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1 Introduction

An almost contact metric manifoldM, g) is a Riemannian manifold with a tensor fighbf type (1,1), a vector field, a
1-formn onM satisfying b, 6]

@=-1+no& n(€)=1n09=0, g =0, 1)
9(@X,9Y) =g(X,Y) = n(X)n(Y), 2
g(eX,Y) = —g(X,@Y), g(@X,X) =0, g(X,&) = n(X), 3)

for all vector fieldsX, Y on M. We know that a real space form is a Riemannian manifold fgagonstant sectional
curvature and a complex space form is a Kaehlerian manifdld, g) with constant holomorphic sectional curvatare

Generalized Sasakian space forms were studied extengivEly?,3,15,18,19,25]. An almost contact metric manifold
(M, ,&,n,9) is a generalizedk, 1) space form if there exists differential functiofis f2,--- , fs on M2 1(fy, ... fe),
whose curvature tens&is given by B,9]

R= fiR1+ 2Ry + f3Rs + faRa + fsRs + f6R, 4)

whereR1, Ry, R3, R4, Rs andRg are given by;

Ri(X.Y)Z = {9(Y,2)X ~ g(X.2)Y},

Ra(X,Y)Z = {9(X, 9Z) oY — g(Y, 9Z) pX +29(X, ¢Y ) ¢Z},
Rs(X,Y)Z={n(X)n(Z2)Y —n(Y)n(2)X+9(X,Z)n(Y)& —a(Y,Z)n(X)&}
Ra(X,Y)Z = {g(Y,2)hX —g(X,Z)hY +g(hY,Z2)X —g(hX,Z)Y},

Rs(X,Y)Z = g(hY,Z2)hX — g(hX,Z)hY + g(¢hX,Z)phY — g(phY, Z) phX,
Re(X,Y)Z = n(X)n(Z)hY —n(Y)n(Z)hX+g(hX,Z)n(Y)& —g(hY,Z)n(X)E,
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Herehis defined by B = Ls @ is a symmetric tensor and satisfies the following conditions
hE:07 hqo:*q)ha tr(h):Oa noh:ov (5)

and whereL is the usual Lie derivative. In particular if; = fs = fg = 0, then generalizedk, u)-space form

M2"1(fy,-.-, fe) reduces to generalized Sasakian space forms. Alsb7nif was proved thatk, u)-space forms are

natural examples of generalizelg, 1t)-space forms for constant functiong = %3, f = %1, f3 = %3 -k,

f4:1,f5:%,f6:1—[.1.
In a generalizedk, 1) space forms, the following relations holel |

S(X,Y) = (2nf1 4 3f2 — f3)g(X,Y) — (3f2+ (2n— 1) f3)n (X)n (Y) + ((2n— 1) f4— fe)g(hX,Y), (6)

R(X,Y)§ = (fr— f3){n(Y)X =n(X)n(Y)} + (fa— fe){n(Y)hX—n(X)hY}, (7

S(@X, 9Y) = S(X,Y) —2n(f1— f3)n(X)n(Y). (8)
Definition 1. A Riemannian manifold M is said to be

() Einstein manifold if 8X,Y) = A19(X.Y),
(1) n-Einstein manifold if 8X,Y) = A19(X,Y) + A2n (X)n(Y),
(1) Special type of-Einstein manifold if 8X,Y) = A1n(X)n(Y),

where S is the Ricci tensor aidd and A, are constants.

In a generalized quasi-Einstein manifold the Ricci ter&isrgiven by [L3]
SX,Y) = ag(X,Y) + BACOA(Y) + yB(X)B(Y), ©)
Herea, 3,y are non zero scalars a#gB are non-zero 1-forms which are defined by
g(X,U) = A(X) and gX,V) =B(X),

whereU andV are two orthogonal vectors. yf= 0, then the manifold reduces to a quasi Einstein manifold.

2 Main results

Theorem 1.Let M be quasi-umbilical hypersurface of a generaliZkg.)-space form is a generalized quasi-Einstein
hypersurface if and only ifsf= (2n— 1) f4.

