The trivial solution of the delay differentiajeation
(1) is said to be “stable” (at 0) if for everg > 0, there exists &= /(¢) > 0 such that, for anyp € C?([-1,0],IR) with
lollcz < £, the solutiory of the IVP (1) and @) satisfies

ly(t)] <& forall te[-T,0).

Otherwise, the trivial solution oflj is said to be “unstable” (at 0). Moreover, the trivial sadut of (1) is called
“asymptotically stable” (at 0) if it is stable in the abovense and, in addition, there exist¥@> 0 such that, for any
@ € C?([-1,0],IR) with ||¢||c2 < fo, the solutiory of the IVP (1)-(2) satisfies

lim|y(t)|=0; i.e., limy(t)=0.

t—o0 t—o0

2 An Asymptotic results

Our purpose in this section is to establish the followingtieen.

Theorem 1. Let Ao be real root of the characteristic equatioB)( and let3,, and L(Ao; @) be defined byf) and (7),
respectively. Furthermore, ledy be real root of the characteristic equatiorb)( and let n,, 5, R(Ao,d;¢) and
®,(Ao, O; @) be defined byl(9), (20) and 1), respectively. Moreover, lgp be a real root of the characteristic equation
(18). Suppose thaB,, # 0 and n,, 5, # 0. ( Note that, because ), # 0, we always haveédy # 0 and yp # — .
Furthermore, because ofy, 5, # 0, we always havgp # 0.) Set

T
Ero.doo :e*()“’*éo”")rpﬂfe*<’\°+6°)r(p25o+Q2+2p2/\o)/ e %sds
0
T S
4 gt (pz)\onquoJer)/ 6605{/ eyouudu}ds (30)
0 0

and, also, define

0
K (Ao, 30, Yo; @) =P2(Ao, &; 9)(0) + e o tdT0)Tp, / ) e °®, (Ao, &; ¢)(s)ds

T 0
— e Mot DT (p 5y + o+ 2p2)\0)/ e s {/ e 01 ®, (Ao, Ov; @)(U)du} ds
0 -s
T S 0
et (pzf\onrQ2Ao+V2)/ eéos{/ e 0t {/ eyow‘Dz(Aoﬁo;fp)(w)dw}dU}ds (31)
0 0 —u
Assume that

T
i dogo =€ OO pg| T4 "ot |ppdy 4 6z + 2p2l / e sds
o 0

T S
+e”\0T|p2)\02+C|2/\0+V2‘/ e%s{/ eVOuudu}ds< 1. (32)
0 0
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( This assumption guarantees thatt £, 5, ,, > 0.) Then the solutioy of the IVP (1) and @) satisfies

lim {eyot {e()\owo)ty(t) LA @) ot R(/\o,5o:€0)] } _ K20, %, 0:0) (33)

toe B Mho.& 1+ &0

Before we prove the above theorem, we will present some eatsens, which are concerned with a real ragtof the
characteristic equatior), a real rootd of the characteristic equatioB)(and a real rooyg of the characteristic equation
(18).

LetF(J) denote the characteristic function &j(i.e.,

F(3) =62~ (p1—3A0)0 — p2de~ M0t _q; —2pi A+ 348
— (G2 + 2p2Ag)e Mot 4 e T (Do A2 + oo +V2) 6 H(1— e OT).

Sinced = 0 is a removable singularity &f(J), we can regaré (d) as a entire function with
F(0) = &7 ((p2A& + GpAo +V2) T — G2 — 2P2Ao) — 1 — 2p1do + 3AG = By,
Hence, if we assume thfj # 0, then we always haw® # 0. LetG(y) denote the characteristic function 4}, i.e.,

G(y) = — Y+ p1— 3Ao— 28 + poe~ R0t tNT _g=(AotQ)T ()5, 4 gy +2poAg) Yy 1 (1—€e7V)
+ e”\Or(pz)\g + gAg+ Vo) Vﬁl{5ofl (l— eiéor) — (50+ V)71 (1 — 67(6°+V)T) } .
Sincey = 0 is a removable singularity @(y), we can regar&(y) as a entire function with
G(0) =p1— 3Ao— 28y + ppe NoF )T — e (Mot RIT (10,8 + o+ 2ppAo) T

+e70 (poAG +apho +2) & (1 ¥ —doTe V) =y 5

Hence, if we assume tha,, 5, # 0, then we always havg # 0. Furthermore, sincg = —& (& # 0) is a removable
singularity ofG(y), we can regar(y) as a entire function with

G(~ &) =&+ P1— Bho— 28+ Poe 0" + &M D) (0,3 + G+ 2ppho) 5% (1€
— eﬁAOT(pzAOZ —+ Q2Ao +V2) 561 (561 (1 — e*%r) — T)
or

%G(—&) = — & + & (P1—30) + dopae "+ Yor VT (p,8+ gp + 2paAo)
— e " (pad + o + 2P2A0) — € T (P2AG + oo+ V) 8y (1 - eféor) +e7 (paAd + GpAo + Vo) T.

By using 6), we derive
&G(—&) = — (a1 +2p1ho — 3A&) — €17 (0o + 2p2Ao) + € T (P2AG + Qoo +V2) T = B,

But, by the definition of3,, # O, a root of the characteristic equatidr8] must becomey # —d. Consequently, it must
be & # 0 real root of the characteristic equatid) &ndy, £ 0, yp # — & real root of the characteristic equatiak8).

Definep,, &,y bY (32). Itis clearp,, 5 . IS positive. So,2) can equivalently be written as follows

0< Hr.gp < L. (34)
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Furthermore, for the real constafyy, 5, ,, defined by 80), we have

[r0 0] < |&7 0" @0 pyr | 4

e~ (Roto0)T (p25o+Q2+2p2)\0)/0 ey(’sSd%

e’AoT(pzAgquz)\oJrvz)/ eéos{/ eW“udu}ds{,
0 0

T
< g Aot@H0)T b, |7 4 g~ (Aot D)T |, 5 4 go + 2p2A0| /O e WSsds

+

T S
+e*)‘°r\p2}\§+q2/\o+vz\/0 e%s{/o eW“udu}dSEuAO,(;O’yo.

