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Abstract: In this paper we study combinatorial structures of some Siachgroups. We examine fundamental domains, group actions
and genus for these groups.
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1 Introduction

In [1-5] authors investigate some important classes of Hawdyroup subgroups of finite index. It is known that given a
group action, representation gives further means to stuelpbject being acted upon, yielding more information about
these groups. Thus group representations are an orgapizivaiple in the theory of finite groups [6-7]. The studiedlwi
also be of help to various fields.To combinatorics, caléomabf cycle index formulas will enhance processes by which
we organize sets so that we can interpret and apply the deyacttntain. And also these groups use very often in
modular forms [10].

Now we consider hyperbolic plane model. The complex uppHmane is the seH of complex numbers with positive
imaginary partt := {t € C:Im(1) > 0}. As E. Beltrami and H. Poincare noticeH] can present as a model for
non-Euclidean hyperbolic plane geometry. In the group mheo points € RU {«} is known cusp for Mobius
transformations if it is the fixed point of a parabolic elemdrhe extended upper half-plane is the uniortbofvith the
set of cuspsQ U {}, and we refer to is adl*. We observe thall admits a natural structure of Riemann surface.
Actually, it is one of the only three simply connected Riemaurface, up to biholomorphic isomorphism, though
resides in the structure given by the action of certain rplidtative groups of matrices on these domains. Severalpgrou
of matrices will appear throughout this work.

Definition 1. The general linear group G2,C) acts onP! = C U {»} by linear fractional transformations in the
following way:
ab

cd

1 1 _az+b B
GL(2,C) xP* — P, (y,2) = ¥(2) = Z1d where y =

. " . b a w .
In the preceding definition, we adopt the convention thatﬁ_d = and6 = o for all w € P1. We want to obtain
Z—r0
an action orH. In this case, we restrict the coefficients of the real magio real numbers.
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Let PSL(2,R) denote the group consisting of all linear fractional transfations

ar+b
+d

wherea, b, c,d are real numbers aratl — bc= 1.

In terms of matrix representation, the element®8L(2,R) correspond to the matrices

ab
+ (c d) ; a,b,c,d are real numbers aral — bc= 1.
Any function fromH to itself which preserves distance is known an isometry. &lsd the group of all isometries &f is
named bylsomH). Moreover this group is generated B$L(2, R) together with the map— —z and therefore we have
the index|lsomH) : PSL(2,R)| = 2.

2 Discrete subgroups

First of all we know from the literature discrete subgroup$t(2,R) abound, but those of interest to number theorists
are rather special [8-9]. Discrete groups play a importate especially in dynamical systems where they arise as
transformation groups in a rich variety of instances: geloynergodic theory, elliptic integral theory, cryptologyc.
Recently discrete groups have been used in various applas.aConsequently in more detail, the theory of discrete
subgroups in case continuous groups includes such apeptisas arithmetic and algebraic groups, fundamental group
and covering spaces, Teichmuller spaces, Fuchsian grédgisian groups, non-Euclidean geometry, automorphic
forms, modular and cusp forms, Hecke operators, moduliespateformation spaces, the theory of boundary spaces for
random walks on infinite graphs, suborbital graphs and more.

Definition 2. A subgroup G of PS[2,C) is said to be discrete if it contains no sequence of matrioewerging element
wise to the identity. Discrete subgroup of R3[R) are called Fuchsian groups.

Definition 3. The group SI2,7) is called the full modular group.

The modular group = PSL(2,Z) = SL(2,Z)/{+I}, is the subgroup dPSL(2,R) with integral coefficients. Clearly we
can say thaPSL(2,7Z) is a Fuchsian group. It is generated by the matrices

)

with defining relationship§? = T2 = —I, wherel is the identity matrix. This is the automorphism group of tipper

ab ab ar+b
half planeH. Notice that ifg = el andrt € H, theng.T1 = T= . Hencel™ acts on thé. Indeed
cd cd cr+d

Im(g.7T) = mlmr > 0 is obtained. That is, evegye I' preservedl. SL(2,7) is obviously a discrete subgroup of

SL(2,R), and so are all its subgroups as a consequence. An®&(207) acts onH*.

