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Abstract: In this paper we study combinatorial structures of some Fuchsian groups. We examine fundamental domains, group actions
and genus for these groups.
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1 Introduction

In [1-5] authors investigate some important classes of modular group subgroups of finite index. It is known that given a

group action, representation gives further means to study the object being acted upon, yielding more information about

these groups. Thus group representations are an organizingprinciple in the theory of finite groups [6-7]. The studies will

also be of help to various fields.To combinatorics, calculation of cycle index formulas will enhance processes by which

we organize sets so that we can interpret and apply the data they contain. And also these groups use very often in

modular forms [10].

Now we consider hyperbolic plane model. The complex upper half plane is the setH of complex numbers with positive

imaginary partH := {τ ∈C : Im(τ)> 0}. As E. Beltrami and H. Poincare noticed,H can present as a model for

non-Euclidean hyperbolic plane geometry. In the group theory a point s ∈ R ∪ {∞} is known cusp for Möbius

transformations if it is the fixed point of a parabolic element. The extended upper half-plane is the union ofH with the

set of cuspsQ∪ {∞}, and we refer to is asH∗. We observe thatH admits a natural structure of Riemann surface.

Actually, it is one of the only three simply connected Riemann surface, up to biholomorphic isomorphism, though

resides in the structure given by the action of certain multiplicative groups of matrices on these domains. Several groups

of matrices will appear throughout this work.

Definition 1. The general linear group GL(2,C) acts onP1 = C ∪ {∞} by linear fractional transformations in the

following way:

GL(2,C)×P1 −→ P1, (γ,z)→ γ(z) =
az+b
cz+d

where γ =





a b

c d



 .

In the preceding definition, we adopt the convention that lim
z→∞

az+b
cz+d

=
a
c

and
w
0
= ∞ for all w∈ P1. We want to obtain

an action onH. In this case, we restrict the coefficients of the real matrices to real numbers.
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Let PSL(2,R) denote the group consisting of all linear fractional transformations

Π : τ →
aτ +b
cτ +d

wherea,b,c,d are real numbers andad−bc= 1.

In terms of matrix representation, the elements ofPSL(2,R) correspond to the matrices

±





a b

c d



 ; a,b,c,d are real numbers andad−bc= 1.

Any function fromH to itself which preserves distance is known an isometry. Andalso the group of all isometries ofH is

named byIsom(H). Moreover this group is generated byPSL(2,R) together with the mapz→−zand therefore we have

the index|Isom(H) : PSL(2,R)|= 2.

2 Discrete subgroups

First of all we know from the literature discrete subgroups of SL(2,R) abound, but those of interest to number theorists

are rather special [8-9]. Discrete groups play a important role especially in dynamical systems where they arise as

transformation groups in a rich variety of instances: geometry, ergodic theory, elliptic integral theory, cryptologyetc.

Recently discrete groups have been used in various applied areas. Consequently in more detail, the theory of discrete

subgroups in case continuous groups includes such applications as arithmetic and algebraic groups, fundamental groups

and covering spaces, Teichmuller spaces, Fuchsian groups,Kleinian groups, non-Euclidean geometry, automorphic

forms, modular and cusp forms, Hecke operators, moduli spaces, deformation spaces, the theory of boundary spaces for

random walks on infinite graphs, suborbital graphs and more.

Definition 2. A subgroup G of PSL(2,C) is said to be discrete if it contains no sequence of matrices converging element

wise to the identity. Discrete subgroup of PSL(2,R) are called Fuchsian groups.

Definition 3. The group SL(2,Z) is called the full modular group.

The modular groupΓ = PSL(2,Z) = SL(2,Z)/{±I}, is the subgroup ofPSL(2,R) with integral coefficients. Clearly we

can say thatPSL(2,Z) is a Fuchsian group. It is generated by the matrices

S=





0 −1

1 0



 ; T =





0 −1

1 1





with defining relationshipsS2 = T3 = −I , whereI is the identity matrix. This is the automorphism group of theupper

half planeH. Notice that ifg=





a b

c d



 ∈ Γ andτ ∈ H, theng.τ =





a b

c d



τ =
aτ +b
cτ +d

. HenceΓ acts on theH. Indeed

Im(g.τ) =
1

|cτ +d|2
Imτ > 0 is obtained. That is, everyg∈ Γ preservesH. SL(2,Z) is obviously a discrete subgroup of

SL(2,R), and so are all its subgroups as a consequence. And alsoSL(2,Z) acts onH∗.