That is,
120,803 < Ho.do.0- (35)

Thus, if we assume thaB®) is satisfied, i.e., thaB@) holds, then 85) gives|¢), 5 ,,| < 1. This guarantees, in particular,
that

1+ E)\oﬁo,yb > 0.

Proof. Let ybe the solution of the IVP1) and @). Define the functiorz by (9). By Proposition 1.1, the fact thatis
the solution of the IVP 1) and @) is equivalent to the fact thatis the solution of the delay differential equatiof) (
which satisfies the initial conditioriL(). Furthermore, define the functiam by (22). By Proposition 2, the fact that
is the solution of the delay differential equatiof) @nd (L0) is equivalent to the fact that is the solution of the delay
differential equation17) which satisfies the initial conditior2g). Set

Q(t) =e W'w(t) forall te[-T1,). (36)
Then, using the fact thag is a real root of the characteristic equatid®); from (17) we obtain, for every > 0,

Q'(t) =(p1—3ho— 28 — 1) Q(t) + & N F OOt — 1)

— e I (g 1 p +2p2M0) [ e HQ(L-S)ds
+e”\°T(p2A02+q2/\o+vz)/(; e%S{/:eWUQ(t—u)du}ds (37)
Moreover, the initial conditionZ9) can be equivalently written
Q(t) = e Pty (Ao, &; @) (t) for te[-T1,0], (38)

where®, (Ao, d; @) is defined by 21). Furthermore, using the fact thg is a real root of {8) and taking into account
(38), we can verify that37) is equivalent to

t t
Q(t):(p1*3)\0*250*)/0)/ Q(S)dSJre’(AO*‘SO“b)sz/ Q(s—1)ds
— g (otd)t (p25o+CI2+2p2)\0))/0 g s {/ Q(u— S)du}ds

T
+efA°T(p2/\62+Q2/\o+V2)/ 8505{/ e ! {/ Qw }du}ds+Q(O),
0
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t t—1
(1) =(p1—3ho— 28— yo) | Q(gds+e W H WD, [ 0(s)ds
-1
t—s

—S

T S
+e T (PAg + dpAo + Vo) / g %s {/ Cl {
0 0

T
7ef(Ao+5o)T(p250+q2+2p2)\0))/0 eVos{ Q(u)du}ds

t—u

J—=u

Q(a))dw} du} ds+Q(0),

t T t
Q(t) = — e Rotd+w)Tp, / Q(s)ds+ e M0t®)T (ny 8+ g+ 2p2A0) / eVOs{ Q(u)du}ds
t—1 0

t—s

T 'S t
e (poag o) [ e [en{ [ owidn)dufdstkido e, (39
J0 J0 t—u

whereK (Ao, do, yo; @) is defined by 81). Next, we define

~ K(%0, %, yo; 9)

oM =00~ -

, for t> -1, (40)
whereé, sy, is defined by 80). Then we can see tha#9) reduces to the following equivalent equation

t T 't
o) :_e*()\o+5o+yb)rp2‘[ @(S)ds—l—e*(AOMO)T(p250+q2+2p2/\0)/0 eybs{/t S@(u)du}ds
-1 Ji—
T S t
- 7A°T(D2A<)2+Q2/\0+Vz)/ 6505{/ e You {/ @(w)dw}du}ds (41)
J0 J0 Jt—u

for all't > 0. On the other hand, the initial conditioBg) can be equivalently written

O(t) = e dy( Ao, &; @) (1) — RACWID) g, (42)
1+ Erd
Now, we shall prove that
lime() =o. (43)
Define
_ K (Ao, %, b, @)
Cp) — yot . B i e A0 AT 4
It follows from (42) and @4) that
O(t)] <M(Ao0,%,);¢) for —T<t<O0. (45)

We will show thatM (A, do, Yo; @) is a bound of the functio® on the whole interval-1, ), i.e., that
|O(t)] <M(Ao, %, y0;9) forall t>-—1. (46)

For this purpose, we consider an arbitrary positive reallmens. We claim that
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|O(t)] <M(Ao,d,Y0;9)+€ forevery t>-—rt. (47)

Otherwise, since4®) implies that|O(t)| < M(Ag, 0, ¥0; 9) +€ for —1 <t <0, there exists a point > 0 such that

|©)] <M(A0,%,¥;9)+¢&, for —T1<t<t’ and |O(t")]=M(Ao,%,;)+e.
Then, by taking into account the definition pf, 5, ,, by (32) and using §4), from (41) we obtain
M(2o, %0, Yo; @) + £ =[O (1)

t* T
<e (ot py| [ 10(5) ds+e 20 pady+ q +2p2hol | eVOS{ i

*—s

* |@(u)|du}ds

T s t*
+e’A°T\p2A§+QZAo+V2‘/O e‘sos{/0 e o {/t IG(w)Idw}dU}dS
*—u

T
< { e Rt | py|7 4 @ (Aot )T py Gy 4 g + 2pz/\o|/0 e %°sds

T S
e oA oo +ve| [ e‘*ﬁ{ A e“’“udu}ds} (M(Ao, . ¥0:9) + €)

:qu,éo,yo M ()\07 &)7 W- (p)
<M(Ao, &0, Yo; @) + €.