Similarly the groupPSL(2,C) acts on 3-dimensional hyperbolic spaié = {z+tj:z=a+ib € C, t > 0}, that is,
H3 = C x R*. Again we have the indefsomH3) : PSL(2,C)| = 2.
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RemarkOne can explain that this is set of relations, and it can biéyeseen that” /{4-1} is the free product of the cyclic
group of order 2 generated I8and the cyclic group of order 3 generated®¥.

10
= (O 1) (modN)}

A congruence subgroup &8(2,7) is a subgroup containing’™ (N) for someN: the minimum suciN is called the level
of I". For example the most important families of congruence suljgs
1 %
mod
o1/ (ModN

ab ab * % ab ab
I'O(N):{<C d) €SL2,Z): (c d) (O *> (modN)},I’l(N):{<c d) €SL2.7Z): (c d)

for any positive integeN, which is the level of both subgroups. We can easily seentfBt=lo(1) = (1) = SL2,7)
is the only congruence subgroup of level 1. Indeed, bec8UszZ/17) is trivial group,l” (1) = ker(Z) — SW2,Z/17Z)
must be all ofSL(2,Z). AsSL(2,Z) =T (1) C (1) C l'o(1) C SL2,7Z), we must have this equality.

Definition 4. For any positive integer N, we define

ab ab
F(N){(C d) eSU2,7): (c d)

and call it the principal congruence subgroup of level N.

We know that every abelian Fuchsian group is cyclic. Theeeédl non identity elements @ have the same fixed point
set and are of same type: parabolic, elliptic or hyperbdllte congruence subgroups have been studied extensively,
especially, by Felix Klein , Robert Fricke and many otherise3e groups are basic to the theory of the elliptic modular
functions.

3 Fundamental domains

It is known that a discontinuous group is discréteacts properly discontinuously df, that is, for any two distinct points
X,y € H, there exist open neighbourhoddsv containingx,y respectively such that the number of group elemgras”
with gU NV # @ is finite. For such an action there is a notion of fundamerdaiain: a subsdt of H such that

() H=UyF,forallyer,
(i) Thereis an open sé&t so thatF =U,
(iif) U andylJ are either identical or disjoint.

We recall that a fundamental domain for the actio adn H is given by the set
1 1
F= ze]l—]l:—égRezgE and |z >1;.

Moreover, two distinct pointaandw of F are equivalent undesL(2,Z).
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Fig. 1: Fundamental Domain fdr.

Letze FandletA (z) = {y el : yz= z} be the stabilizer ofin . One has\ (z) = |, except in the following three cases:

(a) z=1, in which case\ (z) is the group of order 2 generated By
(b) z=w= exp(%"_), in which casel () is the group of order 3 generated 8Y,
(€) z= -W? = exp('g), in which casel (2) is the group of order 3 generated B

The images of underl” therefore tesselatél, figure 1 shows a picture df and its images know these tiles. This
tiling can be approximated by considering the images of &efipart of the fundamental domain under a finite number of
composition$So T o S... where eaclsandT is either a translation by an integer or a reflection. One eailyecheck that
the full modular group acts transitively dduU {«}; for anya, 8 there existdp € I such thaflp(a) = 3. Besides, for a
modular groug™ we define the set of cusps bfas the set of orbits inQU {e}. Sincerl” is of finite index inSL(2, Z) the

set of cusps is finite. It turns out that the set of cuspg abntains exactly the elements missing for the compaciificat
of the quotient” \ H.

Theorem 1. Let s be a cusp. There exists a neighbourhood U of E'inwith the following property: ify € ' and
UnyU) # @, theny(s) =s.

Proof.Let v = {z€ H : Imz> 1} U {}. We claim thatu = a(v) has the required property. U N y(U) # @, then
vN(a~tya)(U) # 2. But, forallze v\ {»}, Imz> 1 implies thatm((a~lya)(z)) < 1; thus,(atya)(z) ¢ v and also
v(a(2) ¢U.
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Fig. 2: Paired Edges.

