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1 Introduction

Let f : I ⊆ R→ R be a convex function defined on the intervalI of real numbers anda,b∈ I with a< b. The following

inequality

f

(

a+b
2

)

≤ 1
b−a

∫ b

a
f (x)dx≤ f (a)+ f (b)

2
(1)

holds. This double inequality is known in the literature as Hermite-Hadamard integral inequality for convex functions.

Note that some of the classical inequalities for means can bederived from (1) for appropriate particular selections of the

mappingf . Both inequalities hold in the reversed direction iff is concave. For some results which generalize, improve

and extend the inequalities (1) we refer the reader to the recent papers (see [1, 4, 6, 7]).

For r ∈ R the power meanMr(a,b) of orderr of two positive numbersa andb is defined by

Mr = Mr(a,b) =







(

ar+br

2

)1/r
, r 6= 0

√
ab, r = 0

.

It is well-known thatMr(a,b) is continuous and strictly increasing with respect tor ∈ R for fixeda,b> 0 with a 6= b. Let

L = L(a,b) = (b−a)/(lnb− lna) , I = I (a,b) =
1
e

(

aa/bb
)1/a−b

,

A= A(a,b) = (a+b)/2,G= G(a,b) =
√

ab and H= H (a,b) = 2ab/(a+b) be the logarithmic, identric, arithmetic,

geometric, and harmonic means of two positive real numbersa andb with a 6= b, respectively. Then

min{a,b}< H (a,b) = M−1(a,b)< G(a,b) = M0(a,b)< L(a,b)< I (a,b)< A(a,b) = M1(a,b)< max{a,b} .
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Let M be the family of all mean values of two numbers inR+= (0,∞) . GivenM,N ∈ M, we say that a functionf : R+ →
R+ is (M,N)-convex if f (M(x,y)) ≤ N( f (x), f (y)) for all x,y∈R+. The concept of(M,N)-convexity has been studied

extensively in the literature from various points of view (see e.g. [2, 3, 5,]). Let

A(a,b; t) = ta+(1− t)b,G(a,b; t) = atb1−t ,H (a,b; t) = ab/(ta+(1− t)b)

and

Mp (a,b; t) = (tap+(1− t)bp)1/p

be the weighted arithmetic, geometric, harmonic, power of order p means of two positive real numbersa andb with

a 6= b for t ∈ [0,1] , respectively.

The most used class of means is quasi-arithmetic mean, whichare associated to a continuous and strictly monotonic

functionϕ : I ⊆ R→R by the formula

Mϕ(x,y) = ϕ−1
(

ϕ(x)+ϕ(y)
2

)

, for x,y∈ I .

Weighted quasi-arithmetic mean is given by the formula

Mϕ (x,y; t) = ϕ−1 (tϕ(x)+ (1− t)ϕ(y)), for x,y∈ I , t ∈ [0,1] ,

wheret ∈ (0,1) andx< y always impliesx< Mϕ(x,y; t) < y. The functionϕ is calledKolmogoroff-Naguma function of

M. The special interest are the power meansMp onR+, defined by

ϕp(x) :=

{

xp, p 6= 0

lnx, p= 0
.

For p= 1, we get the arithmetic meanA= M1, for p= 0, we get the geometric meanG= M0 and forp=−1, we get the

harmonic meanH = M−1.

For any two quasi-arithmetic meansM,N (with Kolmogoroff-Naguma functionϕ ,ψ defined on intervalsI ,J,

respectively), a functionf : I → J can be called
(

Mϕ ,Mψ
)

-convex if it satisfies

f (Mϕ (x,y; t)) ≤ Mψ( f (x), f (y); t) f or all x,y∈ I and t∈ [0,1] . (2)

If the inequality in (2) is reversed, thenf is said to be
(

Mϕ ,Mψ
)

-concave. If ψ : I ⊆ R → R ψ(x) = x, (i.e.,

Mψ( f (x), f (y); t) = A(a,b; t)), then we just say thatf is MϕA-convex.