We have thus arrived at a contradiction, which establishie€kaim, i.e., that47) holds true. As4?7) is satisfied for all
real numberg > 0, it follows that @6) is always fulfilled. Furthermore, by using®), from (41) we get, for every > 0,

t T t
|@(t)| Sef(Ao+6o+Vo)rp2/t |@(S)|ds_i_e*()\oJréo)T|p250+q2+2p2/\0|/0 e WS {/

-T t—s

T s 't
+e”\°T‘p2/\g+Q2/\o+V2’/o eéos{/o e*f’“{/t IG(w)Idw}dU}dS
. JI—U

T
< { e Mot | po|7 4 @ Aot O)T | py Gy + 0 + 2p2Aol /O e %°sds

|@(u)|du}ds

T S
Jrefj\or‘pz)\onrqz)\oJrV2|/0 9605{/0 eW“udu}ds} M (Ao, &0, Yo; @).
Thus, by taking into account the definitionpf_ 5 .., by (32), we have

|O(t)] < May,5,5 M(A0, %, Yo; @) forevery t>0. (48)

By using @1) and taking into account the definition gf 5 ., by (32) as well as taking into account§) and @8), one
can prove, by an easy induction, that the functratisfies

O] < (Mrg.ay) "M(A0,00,¥0;9), forall t>nr—1, (n=0,1,..). (49)
Because 0f34), we have

lim [HAO’%,W]H =0. (50)

n—oo

© 2018 BISKA Bilisim Technology


www.ntmsci.com

211 BIS K A A F Yenicerioglu: Behavior of the solutions to third ordieear autonomous delay differential equations

In view of (50), it follows from (49) thattime(t) =0, i.e., @3) holds true.
Finally, by (22), (36) and @0), we have

20:0) 5t R(A0.%:9)| _ K(Ao, %, o: 9)

ol L(
Ot)=e¢e Yot e ()‘0+60)ty t) —
®© © Bro Mo 1+ &0.310

: (51)

fort > —1. In view of this equality, 83) coincides with 43). So, the solutioty of the IVP (1) and @) satisfies 83). The
proof of the theorem is complete.

3 An estimate of the solutions and a stability criterion

Our results in this section are Theorem 3.1 below and itslieoyo

Theorem 2.Let Ag be a real root of the characteristic equatio8)( and suppose that,, # 0, wheref,  is defined by
(6). Let & be a real root of the characteristic equatiof)( suppose than), 5 # O, wheren, 5 is defined by 19).
Furthermore, lety, be a real root of the characteristic equatiof§), and leté,; 5, be defined by30). ( Note that,
because of3,, # 0, we always havéy # 0 and yp # —d. Furthermore, because ofy, 5, # 0, we always havey # 0.)
Set

m(Ao, %, o) = max{ 1, et Xl el glhotd)T } (52)

Assume tha,, 5 \, < 1 holds, whereu,, 5 ., is defined by 82). ( This assumption guarantees that &, 5, , > 0.)
Then the solutioly of the IVP (1) and @) satisfies

K, ot mM(Ao, O, Y0) M. &

I < { 1Bl 1M2o,5]

et @lt 1 m(do, &, ¥6)9(Ao, B, 10 gy M0 20! } lollcz.  (53)
forallt > 0, where

0
Ky = 1+ [Ao— Pa| +|P2| + |A§ — Prro — G| + | P2Ao+ G| +€77" |p2/\02+Q2Ao+V2\/ e *osds (54)
-7

Moy = ( 1+ 722 ) { (L Aol + o]) + [ps — 3ho— 28] + &0 po
0,% ’B)\O’ 0 1 0 2

0
+e*<’\°+5°)r|p250+q2+2p2)\0|/ e%sds}, (55)
—-T
Kx Mro.5
Ay g =1+ —2 4 0 (56)
Ao-% Bl ' 1Mag.s0l
1+u
9(A0, B0, Y6) = Hg..46M(A0s 0, Yo) + ———2 20 ¢ (57)

1+EA0,60,V0 20,%. Y0
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and
0 T 0
Oro.80 10 :{1+e(/\°+6°+“’)r|p2|/ e °%ds+ ef<A°+6°)T|p25o+Q2+2pon|/O e’bs{/ e’b“du}ds
. .

T 'S 0
+e*’\°T]pzA§+Qon+Vz\/ eéos{/ e U {/ eVO‘*’dw}du}ds}. (58)
0 JO —u

The constang(Ao, do, o) is greater than 1.

Corollary 1. Let Ag, & and yp be real roots of the characteristic equatiory,((5) and (18), respectively. Suppose that
By, # 0andn,, 5 # 0, wheref,, andn,, s are defined byg) and (19), respectively. (Note that, becauseaf # 0, we
always have) # 0 and yp # —d. Furthermore, because gf,, 5, # 0, we always havey # 0).

Assume thay,, &y, < 1 holds, wherey, g ,, is defined by 32). Then the trivial solution of the delay differential
equation () is stable ifAg < 0, Ag+d <0, Ag+ & + ¥ < 0 it is asymptotically stable iAig < 0, Ag+ & < 0,
Ao+ o+ w<0.

Proof. (Proof of Theorem 2.) First of all, we observe that, for argl rumben, it holds maxe at = max{1, é¥}. So,
using 62), we immediately see that fer1 <t <0

e < m(Ao, %, 1), (59)
e~ % < m(Ao, &0, ), (60)
e < m(Ao,éo,y@), (61)
e PPt < m(Ao, &, 1b). (62)

These inequalities will be frequently used later.
DefineL(Ag; @) by (7). Then

IL(A0; @)| <[ (0)] + |Ao— pal|¢ (0)] + |p2lg? (—T)| +[Ad — PrAo— cul|9(0)]
HlpAo +allol-1)| e [poAd +ado el [ e las)ds
<{[|¢" ||+ (1ho— pal + [p2l) [|#|| + (1A — PrAo— cia| + | P2Ao+ |
+6 7 | PAG + GoAo + Vo /j erst} ol
By (54), we have
IL(A0; @) < kg I @llc2- (63)
Consider the functio®; (Ag; @) defined by 8). Then, by §9), we have

IL(Ao; )]