Similarly the groupPSL(2,C) acts on 3-dimensional hyperbolic spaceH3 = {z+ t j : z= a+ ib ∈ C, t > 0}, that is,

H3 = C×R+. Again we have the index|Isom(H3) : PSL(2,C)|= 2.
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Remark.One can explain that this is set of relations, and it can be easily seen thatΓ /{±1} is the free product of the cyclic

group of order 2 generated bySand the cyclic group of order 3 generated byST.

Definition 4. For any positive integer N, we define

Γ (N) =











a b

c d



 ∈ SL(2,Z) :





a b

c d



≡





1 0

0 1



(modN)







and call it the principal congruence subgroup of level N.

A congruence subgroup ofSL(2,Z) is a subgroupΓ containingΓ (N) for someN: the minimum suchN is called the level

of Γ . For example the most important families of congruence subgroups

Γ0(N)=











a b

c d



 ∈ SL(2,Z) :





a b

c d



≡





∗ ∗

0 ∗



(modN)







,Γ1(N)=











a b

c d



 ∈ SL(2,Z) :





a b

c d



≡





1 ∗

0 1



(modN)







for any positive integerN, which is the level of both subgroups. We can easily seen thatΓ (1) = Γ0(1) = Γ1(1) = SL(2,Z)

is the only congruence subgroup of level 1. Indeed, becauseSL(2,Z/1Z) is trivial group,Γ (1) = ker(Z)→ SL(2,Z/1Z)

must be all ofSL(2,Z). As SL(2,Z) = Γ (1)⊂ Γ1(1)⊂ Γ0(1)⊂ SL(2,Z), we must have this equality.

We know that every abelian Fuchsian group is cyclic.Therefore all non identity elements ofG have the same fixed point

set and are of same type: parabolic, elliptic or hyperbolic.The congruence subgroups have been studied extensively,

especially, by Felix Klein , Robert Fricke and many others. These groups are basic to the theory of the elliptic modular

functions.

3 Fundamental domains

It is known that a discontinuous group is discrete.Γ acts properly discontinuously onH, that is, for any two distinct points

x,y∈H, there exist open neighbourhoodsU,V containingx,y respectively such that the number of group elementsg∈ Γ
with gU∩V 6=∅ is finite. For such an action there is a notion of fundamental domain: a subsetF of H such that

(i) H=
⋃

γF, for all γ ∈ Γ ,

(ii) There is an open setU so thatF =U ,

(iii) U andγU are either identical or disjoint.

We recall that a fundamental domain for the action ofΓ onH is given by the set

F =

{

z∈H : −
1
2
6 Rez6

1
2

and |z|> 1

}

.

Moreover, two distinct pointszandw of F are equivalent underSL(2,Z).

© 2018 BISKA Bilisim Technology

www.ntmsci.com
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Fig. 1: Fundamental Domain forΓ .

Let z∈ F and letλ (z) = {γ ∈ Γ : γz= z} be the stabilizer ofz in Γ . One hasλ (z) = I , except in the following three cases:

(a) z= i, in which caseλ (z) is the group of order 2 generated byS,

(b) z= w= exp(2iπ
3 ), in which caseλ (z) is the group of order 3 generated byST,

(c) z=−w2 = exp( iπ
3 ), in which caseλ (z) is the group of order 3 generated byTS.

The images ofF underΓ therefore tesselateH, figure 1 shows a picture ofF and its images know these tiles. This

tiling can be approximated by considering the images of a finite part of the fundamental domain under a finite number of

compositionsS◦T ◦S... where eachSandT is either a translation by an integer or a reflection. One can easily check that

the full modular group acts transitively onQ∪{∞}; for anyα,β there existsT0 ∈ Γ such thatT0(α) = β . Besides, for a

modular groupΓ we define the set of cusps ofΓ as the set ofΓ orbits inQ∪{∞}. SinceΓ is of finite index inSL(2,Z) the

set of cusps is finite. It turns out that the set of cusps ofΓ contains exactly the elements missing for the compactification

of the quotientΓ \H.

Theorem 1. Let s be a cusp. There exists a neighbourhood U of s inH∗ with the following property: ifγ ∈ Γ and

U ∩ γ(U) 6=∅, thenγ(s) = s.

Proof. Let ν = {z∈ H : Imz> 1}∪ {∞}. We claim thatU = α(ν) has the required property. IfU ∩ γ(U) 6= ∅, then

ν ∩ (α−1γα)(U) 6=∅. But, for allz∈ ν \{∞}, Imz> 1 implies thatIm((α−1γα)(z))< 1; thus,(α−1γα)(z) 6∈ ν and also

γ(α(z)) 6∈U .
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Fig. 2: Paired Edges.