Let f be aMϕ A-convex. In this case

(i) If we takeϕ : I ⊆ R→R, ϕ(x) = x, thenMϕA-convexity deduce usual convexity.

(ii) If we takeϕ : I ⊆ (0,∞)→R ϕ(x) = lnx, thenMϕ A-convexity deduce GA-convexity. (see [13,14])

(iii) If we take ϕ : I ⊆ (0,∞)→R ϕ(x) = x−1, thenMϕ A-convexity deduce harmonically convexity. (see [7])

(iv) If we takeϕ : I ⊆ (0,∞)→R, φ(x) = xp, p∈ R\{0} , thenMϕ A-convexity deducep-convexity. (see [8]).

The theory of
(

Mϕ ,Mψ
)

-convex functions can be deduced from the theory of usual convex functions.

© 2018 BISKA Bilisim Technology



NTMSCI 6, No. 3, 15-23 (2018) /www.ntmsci.com 17

Lemma 1. [9], If ϕ andψ are two continuous and strictly monotonic functions (on intervals I and J respectively) andψ
is increasing then a function f: I → J is

(

Mϕ ,Mψ
)

-convex if and only ifψ ◦ f ◦ϕ−1 is convex onϕ(I) in the usual sense.

Definition 1. Let 0< s≤ 1. A function f: I ⊆ R0 → R whereR0 = [0,∞), is said to be s-convex in the first sense if

f (αx+βy)≤ αs f (x)+β s f (y)

for all x,y∈ I andα,β ≥ 0 with αs+β s= 1. We denote this class of real functions by K1
s .

In [5], Hudzik and Maligranda considered the following class of functions.

Definition 2. A function f : I ⊆ R0 →R whereR0 = [0,∞), is said to be s-convex in the second sense if

f (αx+βy)≤ αs f (x)+β s f (y)

for all x,y∈ I andα,β ≥ 0 with α +β = 1 and s fixed in(0,1]. They denoted this by K2s .

It can be easily seen that fors= 1, s-convexity reduces to ordinary convexity of functions defined on[0,∞).

In [4], Dragomir and Fitzpatrick proved a variant of Hermite-Hadamard inequality which holds for thes-convex

functions.

Theorem 1.Suppose that f: R0 → R0 is an s-convex function in the second sense, where s∈ (0,1] and let a,b∈ 0,∞),

a< b. If f ∈ L [a,b], then the following inequalities hold

2s−1 f

(

a+b
2

)

≤ 1
b−a

∫ b

a
f (x)dx≤ f (a)+ f (b)

s+1
. (3)

The constant k= 1
s+1 is the best possible in the second inequality in (3).

The main purpose of this paper is to introduce the conceptsMϕ A-s-convex function in the first sense and the second sense

and give the Hermite-Hadamard’s inequality for these classes of functions. Morever, in this paper we establish a new

identity and a consequence of the identity is that we obtain some new general integral inequalities.

2 Definitions ofMϕA-s-convex functions

Definition 3. Let I be a real interval,ϕ : I ⊆ R→ R be a continuous and strictly monotonic function and s∈ (0,1].

(i) A function f : I ⊆R→R is said to be MϕA-s-convex in the first sense, if

f
(

ϕ−1 (tϕ(x)+ (1− t)ϕ(y))
)

≤ ts f (x)+ (1− ts) f (y) (4)

for all x,y∈ I and t∈ 0,1]. If the inequality in (4) is reversed, then f is said to be MϕA-s-concave in the first sense.

(ii) A function f : I ⊆R→R is said to be MϕA-s-convex in the second sense, if

f
(

ϕ−1 (tϕ(x)+ (1− t)ϕ(y))
)

≤ ts f (x)+ (1− t)s f (y) (5)

for all x,y ∈ I and t ∈ 0,1]. If the inequality in(5) is reversed, then f is said to be Mϕ A-s-concave in the second

sense.