(| @1(A0; @)[| < M(Ao, &0, Vo) Il +
|BA0|

and so, in view of §3),

Ka,
[ @1(A0; @)l < M(Ao, &, Y0) [l + 777 |

BAO} iz -
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Therefore,
K
| @1(A0; @) S( (A0, %, yo) + B ‘> ([ llcz- (64)

Furthermore,
|(®1(20:0)'|| < (Ao, .10 (|| + Mol ]

where(®1(Ao; (p))/ is derivative of®; (Ag; @), and therefore,
[(@1000:0))'| < m(Ao, &, ¥0) (1 o)) 1@l (65)
Let us consider the constaR{Ao, dp; @) defined by 20). Then, by 64) and 65), we have
IR0, 8:9)| <|(1(40:9) (0)] + 180 |91(40: 9)(0)|+ [P~ 3h0— 2] | @1(A0; 9)(0)
+e77 | py| [@1(Ag; @) (—T)| + & NPT py &+ A + 2p2A0| /j e ®°|®1(A; 9) ()| ds
< [[(@16: @)’ || + 18] 191020; @)]| + 1 — 30— 28| |1 (Ac; @) + €7 ol [ @1(Ao; )

0
+e*(A0+5°)T|p25o+Q2+2p2/\o|/ e | ®1(20; 9) | ds
-1

Ky k
S{m()\07607yb>(1+|)\0|>+|60| < (Ao, %0, Vo) + |BA |> +e )\0T|p2| <m()\0)+ |B)‘AO|>

0
+e*(’\°+50)r|p25o+Q2+2p2)\0|/ eéos< (A0, %, o) + By, ‘>ds} 1@l
-1

k k A k)\
<m(Ao, d, ¥0) § 1+ Aol + || | 1+ +[p1—3A0—2&| | 1+ +e 0" pp| | 14+
[Bro] | IBAOI By

Ky
+e (Aot ) T|I0250+Cl2+2p2)\0|/ g %S <1+ Brc |) dS} | ®llc2

<m(Ag, &, Vo) (1 ) (1+ Aol + || ) + |p1— 3Ao— 28| + €7 py|

IBI

0
+e (ot 0,5 165+ 2poAo] [ e“OSds} lcz.
-7

By (52) and 65), we have
[R(Ao, &0; @)| < M(Ao, S0, Yo) hrg.5 [| @l c2 - (66)

Consider the functio,(Ag, &; @) defined by 21). Then, by 8), (60) and £2), we have

L(Ag; R(Ao, do;
@220, 9)1] < (Ao, &o,10) ] + =22 Pl iag. &, ) + (R0 20
Bl M50
and so, in view of§3) and 66),
ki, hg
(| ®@2(Ao, do; @)|| < M(Aog, do, Vo) | @llcz + M(Ao, B0, Y0) 7o | @llcz + 7= [|@llc2 -
’B}\o’ \'ho,éo!
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Therefore,

k h
||¢2(Ao,6o:qo>||sm(Ao,ao,vO>{1+ fo | ok }n«mczm(Ao,ao,ywdAo,aoumcz- (67)
1Bl 1Moa|

Let us consider the constaitAg, &, yo; @) defined by 81). Then, by 67), we have
K (Ao, &, 16; 9)| <[ @2, &; 9)(0)] +& Yo & )Ty [ Ore*V°5|¢z<Ao,6o;<o><s>|ds
N A |p25o+0|2+2p2/\0|/0T e s {/oseW“|¢2()\0,50;qo)(u)|du}ds
+e7 27| pAE + Ao+ Vo /(: 6505{/058“’“ {/Ze“""l%()\oﬁo; ?) ()| dw} du}ds
< @200, i )] + & 000 ] [ €300, 85| ds
e (ot |p260+qz+2pzi\o|/OT e {-/‘OseW“||¢2(on5o:<0)||du}ds
+e7 [ poAd + d2Ao + Vo /OT eéos{/oseyou {/OueV°w||¢’2(/\o,5o:¢)|dm}du}d5

0
<m(Ao, %, Yo) {1+e“°*5°”°” P2l / e %ds
-7

T -0
+e RO |pady + g+ 2p2Ao| / e s { /
0

J =S

T S 0
& poAg -+ aho+ve| [ eﬁos{ A evo“{ / evowdw}du}ds} Ao | @lc2-
—u

|K(AO7 %7 Yo, (0)| S m(/\07 %7 VO)E/\O,%,yod)\o,c‘i) H (0”02 . (68)

eVOudu} ds

By (58), we have

Leté), &,y e defined by30), ( Note that, because @y, 5, , < 1 by (32), we always have % ¢, 5 , > 0.) and define
M (Ao, 3o, Yo; @) by (44). Then, by using§l), we have

IK(/\o,éo,vO;qO)l_

Mo, 8. 6:9) < Mo, &, 6) | (Ao, i @) |+ =7 -
0,90,Y0

So, by virtue of 67) and 69),

Mk, 8,1 9) < Ao, 816) (Ao B06)+ 17922 ) g [l (69
A0,%0,Y0
Now, lety be the solution of the IVP1) and @), and define the functiorsby (9) andw by (22). Also, we define the
functionsQ and®© by (38) and @2), respectively. Note thaBQ) ( which is a consequence of the assumpti®®) | states
that 1+ &), &y, > O- Then, as in the proof of the Theorem 1, we show th8) &nd 61) are satisfied. We shall prove that
y satisfies §3), where the constants(Ao, & b), Ky Mg.5, Gro.& + 9(A0, 00, ¥0) and’y, 5y, are defined by§2), (54),
(55), (56), (57) and 68), respectively.
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From (1) it follows that

y(t) = L(Ao; @) ot | R(Ao, %0; @) ot [O(t)+ (Ao, %0, Y6 (0)] o+ &)t

B, Mo, 14+ 830,80

fort > 0 and consequently

LA )] gt , IR0 %0 @) rg-0 [ |K(/\o,5oV0€0)|} Ao+l
y(t)| < Bl et 4 s o)+ T — 0 .