A fundamental domain should be connected.There are sestaradard choices for a fundamental domain3t(2,7)

here are two, pictured together with matrices giving id@tions of the edges. In the figure elliptic points are mdrke
And we say that the domain on the right is a better choice fadagetheoretical purpose. Fundamental domains are very
important in direct integral decompositions for unitarpmesentations. Because one often use particularly fundine
domains as parameters in direct integral decompositiomstefore for such applications, it is value that a measarabl
choice be made. Naturally common fundamental domains app&annection with measure equivalence of groups as
well. Hereby, in our aim below of existence of a common fundatal domains is understand.

Lemma 1.Let G be a non discrete subgroup of R3IR). Then there is no fundamental domain for the action of G on
upper half plane.

Proof. Lett, be an arbitrary sequence@which converges element wise to the identity and als& Ibe a fundamental
domain for the action 06. Consider an elemerd of int(F). Hencet,& converges tc. So there iam € N such that
int(F) Ntm(int(F)) # @, which is impossible.

Theorem 2. Let A be any discrete subgroup of &.R), and assume D be a fundamental domain dorlf Ay be a
subgroup ofA of finite index, and choose elemedisd,, ..., &m in A such thatA = Aod1U...UAgdm, Where a bar denotes
the image in AutH). Then{J yiD, for 1 <i <m, is a fundamental domain fd,.

Proof.Letz € H. Thenz= dw for somew € D, € A andd = +&3d for somedy € Ag. Thusz= &Hdw € Ag(&D) where
1<i<mIf 5(UyD)N(UyD) # @, then it would include a transform @f. But thend4 D = §;D for i # j, which would
imply thatdd = £9; is obtained. Consequently this is a contradiction.

Corollary 1. The canonical mag : F — H/I is surjective, and its restriction to intF is injective. Imgticular, F is a
fundamental domain for the action 6fon H.

" is a Fuchsian group whose fundamental domain has finite aesae it is known that it has a signature consisting of
the geometric invariant&g; my, ..., my,s) whereg is the genus of the compactified quotient spang,...,m are the
periods of the elliptic elements arsds the parabolic class numbér. has the signaturé0; 2,3, ). The signature of a
discrete Fuchsian group is a very interesting problem imgtbeory and arithmetic-algebraic geometry.

The quotient space of a modular group is known a modular camdet has the structure of a compact Riemann surface.
We denote by (1) the modular curve obtained by the actiondfl). It is a curve of genus 0 and is rationally equivalent
to the projective line. The curvgy(N) obtained by the group action @(N) is referred to as the classical modular
curve. This case it is important in the theory of elliptic wes because of the theorem of modularity which says that all
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elliptic curves are rational images of classical modulawves. SmallesN such that an elliptic curve is the image of
Xo(N) is called the conductor of the curve. The cugd) parametrizes isomorphism classes of elliptic curves,axthié
curve xo(N) parametrizes isomorphism classes of elliptic curves witigsoups of ordeN. The genug of the modular
curveQr can be calculated from the formula:

wherep is the index of the subgroup(1), v, andvs are numbers of elliptic points of order 2 and 3finand v, is the
number of cusps af .

Now we take two different congruence subgroups: Firstlg,abngruence subgroup

ab

Fu(N) = cd

€ SL(2,Z):c=0(modN) anddeH

whereH is some subgroup &), = {0 : 0 € Z,, (0,n) = 1}. Obviously ifH = 0 then the group returng(N) and if
H = 1 then the group returig(N). For example we examine the groyi7). Generators of this group are as follows:

11 2-1 4 -3
01)’'\7-3)’\7 5

and cusps are @. And also genus of;(7) is 0. The index off2(7) is finite in I and |I" : Ty (N)| = N[yn(1+ %).
Therefore|l” : I,(7)| = 8 is found. We have thdt = I,(7)M1 U ... UT,(7)Ms, for a list of right coset representatives
Miel1<i<8.