© 2018 BISKA Bilisim Technology
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It can be easily seen that:

(i) For ϕ : I ⊆ (0,∞) → R, ϕ(x) = mx+ n, m∈ R\ 0 , n ∈ R, Mϕ A-s-convexity (in the first sense or second sense)

reduces to ordinarysconvexity onI .

(ii) For ϕ : I ⊆ (0,∞)→R,ϕ(x) = lnx, thenMϕ A-s-convexity deduce GA-s-convexity.

(iii) For ϕ : I ⊆ (0,∞)→R, ϕ(x) = x−1, thenMϕ A-s-convexity deduce harmonicallys-convexity.

(iv) For ϕ : I ⊆ (0,∞)→R, ϕ(x) = xp, p∈ R\ 0 thenMϕA-s-convexity deduce(p,s)-convexity.

Lemma 2.Let f : I ⊆R→R be a differentiable function on I
◦

and a,b∈ I with a< b andϕ−1 : ϕ(I ◦)→ I
◦

is continously

diferentiable. If f
′ ∈ L [a,b] , then the following equality holds:

(ϕ (x)−ϕ (a)) f (a)+ (ϕ (b)−ϕ (x)) f (b)
ϕ (b)−ϕ (a)

− 1
ϕ (b)−ϕ (a)

∫ b

a
f (u)ϕ

′
(u)du

=
(ϕ (x)−ϕ (a))
ϕ (b)−ϕ (a)

2∫ 1

0
(t −1)(ϕ−1)′(tϕ (x)+ (1− t)ϕ(a)) f ′(ϕ−1(tϕ (x)+ (1− t)ϕ (a)))dt

+
(ϕ (b)−ϕ (x))
ϕ (b)−ϕ (a)

2∫ 1

0
(1− t)(ϕ−1)′(tϕ (x)+ (1− t)ϕ(b)) f ′(ϕ−1(tϕ (x)+ (1− t)ϕ (b)))dt.

Proof.Let us defineI1 andI2 as follows:

I1 =
∫ 1

0
(t −1)d( f (ϕ−1(tϕ (x)+ (1− t)ϕ (a)))

= (t −1) f
(

ϕ−1 (tϕ (x)+ (1− t)ϕ (a))
)∣

∣

1
0 −

∫ 1

0
f
(

ϕ−1 (tϕ (x)+ (1− t)ϕ (a))
)

dt

= f (a)− 1
ϕ (x)−ϕ (a)

∫ x

a
f (u)ϕ

′
(u)du,

I2 =
∫ 1

0
(1− t)d( f (ϕ−1(tϕ (x)+ (1− t)ϕ (b)))

= (1− t) f
(

ϕ−1 (tϕ (x)+ (1− t)ϕ (b))
)∣

∣

1
0 −

∫ 1

0
f
(

ϕ−1 (tϕ (x)+ (1− t)ϕ (b))
)

dt

=− f (b)− 1
ϕ (x)−ϕ (b)

∫ x

b
f (u)ϕ

′
(u)du.

Then we can write

(ϕ (x)−ϕ (a))
∫ 1

0
(t −1)(ϕ−1)′(tϕ (x)+ (1− t)ϕ(a)) f ′(ϕ−1(tϕ (x)+ (1− t)ϕ (a)))dt

= f (a)− 1
ϕ (x)−ϕ (a)

∫ x

a
f (u)ϕ

′
(u)du,

(ϕ (x)−ϕ (b))
∫ 1

0
(1− t)(ϕ−1)′(tϕ (x)+ (1− t)ϕ(b)) f ′(ϕ−1(tϕ (x)+ (1− t)ϕ (b)))dt

=− f (b)+
1

ϕ (x)−ϕ (b)

∫ b

x
f (u)ϕ

′
(u)du

© 2018 BISKA Bilisim Technology
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and so we have