Thus, using48), we obtain

()] < EA @) et [RA0, %0 @) 01 [K (A0, % <P)|] ghor®0t  (70)

|:IJA050 Yo ()\0750#{3-(1’)

Bl Mo 1+ &80
fort > 0. Using 63) and ©6), we obtain
LA @)l _ ki
) (71)
’B)\()’ ’B ’H ||C2
e Ao, 0)| _ M(Ao. B o)
R(Ao, d; M(Ao, o, Yo)My,,
R0 2i0)] SLAT 72)

Mgl — Ml
Moreover, by the use 068) and 69), we get

|K(Ao, &0, Yo; )|

Y4
Hxg.50.5 M (Ao, B, Yo; @) + <My 5.5 M(Ao, G0, Y0) (m(Ao,Cso, o) + ﬂ) o5 1Pl

14+ &0.8.00 1+ &80
M(Ao, %0, ¥0)€ 0,501 Io.5
20,%. Y0
So, because 06(), we have
K (Ao, %, ;
Hrg. &,y M (Ao, 0, Yo: @) + K (Ao, %, i 9)| < mM(Ao, %, ¥6)da,,59(A0, %0, Y0) [ @l c2 - (73)

1+ &0

Using (71), (72) and (73), we immediately see tha?() implies 63). Hence, §3) has been proved.
Finally, we will establish that the constag(tAo, do, o) is greater than 1. By3p) and since 1§, 5 ,, > 0, we have

0 < 1+EA0~60*K) S 1+ }E}\Oﬁo-)’o} S 1+“)\0,60,)'b7

which ensures that

1< L+ Moam
1+ &0.&.0
Furthermore, from%8) we have
EAOKSO-,VO > 1.
Thus, we obtain L
+ Mro,50.0
1 < - "A0%. 0 .
1+E)\0$60$y0 Ao’%”b
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Hence, it follows from the definition afi(Ag, &, o) by (57) thatg(Ag, &, o) is always greater than 1. The proof of the
theorem is now complete.

Proof. (Proof of the Corollary 1.) Ley be the solution of the IVP1) and @). By Theorem 1, the solutionsatisfies $3),

wherep), N5, M(Ao, %,¥0); Krg» Mg, 5 Grg.5aNdd(Ao, &, ), are defined byg), (19), (52), (54), (55), (56) and £7),
respectively. The constagtAo, & W) is greater than 1.

Assume first thabg < 0,Ap+ & < 0 andAg+ & + ¥ < 0. Then 63), gives

K, M(Ao, 5, y)h
|y<t>|s{ o MAo: %, 0) A°’5°+m<Ao,6o,vO>dAo,aog<Ao,6o,yo>}|<p|cz for t>0.

B M.
So, if we set
K m(Ao, &, Yo)h
S(A0,%0.Y0) = % + (0. %, 10) o +m(Ao, 8, Y6)dag 59(A0, 3, 10)
1Bxol 1Mro.5|

then we have
ly(t)| < S(Ao,%0.00) |@llcz forevery t>0.

Sincem(Aog, &, Y) > 1, d), 5 > 1andg(Ao, &, o) > 1, we always hav&(Ao, &, ) > 1. Thus, we obtain

Iy(t)] < S(Ao,%0,0) [|@llcz forall t>-—1.

Using this inequality, we can immediately verify that thigittl solution of (1) is stable (at 0).

Next, let us suppose thap < 0, Ag+ & < 0 andAg+ & + ¥ < 0. Then the trivial solution ofl) is stable (at 0).
Furthermore, we see that it follows frora3) that the solutiory satisfies

limy(t)=0.

t—o0

Hence, the trivial solution ofl)) is asymptotically stable (at 0). The proof of Corollary k@npleted.

4 Examples

Example 1.Consider

V0 =(530) OO + 5 (/D -vie-D)+ (27 )00 -ya-1)az0 ()

y(t) =g(t), -1 <t <0,

whereg(t) is an arbitrary twice continuously differentiable initiainction on the interval—1,0]. In this example we
apply the characteristic equatiors},((5) and (L8). That is, the characteristic equatid®) {s

—A

/\3(A2+A)<¥+%>+<e%1> (1-e?) (75)
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and we see that =0,A = —1 andA = —2 are real roots of15). Let A = 0. Then, forAg = 0 the characteristic equation

(5)is
e—-8 e9 1 1-e?9
522(5+1)<—2 +—2e2)+(—el)< 5 ) (76)

Therefored = —1,0 = —2 are real roots of6). Let & = —1. Then, forAp = 0 andd = —1 the characteristic equation
(18)is

e—4 eV 1 1 1-eY
T T o2 T U T a1 wAu_1) 77
2 T2y e D yy-1) (77

and we see thgt= yp = —1 is a real root of {7) and the conditions of Corollary 1 are satisfied. That is,

Q=-1#00=-1#0p# -

and
Hro,3.56 = Ho,—1,-1 = 0.86142< 1.

SinceAg =0,A0+ &= —1 < 0andAg+ &+ ¥ = —2 < 0 the zero solution off4) is stable.