. I . L
ol 1

Fig. 3: Fundamental Domain fdr(7).
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In here we put fundamental domain 61(7). This figure is drawn with sage program. Fundamental donwnselp us
better understand the topological spaces that are the rfiusttal domains’ quotient spaces. In Euclidian space, for
instance, the interior of the unit square is a fundamentalaln, where the isometries are translation by one unit in the
two dimensions.Through their isometries, these fundaatelaimains tessellate ov&r. These fundamental domains are
not unique. For instance, creating a small indentation anside of the square and translating the missing piece to the
opposite side creates another fundamental domain whickMestexactly the same way.

In addition that the special subgroup/of

ab _ ab B 10 ab 01 0-1
[o= cd € SW2,Z): cdl =lo1 (mod2) or cdl =10 (mo2) » = (2)U 10 r)

is generated by — ’71 andz — z+ 2. The subgroupy is very significant because it appears mostly in sums of sguar
problems, the simplest application of theta series to segipnelementary algebraic number theory problems.

10 11 10
Lemma 2.y has three coset representativedin , , .
01 01 11

Proof. The index is 3, sinc&y is index 2 abové (2). Thus the three listed matrices areSh(2,Z and are not only distinct

0-1
mod2 but also do not diffemod™ (2) only by multiplication by(1 0 ) .

Corollary 2. A fundamental domain fafg is Fg = {z€ H: |Rez <1 and |z] > 1}.

With usual fundamental domakfor I the coset representatives fgyin I give a fundamental domain

10 11 10
Fo = FU FU F.
01 01 11
We may take more easily describable this form.

Now we give two definitions.
Definition 5. A modular function for™ is a function f: H* —s P! satisfying the following conditions:

(i) fisinvariant under the action df onH*, thatis, foy=f forall ye I
(i) fis meromorphic irH,
(iif) f is meromorphic at the cusps.

Example 1.The indexI" : ' (2)| = 6. Itis possible to find a set of generatorsfdi2) just as we found a set of generators
for I, and again it suffices to check condition (i) for the genamat@here are three inequivalent cusps, namiely,
S(iw) = 0 andT §iw) = 1.The stabilizer ofe in I (2) is generated by — z+ 2, and sof (z) = f*(exp(inz)) for f

to be meromorphic aite meansf* is meromorphic at 0. Fof to be meromorphic at 0 means thgiS2 = f(%l) is
meromorphic ateo, and forf to be meromorphic at 1 means tHgf — %) is meromorphic aiteo.

Definition 6. A modular form for™ of weight k is a function f H* — P! satisfying the following conditions:

(i) fis weakly modularfof" of weight k
(ii) f is holomorphic inH
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(iii) f is holomorphc at the cusps.

Example 2.The theta series

are modular forms foFy.
We will give only the statement theorem in below.

Theorem 3.Let f be a meromorphic function difi*. The following properties are equivalent:

(i) fisamodular function for SI2,7Z),
(i) fisaquotient of two modular forms for §.7Z) of the same weight.

Despite the fact that we motivate the definition of modulanfe as a means to obtain modular functions, modular forms
are interesting on their own right and have many interestipglications in number theory and several other areas of
mathematics. For instance Diophantine equations, EisenSeries, Fermat’s last theorem, construction of Ranzemnuj
graphs, cryptography and coding theory, lattices etc.

Lemma 3.LetI” be a modular group.

(i) If ny andn, are modular functions thensn, is a modular function fof .
(ii) If ny andn, are modular forms then1n is a modular form for™.

Proof. (i) Let n; andn, are modular functions. Then, the prodyet), of two meromorphic functions on the upper half
plane is itself meromorphic.That is a weakly modular fumatiLety 7 ,anq" and ¥, bng" be their expansions around
anya € RU{w}, then their formal product is the expansionmf,. But the formal product of two Laurent series with
convergence in the intersection of the convergent domditieariginal series, s has a meromorphic expansion at
eacha € RU{} and hence at each cusp.

(i) We are in exactly the same case in part (i), but becaygsand n, are modular functionsn, k > 0 and hence the
function is holomorphic at each of its cusps.
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