A fundamental domain should be connected.There are severalstandard choices for a fundamental domain forSL(2,Z)

here are two, pictured together with matrices giving identifications of the edges. In the figure elliptic points are marked.

And we say that the domain on the right is a better choice for certain theoretical purpose. Fundamental domains are very

important in direct integral decompositions for unitary representations. Because one often use particularly fundamental

domains as parameters in direct integral decompositions. Therefore for such applications, it is value that a measurable

choice be made. Naturally common fundamental domains appear in connection with measure equivalence of groups as

well. Hereby, in our aim below of existence of a common fundamental domains is understand.

Lemma 1.Let G be a non discrete subgroup of PSL(2,R). Then there is no fundamental domain for the action of G on

upper half plane.

Proof.Let tn be an arbitrary sequence inG which converges element wise to the identity and also letF be a fundamental

domain for the action ofG. Consider an elementξ of int(F). Hencetnξ converges toξ . So there ism∈ N such that

int(F)∩ tm(int(F)) 6=∅, which is impossible.

Theorem 2. Let ∆ be any discrete subgroup of SL(2,R), and assume D be a fundamental domain for∆ . If ∆0 be a

subgroup of∆ of finite index, and choose elementsδ1,δ2, ...,δm in ∆ such that∆ = ∆0δ 1∪ ...∪∆0δ m, where a bar denotes

the image in Aut(H). Then
⋃

γiD, for 1≤ i ≤ m, is a fundamental domain for∆0.

Proof.Let z∈H. Thenz= δw for somew∈ D, δ ∈ ∆ andδ =±δ0δi for someδ0 ∈ ∆0. Thusz= δ0δiw∈ ∆0(δiD) where

1≤ i ≤ m. If δ (
⋃

γiD)
⋂

(
⋃

γiD) 6=∅, then it would include a transform ofD. But thenδδiD= δ jD for i 6= j, which would

imply thatδδi =±δ j is obtained. Consequently this is a contradiction.

Corollary 1. The canonical mapϕ : F → H/Γ is surjective, and its restriction to intF is injective. In particular, F is a

fundamental domain for the action ofΓ onH.

Γ is a Fuchsian group whose fundamental domain has finite area,hence it is known that it has a signature consisting of

the geometric invariants(g;m1, . . . ,mr ,s) whereg is the genus of the compactified quotient space,m1, . . . ,mr are the

periods of the elliptic elements ands is the parabolic class number.Γ has the signature(0;2,3,∞). The signature of a

discrete Fuchsian group is a very interesting problem in group theory and arithmetic-algebraic geometry.

The quotient space of a modular group is known a modular curveand it has the structure of a compact Riemann surface.

We denote byχ(1) the modular curve obtained by the action ofΓ (1). It is a curve of genus 0 and is rationally equivalent

to the projective line. The curveχ0(N) obtained by the group action ofΓ0(N) is referred to as the classical modular

curve. This case it is important in the theory of elliptic curves because of the theorem of modularity which says that all
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elliptic curves are rational images of classical modular curves. SmallestN such that an elliptic curve is the image of

χ0(N) is called the conductor of the curve. The curveχ(1) parametrizes isomorphism classes of elliptic curves, while the

curveχ0(N) parametrizes isomorphism classes of elliptic curves with subgroups of orderN. The genusg of the modular

curveΩΓ can be calculated from the formula:

g= 1+
µ
12

−
ν2

4
−

ν3

3
−

ν∞

2

whereµ is the index of the subgroupΓ (1), ν2 andν3 are numbers of elliptic points of order 2 and 3 inΓ andν∞ is the

number of cusps ofΓ .

Now we take two different congruence subgroups: Firstly, the congruence subgroup

ΓH(N) =











a b

c d



 ∈ SL(2,Z) : c≡ 0(modN) and d ∈ H







whereH is some subgroup ofZ∗
n = {σ : σ ∈ Zn, (σ ,n) = 1}. Obviously if H = 0 then the group returnsΓ0(N) and if

H = 1 then the group returnsΓ1(N). For example we examine the groupΓ2(7). Generators of this group are as follows:





1 1

0 1



 ,





2 −1

7 −3



 ,





4 −3

7 5





and cusps are 0,∞. And also genus ofΓ2(7) is 0. The index ofΓ2(7) is finite in Γ and |Γ : ΓH(N)| = N∏p|N(1+
1
p).

Therefore|Γ : Γ2(7)| = 8 is found. We have thatΓ = Γ2(7)M1 ∪ ...∪Γ2(7)M8, for a list of right coset representatives

Mi ∈ Γ , 1≤ i ≤ 8.