Example 2.Consider

y'(t) = —13y'(t) + éy’(t —0.5)—50y/(t) + gy(t —0.5) — 56y(t) + gy(t —05),t>0,
y(t) = @(t), —0.5<t <0,

whereg(t) is an arbitrary twice continuously differentiable initfainction on the interval—0.5, 0]. In this example we
apply the characteristic equatiorsy,((5) and (L8). That is, the characteristic equati@) {s

_ A
e 2

A%=_13A2_-501 —56
TS

(A%2+6)+8), (78)
and we sed = —2,A = —4 andX = —6 are real roots of18). LetA = —2. Then, forAg = —2 the characteristic equation
(5)is
2 _ (6+9)

0°=-70—-10+(0+2)e 7 . (79)
Therefore, we see that= —2 andd = —4 are roots of{9). Let d = —2. Then, forA\g = —2 anddy = —2 the characteristic
equation 18) is

y+2
y= 317, (80)

and we find thaty = yp = —2 is a real root of §0). Corresponding to the rooty = —2, & = —2 andy, = —2, the
conditions of Corollary 1 are satisfied. That is,

Q=-2#0Y=-2#0p#—d

1
Hag,80.0 = H-2,-2,—2= > <1

Sincedg=—-2< 0,0+ =—4 < 0andAp+ &+ Yo = —6 < 0 the zero solution of the given equation is asymptotically
stable.
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5 A result on the behavior of the solutions

We begin this section with the following lemma.
Lemma 1.Suppose that
P2 <0, (P28 +02+2P2A0) >0 and  (P2Ag +d2Ao+ Vo) <O. (81)

Let Ao, & and yp be real roots of the characteristic equatior,((5) and (18), respectively, and defing, 5\, by (30).
Thenl+ &), 5.y > 0if (18) has another real root less thag, and1+ &), 5 , < 0if (18) has another real root greater
thanyp.

Proof. Let G(y) denote the characteristic function 4, i.e.,

G(y) =y — (pr— 3Xo— 28) — poe~ RoTOTNT 1 = (Aot )T (195 + o + 2poAg) ¥ (1—€7¥7)
— €7 (p2A + Ao+ Vo) v { & (1* eféor) —(%o+y)t (1* 97(6"””) }

or
T
G(y) =y— (p1— 30— 28) — poe~ Mo @I 4 e~ (0t RIT (1, 8+ g + 2poA0) / e ds
0

T S
—ghot (pzAOZ + 02A0 + V2) / g %s (/ eV“du) ds (82)
Jo Jo

for y € R. We obtain immediately
f T
G (y) =1+ pore” Pot& VT _ g=(ot )T (5,5, 4 g, + 2p2/\o)/ se *ds
0

+ e (pAg + oo + V2) /OT g %S </OsueV”d u) ds (83)
for y € R. Furthermore,
G (y) = — per2e” Aot o= (ot )T (1,5 4 0z + 2p2A0) /or s'e s
— e (PAg + oo + Vo) /OT g %s </Osu2eV”d u> ds

for y € R. So, taking into accoun8(), we conclude that

"

G (y)>0 for yeR. (84)

Now, assume thatl@) has another real rogt with y1 < y (respectivelyys > yo ). From the definition of the functio®
by (82) it follows thatG (y1) = G(yw) = 0, and consequently Rolle’s Theorem guarantees the egestefra pointar with
yi<a<y(resp.yi>a>y,)such thaG’ (a) = 0. But, 84) implies thatG' is positive on @,) (resp.,G' is negative
on (—,a)). Thus we must havé’ (yo) > 0 (resp.G'(y) < 0). By taking into account the definition &, , , by (30),
from (83) we obtain

G(p) =1+ Erosdo.to

and so the proof of the lemma is complete.
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Now, we will establish the following theorem.

Theorem 3. Suppose that statemer@] is true. LetAq be real root of the characteristic equatioB)( and letf3,, and
L (Ag; @) be defined by®) and (7), respectively. Furthermore, 1& be real root of the characteristic equatioB)(and
let ny,.5, and RAo, do; @) be defined19) and 0), respectively. Suppose th@, # 0 and n,, 5, # 0. Moreover, let
¥ be a real root of the characteristic equatiohd), and leté), 5 ,, and K(Ao, &, yo; @) be defined by30) and @31),
respectively. Also, lgig be real root of (8) with y1 # yo. ( Note that, because @, # 0, we haved, # 0 and yp # —dp,
y1 # — . Furthermore, because df,, 5, # 0, we havep # 0 andy; # 0. Moreover, note that Lemma 1. guarantees that

1+ E)\O’%’yo #0.

Then the solutioly of the IVP (1) and @) satisfies

C1 (Ao, 0, Y0, y1; ) < e [e<’\°+5°)ty(t) _eal0®)  R(10,%0:0) K (Ao, % 10 ‘p)}
B, Mo, 14+ &0.8.0

< Cz (Ao, %, Yo, ¥1: 9) (85)

forallt > 0, where

R _stL(A0;0)  R(Ao,d;9) K (Ao, &0, b; @)
C1 (0,0, 10,2, @) = min e " {e (Rotltg (1) — =%t - —ept = T 86
1 (Ao, %, Yo, 15 @) _min P(t) B Mot N (86)

and

i _&tL(A0i@)  R(Ao, b0;9) K (Ao, %0, Yo; @)
Cz (Ao, %, Yo, y1; @) = max e Wt {e (Aot g (1) — =%t - Ot T (87
2 (A0, %0, Yo, V1 @) _max, @(t) B, Mot 1+ Sy oy (87)

We see immediately that inequaliti€d5] can equivalently be written as follows

C1 (Ao, 3o, Yo, yi; @) W0t < gt {e()\owo)ty(t) _gatL(20:9) R()\075o:(0)] ~ K(20, %0, 10, 9)

B  Mos 14+ &80

< Cz (Ao, 80, Yo, ya; @) €Mt >0, (88)

Hence, ify; < y,, then the solutioly of the IVP (1) and @) satisfies 83). Also, we observe thaBp) is equivalent to

B, Mo, 1+ &0.8.0
L(A0; ) n R(Ao, %; @) et K (Ao, b0, Yo; @) e(50+y0)t]
B, Mo,& 14+ &)0.8.10

< gt [Cz (Ao, Bo, Yo, yi; @) €Tt ¢

forallt > 0.