(ϕ (x)−ϕ (a))2
∫ 1

0
(t −1)(ϕ−1)′(tϕ (x)+ (1− t)ϕ(a)) f ′(ϕ−1(tϕ (x)+ (1− t)ϕ (a)))dt

= (ϕ (x)−ϕ (a)) f (a)−
∫ x

a
f (u)ϕ

′
(u)du,

(ϕ (b)−ϕ (x))2
∫ 1

0
(1− t)(ϕ−1)′(tϕ (x)+ (1− t)ϕ(a)) f ′(ϕ−1(tϕ (x)+ (1− t)ϕ (a)))dt

= (ϕ (b)−ϕ (x)) f (b)−
∫ b

x
f (u)ϕ

′
(u)du.

By multiplying with 1
ϕ(b)−ϕ(a) both of sides these equalities and adding side by to side we have

(ϕ (x)−ϕ (a)) f (a)+ (ϕ (b)−ϕ (x)) f (b)
ϕ (b)−ϕ (a)

− 1
ϕ (b)−ϕ (a)

∫ b

a
f (u)ϕ

′
(u)du

=
(ϕ (x)−ϕ (a))
ϕ (b)−ϕ (a)

2∫ 1

0
(t −1)(ϕ−1)′(tϕ (x)+ (1− t)ϕ(a)) f ′(ϕ−1(tϕ (x)+ (1− t)ϕ (a)))dt

+
(ϕ (b)−ϕ (x))
ϕ (b)−ϕ (a)

2∫ 1

0
(1− t)(ϕ−1)′(tϕ (x)+ (1− t)ϕ(b)) f ′(ϕ−1(tϕ (x)+ (1− t)ϕ (b)))dt.

as desired. Thus the Lemma is proved.

Theorem 2.Let f : I ⊂ [0,∞] → R be differentiable on I
◦

and a< b, ϕ : I → R be continuous and strictly monotonic

function such thatϕ−1 : ϕ
(

I
◦)→ I

◦
is continuously differentiable and f

′ ∈ L [a,b] . I f
∣

∣

∣ f
′
∣

∣

∣ strongly Mϕ −A− s convex

function, we have,

∣

∣

∣

∣

(ϕ (x)−ϕ (a)) f (a)+ (ϕ (b)−ϕ (x)) f (b)
ϕ (b)−ϕ (a)

− 1
ϕ (b)−ϕ (a)

∫ b

a
f (x)ϕ

′
(x)dx

∣

∣

∣

∣

≤ (ϕ (x)−ϕ (a))
ϕ (b)−ϕ (a)

2[

A1

∣

∣

∣ f
′
(x)
∣

∣

∣+B1

∣

∣

∣ f
′
(a)
∣

∣

∣−C1

∣

∣

∣((ϕ (x)−ϕ (a))2
∣

∣

∣

]

(6)

+
(ϕ (b)−ϕ (x))
ϕ (b)−ϕ (a)

2[

A2

∣

∣

∣ f
′
(x)
∣

∣

∣+B2

∣

∣

∣ f
′
(a)
∣

∣

∣−C2

∣

∣

∣((ϕ (b)−ϕ (x))2
∣

∣

∣

]

where

A1 =
∫ 1

0
(1− t)ts

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (a))

∣

∣

∣
dt

B1 =
∫ 1

0
(1− t)s+1

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (a))

∣

∣

∣dt

C1 =

∫ 1

0
ct(1− t)2

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (a))

∣

∣

∣dt

A2 =

∫ 1

0
(1− t)ts

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (a))

∣

∣

∣dt

B2 =

∫ 1

0
(1− t)s+1

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (a))

∣

∣

∣dt

C2 =

∫ 1

0
ct(1− t)2

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (a))

∣

∣

∣dt

© 2018 BISKA Bilisim Technology
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Proof.From Above Lemma and stronglyMϕ −A− sconvexity of| f ′|, we have

∣

∣

∣

∣

∣

(ϕ (x)−ϕ (a))
ϕ (b)−ϕ (a)