Fig. 3: Fundamental Domain forΓ2(7).
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In here we put fundamental domain forΓ2(7). This figure is drawn with sage program. Fundamental domainscan help us

better understand the topological spaces that are the fundamental domains’ quotient spaces. In Euclidian space, for

instance, the interior of the unit square is a fundamental domain, where the isometries are translation by one unit in the

two dimensions.Through their isometries, these fundamental domains tessellate overH. These fundamental domains are

not unique. For instance, creating a small indentation on one side of the square and translating the missing piece to the

opposite side creates another fundamental domain which behaves exactly the same way.

In addition that the special subgroup ofΓ

Γθ =











a b

c d



 ∈ SL(2,Z) :





a b

c d



≡





1 0

0 1



(mod2) or





a b

c d



≡





0 1

1 0



(mod2)







= Γ (2)∪





0 −1

1 0



Γ (2)

is generated byz→ −1
z andz→ z+2. The subgroupΓθ is very significant because it appears mostly in sums of squares

problems, the simplest application of theta series to seemingly elementary algebraic number theory problems.

Lemma 2.Γθ has three coset representatives inΓ :





1 0

0 1



,





1 1

0 1



,





1 0

1 1



.

Proof.The index is 3, sinceΓθ is index 2 aboveΓ (2). Thus the three listed matrices are inSL(2,Z and are not only distinct

mod2 but also do not differmodΓ (2) only by multiplication by





0 −1

1 0



.

Corollary 2. A fundamental domain forΓθ is Fθ = {z∈H : |Rez| ≤ 1 and |z|> 1} .

With usual fundamental domainF for Γ the coset representatives forΓθ in Γ give a fundamental domain

Fθ =





1 0

0 1



F ∪





1 1

0 1



F ∪





1 0

1 1



F.

We may take more easily describable this form.

Now we give two definitions.

Definition 5. A modular function forΓ is a function f: H∗ −→ P1 satisfying the following conditions:

(i) f is invariant under the action ofΓ onH∗, that is, f◦ γ = f for all γ ∈ Γ
(ii) f is meromorphic inH,

(iii) f is meromorphic at the cusps.

Example 1.The index|Γ : Γ (2)|= 6. It is possible to find a set of generators forΓ (2) just as we found a set of generators

for Γ , and again it suffices to check condition (i) for the generators. There are three inequivalent cusps, namely,i∞,

S(i∞) = 0 andTS(i∞) = 1.The stabilizer ofi∞ in Γ (2) is generated byz→ z+ 2, and sof (z) = f ∗(exp(iπz)) for f

to be meromorphic ati∞ meansf ∗ is meromorphic at 0. Forf to be meromorphic at 0 means thatf (Sz) = f (−1
z ) is

meromorphic ati∞, and for f to be meromorphic at 1 means thatf (1− 1
z) is meromorphic ati∞.

Definition 6. A modular form forΓ of weight k is a function f: H∗ −→ P1 satisfying the following conditions:

(i) f is weakly modular forΓ of weight k

(ii) f is holomorphic inH
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(iii) f is holomorphc at the cusps.

Example 2.The theta series

θ2k(z) = ∑
m1,...,m2k

eiπ(m2
1,...,m

2
2k)z

are modular forms forΓθ .

We will give only the statement theorem in below.

Theorem 3.Let f be a meromorphic function onH∗. The following properties are equivalent:

(i) f is a modular function for SL(2,Z),

(ii) f is a quotient of two modular forms for SL(2,Z) of the same weight.

Despite the fact that we motivate the definition of modular forms as a means to obtain modular functions, modular forms

are interesting on their own right and have many interestingapplications in number theory and several other areas of

mathematics. For instance Diophantine equations, Eisenstein Series, Fermat’s last theorem, construction of Ramanujan

graphs, cryptography and coding theory, lattices etc.

Lemma 3.LetΓ be a modular group.

(i) If η1 andη2 are modular functions thenη1η2 is a modular function forΓ .

(ii) If η1 andη2 are modular forms thenη1η2 is a modular form forΓ .

Proof. (i) Let η1 andη2 are modular functions. Then, the productη1η2 of two meromorphic functions on the upper half

plane is itself meromorphic.That is a weakly modular function. Let∑∞
n=manqn and∑∞

n=k bnqn be their expansions around

anyα ∈ R∪{∞}, then their formal product is the expansion ofη1η2. But the formal product of two Laurent series with

convergence in the intersection of the convergent domains of the original series, soη1η2 has a meromorphic expansion at

eachα ∈R∪{∞} and hence at each cusp.

(ii) We are in exactly the same case in part (i), but becauseη1 andη2 are modular functionsm,k ≥ 0 and hence the

function is holomorphic at each of its cusps.
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