Proof. (Proof of Theorem 3.) Ley be the solution of the IVP1) and @), and consider the functiondefined by 9).
Consider also the function® and© defined by {) and @0), respectively. Note that, by Lemma 5.1, we necessarilghav
1+ &x,.8.5 7 0. As it has been shown in the proof of the Theorem 1, the fadttisatisfies ) fort > 0 is equivalent to
the fact thal satisfies 41) 2.12 for allt > 0.

Now we define

h(t)=ewWtet) for t>-1. (89)
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Then we see that() holds for t > 0 if and only if h satisfies

0
h(t) = — ef(A0+dJ+WJ)Tp2/ e(Vl*Vo)Sh (S+t) ds
-1

T 0
+e (Aot ®T (py& + g+ 2p2Ao) / e / e 0lh(t 4 u)du ds (90)
0 -s

T S 0
— e 2T (DoA8 + Gpho + Vo) /0 e % [ /O C / eV T¥Mh (t 4+ w) dw dU] ds
—u

forallt > 0. By combining 61) and 89), we have

h(t) =e " |e Aoty (r) — g %! L(

20;9) R0, %¢) uK (/\o,éo,w;q))] (91)

B, Mo, 14+ &p0.8.10

fort > —1. As solutiony satisfies the initial conditior?j, we can useql) as well as the definitions & (Ao, d, Yo, V1; ©)
andC; (A, oo, Yo, ¥a; @) by (86) and 87), respectively, to see that

C1 (A0, %, Y0, y1:9) = min h(t) and Cz(Ao,%.10.y1:¢) = max hi(t). (92)

—1<t<0

In view of (91) and @2), the double inequality85) can equivalently written as follows

min _h(s) <h(t) < max h(s) forall t>0. (93)

—1<s<0 —7<s<0

All we have to prove that93) hold. We will use the fact thdt satisfies 90) for all t > 0 in order to show thato@) is valid.
We restrict ourselves to proving that

h(t)> min h(s) forevery t>0. (94)
—7<s<0

The proof of the inequality

h(t) < h f >
(t)_irr’rggo (s) forevery t>0

can be obtained in a similar way, and so it is omitted. In ttst oé the proof we will establish9d). In order to so, we
consider an arbitrary real numb&mwith A < min_;<s<oh(s), i.e., with

h(t) >A for —1<t<0 (95)
We will show that
h(t)>A forall t>0. (96)
To this end, let us assume th8gj fails to hold. Then, because @%), there exists a poirig > 0 so that
h(t) >A for —1<t<ty, and h(tp)=A

Thus, by using§1) and (8), from (90) we obtain
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A=h(te) = —e Vor&+0)Tp, / e (s 1 to) ds
+e*<A0+5°>T(p260+q2+2p2;\0)/ore%5 /ie(VrVO)“h(to—ku)du ds
e " (p2A§ + G20+ V) /OT e USGV‘J“ /0 e %Mh (to +w) dw dU} ds
>A( g~ Pttt pg/ ewIsgs+ e~ Aot )T (0,8 + gz + 2p2A0) / e W’s/ ei-wldu ds

[ s 0
—e 7 (p2AG +C|2/\0+V2)/0 C /o e’V‘J”/ e —10)Wdy du] ds>
L. —-u

(

T [ s
P2A§ +Q2/\0+V2)/0 e %S /O [e“’“eyl“}du} ds)

A
-2 (p [e*(A0+50+V1)T _ e*(AO+5O+VO)T}

W
+e PRI (pady + G+ 2p2o) 5 T (€7 - 1) — (€707 - 1))
— e T (pAZ + QAo+ Vo) Vg [(Vl—f— &)t (1— e*yﬁé")r) — &t (1— e*‘sor)}
oo (1) (-] )

(_ pzef()\o+50+yo) +e- (Ao+dp)T (p260+q2+2p2/\0) VO (1_e*yb1')

:wfw
_ e*)\oT (ponz-f—quo-f—Vz) yal {571 (1_ e75oT) _ (V0+ 60)*1 (1_ e*(yb+50)T)}
+ pze (Ao+d+y1)T —e (Ao+do)T (pz% + 02 + 2p2/\0) yl (1 _ efylr)

+€ %7 (poAd + Ao+ Vo) Vi {55 (1* ef&ﬂ) —(n+o) " (1* efwﬁé(’)r)})
A

e w(pl—3)\o—250 Yo+ ¥i— P14+ 3Ao+28) =

We have thus arrived at a contradiction and 86) (is true. Since 96) is satisfied for all real numberA with
A < min_;<s<oh(9), it follows that @4) is always fulfilled. The proof of the theorem is complete.

6 Sufficient conditions for the characteristic equation to lave a real root with the property
required

In this section, we give some conditions, under which theattaristic equationl) has a real roogy with the property
(32.

Lemma 2. Let A\g and & be real root of the characteristic equatiory @nd 6), respectively. Assume that
- p297(p172}\07607%)r +€ (oto)T (p250+ (-7|2ﬁL sz/\o) /T e*(p1*3)\072607%)5ds
0

T S
e (A o) [ e ( / e<msA026o%)Udu)ds<% (97)
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and
T
ol T & (P20-82)7 4 @ ()T | py 5, + gy + 2P / e (P—300-28-1)syo
0

T S
+ 77 [DA2 + QoA+ Vo /0 g s ( /0 ue(p13"°250%)”du) ds< 1. (98)

Then, in the interva(pl—3}\o— 28— %,oo), the characteristic equationl@) has a unique rooiy; this root satisfies
(32), and the rooty, is less than p— 3Ag — 28y + %, provided that

— poe (P&t ) o0t AT (py 5 1 gy + 2poAo) /6 o (P-30-28+1)syg
0

T S
_e Mot (pz)\ngqMoJer) /o e %s </o e(p13)‘0250+%)“du> ds> —%. (99)

Proof. Consider the real-valued functio@ defined by 82). The derivativeG' of G is given by 83). It follows from (82)
that