2∫ 1

0
(t −1)(ϕ−1)′(tϕ (x)+ (1− t)ϕ(a)) f ′(ϕ−1(tϕ (x)+ (1− t)ϕ (a)))dt

+
(ϕ (b)−ϕ (x))
ϕ (b)−ϕ (a)

2∫ 1

0
(1− t)(ϕ−1)′(tϕ (x)+ (1− t)ϕ(b)) f ′(ϕ−1(tϕ (x)+ (1− t)ϕ (b)))dt

∣

∣

∣

∣

∣

≤ (ϕ (x)−ϕ (a))
ϕ (b)−ϕ (a)

2∫ 1

0
(1− t)

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (a))

∣

∣

∣

∣

∣

∣ f
′ (

ϕ−1 (tϕ (x)+ (1− t)ϕ (a))
)

∣

∣

∣dt

+
(ϕ (b)−ϕ (x))
ϕ (b)−ϕ (a)

2∫ 1

0
(1− t)

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (b))

∣

∣

∣

∣

∣

∣ f
′ (

ϕ−1(tϕ (x)+ (1− t)ϕ (b))
)

∣

∣

∣dt

≤
∫ 1

0
(1− t)

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (a))

∣

∣

∣

[

ts f
′
(x)+ (1− t)s f

′
(a)− ct(1− t)(ϕ (x)−ϕ (a))2

]

dt

+
(ϕ (b)−ϕ (x))
ϕ (b)−ϕ (a)

2∫ 1

0
(1− t)

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (a))

∣

∣

∣

[

ts f
′
(x)+ (1− t)s f

′
(b)− ct(1− t)(ϕ (x)−ϕ (b))2

]

dt

=
(ϕ (x)−ϕ (a))
ϕ (b)−ϕ (a)

2[

(

∫ 1

0
(1− t)ts

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (a))

∣

∣

∣dt)
∣

∣

∣ f
′
0(x)

∣

∣

∣

+

(

∫ 1

0
(1− t)s+1

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (a))

∣

∣

∣dt

)

∣

∣

∣ f
′
(a)
∣

∣

∣

−
(

c
∫ 1

0
t(1− t)2

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (a))

∣

∣

∣dt

)

∣

∣

∣((ϕ (x)−ϕ (a))2
∣

∣

∣

]

+
(ϕ (b)−ϕ (x))
ϕ (b)−ϕ (a)

2[

(

∫ 1

0
(1− t)ts

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (b))

∣

∣

∣dt)
∣

∣

∣ f
′
(x)
∣

∣

∣

+

(

∫ 1

0
(1− t)s+1

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (b))

∣

∣

∣dt

)

∣

∣

∣ f
′
(b)
∣

∣

∣

−
(

c
∫ 1

0
t(1− t)2

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (b))

∣

∣

∣dt

)

∣

∣

∣((ϕ (b)−ϕ (x))2
∣

∣

∣

]

Thus the proof is completed.

Corollary 1. If we takeϕ (x) = x in above Teorem, we get

∣

∣

∣

∣

(x−a) f (a)+ (b− x) f (b)
b−a

− 1
b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ (x−a)
b−a

2[ 1
(s+1)(s+2)

∣

∣

∣ f
′
(x)
∣

∣

∣

+
1

(s+2)

∣

∣

∣ f
′
(a)
∣

∣

∣− c
12

|x−a|2
]

+
(b− x)
b−a

2[ 1
(s+1)(s+2)

∣

∣

∣ f
′
(x)
∣

∣

∣+
1

(s+2)

∣

∣

∣ f
′
(a)
∣

∣

∣− c
12

|b− x|2
]

.