1 1
G (p1—3)\o—25o— ;) = (p1—3)\o—25o— ;) — (p1—3A0—2d)
— poe (P00 7)7 4 oMot )T ()5 1 g+ 2ppA0) /O " o (P-3h-20-1)sgg
_ @ Aot 2 foas( [° —(p1—3A—28—1)u
e 9" (p2Ag + G20 + V) | € e 7)Udu ) ds
T
- % — pae (P& 3)7 1 (M- )T (3 + 0p -+ 2paAo) /0 e (P-3ho-20-7)sgs

T s
- eﬁAOT (pz/\oz + Q2/\o +V2) / 67605 (/ e(p13)\0250%)udu) ds
JO 0

1 1
<—Z4+-=0
T T

and consequently, b{), it holds
G(p1—3)\o—250—%) <0. (100)

Moreover, from 82) we obtain, fory > p1 —3Ag— 2% — %,
T
G(y) 2y — (P~ 3Ao— 2&) — |pg| e Yo VT — e R0t py + g+ 2p2A 0l /0 e "ds
T S
—g Nt | P2AE + O2Ao+ Ve / g %s (/ eV“du) ds
0 0
T
>y (1~ 3ho — 28) — |pal e (P20 1)1 — =0T | 0,3, 4 G + 2ppAol /0 e (PrSlo 20 )%

T S
—e 7 [DA8 + d2Ao + Ve /0 e %S (/o e (Pr=3%-2%-1)ug u) ds

Therefore,
G (00) = oo. (101)
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Furthermore, usingg@), we have, for every > p1 —3Ag— 28— %,

, T
G (y) 21— |p| Te”Por T _ e~ (Aot ®)T 1,5 4 gy + 2F)2/\o|/0 se "ds

T S
— e T |PoAG + oo+ Vo / g s (/ ueV“du) ds
Jo Jo

T
>1— |p2|Te*(prZ/\oJo*%)rfe*(/\o+6o)r|p250+q2+2p2/\0|/0 Se*(Dr3A0*25of%)st
T s N
—eh! |F’2/‘02+Qzéo+v2|/ g s (/ ue(pl3)\025o?)udu) ds
0 0

>1-1=0.

Consequently, in view of98), it holds G (y) >0 for all y > p1 —3Ag— 2% — %, which implies thatG is strictly
increasing or‘(pl— 3Ao—2% — %, oo) . By using this fact as well aslQ0 and (L01), we conclude that, in the intreval
(pl —3A0— 20— % , oo), the equatior (y) = 0 (which coincides with18)) has a unique real rogg. This root satisfies
(32). Indeed, by using agai®§), we have

T
Mo, .1 <|p2|re*(Prz/\oJof%)r+e*(Ao+6o>r|p250+q2+2p2)\0|/ se (P-3%0-28-1)syg
| 0

T S
e Mo |I02/\02+0|2/\0+V2\/0 e %S (/0 ue(p13)‘°250%)”du) ds<1

Finally, let us assume tha@9) holds. Then it follows from&?2) that

T
G (pl —3\o— 28+ %) :% — ppe (Pr2Do-Bt )T 4 oMot )T (0,50 1 g+ 2ppho) [ € (Pr3ho-2t1)sgg
0

T S
— &M (ppAd + Gpho + V2) /0 e505< | e(plsAozaﬁg)udu) ds

Jo
11

>—-——-=0.
T T

As G (pl —3A0— 28+ %) > 0, we see thajp must be less thap; — 3Ag — 28 + % This completes the proof of the
lemma.

Lemma 3. Suppose that statemer@]j is true. LetAg and & be real root of the characteristic equation3) @nd (),
respectively. Then we have

(@) In the interval[p; — 3Ao — 2d, ), the characteristic equatiorl) has no roots.

(b) Assume thatq7) holds. Then (iy = p1 — 3Ao — 28 — % is not a root of the characteristic equatioh8). (ii) In the
interval (p1 — 30— 28 — £, p1 — 30— 28) , (18) has a unique root. (iii) In the intervgl—co, p; — 3Ag — 28 — 1),
(18) has a unique root.

Proof.

(a) Lety be real root of the characteristic equation. Usih8) (we can immediately see that
T —~
pzef()‘0+60+V)T _ ef()‘0+60)r (pza) + q2 + ZpZAO) A 67st

T S ~
+e At (p2/\§+ qZ)\oJer)/ e %s (/ eV”du> ds<O0.
0 0
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Hence, from {8) it follows thaty — (p; — 3Ag — 2&) < 0, i.e.,y < (p1 — 3Ao — 2&) . We have thus proved that every
real root of (L8) is always less thap; — 3Ag— 2 .

(b) Consider the real-valued functio® defined by 82). As in the proof of Lemma 1, we see th&4 holds and
consequently

G isconvexon R. (102)

Next, we observe that, as in the proof of Lemma 2, assump@idnnieans thati00 holds true. Inequality2(00
implies, in particular, thay = p1 — 3A¢g — 28y — % is not a root of the characteristic equatid8). From @2) we
obtain

G(p1— 3o — 20p) = — poe (P24~ )T &= (M0tQ)T (b, 5 + gy 4 2p2Ao) /OT g (P=30—2%)5qg
—g ot (p2/\02 + Ao+ Vo) /OT e %S (/()Se(p13}‘°25°>“du) ds
So, by using 81), we conclude that
G(p1—3XAg—2&) > 0. (103)

Furthermore, from&2) we getG(y) > y— (p1 — 3Ag — 28) — poe~ PtV for y € R. Using this inequality, it is
not difficult to show that
G(—®) = . (104)

From (100, (102 and (03 it follows that, in the interval(py —3Ao— 2% — £ , p1—3Ao—2&%), the characteristic
equation {8 has a unique root. Moreover,1q0, (102 and (04 guarantee that, in the interval

(—oo , Pr—3A0—2&— %) (18) has also a unique root. The proof of the lemma is complete.
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