Remark.From above Corollary, if we take the limit asc→ 0, then we get

∣

∣

∣

∣

(x−a) f (a)+ (b− x) f (b)
b−a

− 1
b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤
[

(x−a)2+(b− x)2

(s+1)(s+2)(b−a)

]

∣

∣

∣ f
′
(x)
∣

∣

∣+
(x−a)2

∣

∣

∣ f
′
(a)
∣

∣

∣+(b− x)2
∣

∣

∣ f
′
(b)
∣

∣

∣

(b−a)(s+2)
.

Theorem 3.Let f : I ⊂ [0,∞) → R be differentiable on I
◦

and a,b∈ I
◦

with a< b, a,b∈ I
◦
, ϕ : I → R be continuous

and strictly monotonic funcion such thatϕ−1 : ϕ(I ◦)→ I
◦

is continuously differentiable and f
′ ∈ L [a,b], for some fixed
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s∈ (0,1] and q> 1 with 1
p +

1
q = 1. If | f ′|q is strongly Mϕ −A− s convex, we get

∣

∣

∣

∣

(ϕ (x)−ϕ (a)) f (a)+ (ϕ (b)−ϕ (x)) f (b)
ϕ (b)−ϕ (a)

− 1
ϕ (b)−ϕ (a)

∫ b

a
f (x)ϕ

′
(x)dx

∣

∣

∣

∣

≤ (ϕ (x)−ϕ (a))
ϕ (b)−ϕ (a)

2

D1/p
1

(

∫ 1

0
(ts
∣

∣

∣
f
′
(x)
∣

∣

∣

q
+(1− t)s

∣

∣

∣
f
′
(a)
∣

∣

∣

q
− ct(1− t)(ϕ (x)−ϕ (a))2)dt

)1/q

(7)

≤ (ϕ (b)−ϕ (x))
ϕ (b)−ϕ (a)

2

D1/p
2

(

∫ 1

0
(ts
∣

∣

∣ f
′
(x)
∣

∣

∣

q
+(1− t)s

∣

∣

∣ f
′
(b)
∣

∣

∣

q
− ct(1− t)(ϕ (b)−ϕ (x))2)dt

)1/q

,

where

D1 =

∫ 1

0
(1− t)p

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (a))

∣

∣

∣

p
dt,

D2 =
∫ 1

0
(1− t)p

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (b))

∣

∣

∣

p
dt.

Proof.By using above Lemma and Hölder’sİnequality, we have

∣

∣

∣

∣

(ϕ (x)−ϕ (a)) f (a)+ (ϕ (b)−ϕ (x)) f (b)
ϕ (b)−ϕ (a)

− 1
ϕ (b)−ϕ (a)

∫ b

a
f (x)ϕ

′
(x)dx

∣

∣

∣

∣

≤ (ϕ (x)−ϕ (a))
ϕ (b)−ϕ (a)

2

∫ 1

0
(1− t)

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (a))

∣

∣

∣

∣

∣

∣ f
′ (

ϕ−1(tϕ (x)+ (1− t)ϕ (a))
)

∣

∣

∣dt+
(ϕ (b)−ϕ (x))
ϕ (b)−ϕ (a)

2

∫ 1

0
(1− t)

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (b))

∣

∣

∣

∣

∣

∣ f
′ (

ϕ−1(tϕ (x)+ (1− t)ϕ (b))
)

∣

∣

∣dt

≤ (ϕ (x)−ϕ (a))
ϕ (b)−ϕ (a)

2(∫ 1

0
(1− t)p

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (a))

∣

∣

∣

p
dt

)1/p

(

∫ 1

0

∣

∣

∣ f
′ (

ϕ−1 (tϕ (x)+ (1− t)ϕ (b))
)

∣

∣

∣

q
dt

)1/q

.

In the last inequality, if we consider that| f ′|q is stronglyMϕ −A− sconvex function, then we get

≤ (ϕ (x)−ϕ (a))
ϕ (b)−ϕ (a)

2

[(
∫ 1

0
(1− t)p

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (a))

∣

∣

∣

p
dt)

1/p

(

∫ 1

0
ts
∣

∣

∣ f
′
(x)
∣

∣

∣

q
+(1− t)s

∣

∣

∣ f
′
(a)
∣

∣

∣

q
− ct(1− t)(ϕ (x)−ϕ (a))2dt)

1/q

]

+
(ϕ (b)−ϕ (x))
ϕ (b)−ϕ (a)

2

[(

∫ 1

0
(1− t)p

∣

∣

∣

(

ϕ−1)
′
(tϕ (x)+ (1− t)ϕ (b))

∣

∣

∣

p
dt)

1/p

(

∫ 1

0
ts
∣

∣

∣ f
′
(x)
∣

∣

∣

q
+(1− t)s

∣

∣

∣ f
′
(b)
∣

∣

∣

q
− ct(1− t)(ϕ (b)−ϕ (x))2dt)

1/q

].

Thus the proof of the Theorem 3.1 is completed.

Corollary 2. If we takeϕ (x) = x in above Theorem, then we get

∣

∣

∣

∣

(x−a) f (a)+ (b− x) f (b)
b−a

− 1
b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ (x−a)
b−a

2

[(
∫ 1

0
(1− t)pdt)

1/p

(
∫ 1

0
ts
∣

∣

∣
f
′
(x)
∣

∣

∣

q
+(1− t)s

∣

∣

∣
f
′
(a)
∣

∣

∣

q
− ct(1− t)(x−a)2dt)

1/q

]+
(b− x)
b−a

2

[(
∫ 1

0
(1− t)pdt)

1/p
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(

∫ 1

0
ts
∣

∣

∣ f
′
(x)
∣

∣

∣

q
+(1− t)s

∣

∣

∣ f
′
(b)
∣

∣

∣

q
− ct(1− t)(b− x)2dt)

1/q

]

≤ (x−a)
b−a

2
[

(

1
p+1

)1/p( 1
s+1

∣

∣

∣ f
′
(x)
∣

∣

∣

q
+

1
s+1

∣

∣

∣ f
′
(a)
∣

∣

∣

q
− c

6
(x−a)2

)1/q
]

+
(b− x)
b−a

2
[

(

1
p+1

)1/p( 1
s+1

∣

∣

∣ f
′
(x)
∣

∣

∣

q
+

1
s+1

∣

∣

∣ f
′
(b)
∣

∣

∣

q
− c

6
(b− x)2

)1/q
]

.

Corollary 3. If we takeϕ (x) = x in above Theorem, then we get

∣

∣

∣

∣

(x−a) f (a)+ (b− x) f (b)
b−a

− 1
b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ (x−a)2

(b−a)(p+1)1/p





(

1
s+1

(∣

∣

∣ f
′
(x)
∣

∣

∣

q
+
∣

∣

∣ f
′
(a)
∣

∣

∣

q)

− c(x−a)2

6

)1/q




+
(b− x)2

(b−a)(p+1)1/p





(

1
s+1

(∣

∣

∣
f
′
(x)
∣

∣

∣

q
+
∣

∣

∣
f
′
(b)
∣

∣

∣

q)

− c(x−a)2

6

)1/q


 .

Remark.From above Corollary if we take the limit asc→ 0, then we get

∣

∣

∣

∣

(x−a) f (a)+ (b− x) f (b)
b−a

− 1
b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ (x−a)
b−a

2

(
1

p+1
)1/p





∣

∣

∣ f
′
(x)
∣

∣

∣

q
+
∣

∣

∣ f
′
(a)
∣

∣

∣

q

s+1





1/q

≤ (b− x)
b−a

2

(
1

p+1
)1/p





∣

∣

∣ f
′
(x)
∣

∣

∣

q
+
∣

∣

∣ f
′
(b)
∣

∣

∣

q

s+1





1/q

.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors have contributed to all parts of the article. Allauthors read and approved the final manuscript.

References
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[7] İşcan,İ., Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. Journal of Mathematics and Statistics,

43(6), (2014), 935–942.
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