Proof. We know that hypersurface 6M2"2,§) is (M?",g). If A is the (1,1)-tensor corresponding to the normal valued
second fundamental tenddr then we havel1]

g(AP(X)7Y) :g(H(XaY)vp)a (10)

wherep is a unit normal vector field and, Y are tangent vector fields. Lif, be the symmetri¢0, 2) tensor corresponding
to A, in the hypersurface, defined by
9(Ap(X),Y) =Hp(X,Y). (11)

A hypersurface of a Riemannian manifall®™1, g) is called quasi-umbilical if its second fundamental tertsas the
form [17]
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wherew is a 1-form andx, 8 are scalars. Suppose= 0 (resp.3 =0 ora = 3 = 0) holds, then it is called cylindrical
(resp. umbilical or geodesic). Now fromi@), (11) and (L2) we obtain

gH(X,Y),p) = ag(X,Y)d(p,p) +Bw(X)w(Y)d(p,p),

which implies that
H(X,Y) =ag(X,Y)s+Bw(X)w(Y)p. (13)

The Gauss equation tangent to the hypersurface is givehlpy [
R(X,Y,Z,W) = R(X,Y,Z,W) —g(H(X,W),H(Y,Z)) + g(H(X,Z),H(Y,W)), (14)

whereR(X,Y,Z,W) = §(R(X,Y)Z,W) andR(X,Y,Z,W) = g(R(X,Y)Z,W).
Let us consider quasi umbilical hypersurface of generdl{keu )-space forms. Then froni8) and (L4) we have

R(XvYaZaW) = ﬁ(X,Y,Z,W) - g([ag(XaW)P + BOL)(X)OJ(W)p], [ag(Y7 Z)P + Bw(Y)w(Z)P])
+9([ag(Y,W)p + Ba(Y)w(W)p], [ag(X, Z)p + Bw(X)w(Z)p))- (15)

Using @) in (15) and then contracting ovet andW, we get

S(Y,2) = (2nf+3f— fa+2na?+ a?)g(Y,Z) — (3f+ (20— 1) fa)n (V)N (2)
+((2n—-1)f4—fe)a(hY,Z) + (2n—1)aBw(Y)w(Z). (16)

This complete the proof of the theorem

Theorem 2. A generalized(k, u)-space form MY1(f;,--- fe) satisfying(S(X,€) - R)(Y,Z)W = 0 is an n-Einstein
manifold.

Proof. Consider a generalizé#t, 11)-space form(n > 1) satisfying(S(X, &) - R)(Y,Z)W = 0, then we have

0=(S(X,&)-R)(Y,Z)W = (X A ) (YZ)W
(XAs&)-R)(Y,Z)W +R((X As &)Y, Z)W
+R(Y (x As&E)Z)W +R(Y,Z)(X AsEW, (17)

where(X AsY) is an endomorphism and is defined by
(XAsY)Z=S(Y,Z)X — S(X,Z)Y. (18)
Using (7) and (8) in (17) and taking inner product with to the resulting equation, then we have

2n(f1— f3){n(R(Y,Z)W)n (X) +n (Y)n (R(X,Z2)W) + n(Z2)n (R(Y, X)W) + n(W)n (R(Y, Z)X) }
— {SXRY,Z)W) + S(X, Y)n (R(§, 2)W) + (X, Z)n (R(Y, § )W) + X, W)n (R(Y, Z2)§) } = 0.

SettingY =W = £ in the above equation, we get

(f1— fa){2n(f1— )0 (X)1(2) — SX,2)} + 2n( 1~ £3)°{9(X,Z) ~ N(Z)n(X)
+(fa— fe)2n(f1 — f3)9(hZ,X)} = 0. (19)
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By virtue of (6) in (19), we have
S(X,Z) =Ag(X,Z) +Bn(X)n(2),
where
((2n—=1)fs— fg)2n(f1 — f3) — (2nfy 4+ 3f — f3)

A=l 2n(f1— f3)((2n—1)f4— fe) + (f4— fg)2n ]

and
—4n(f1— f3)+ (3f2+ (2n— 1) f3)

“on(fi— f3)((2n—1)f4— fe) + (fa— fs)2n

B= !

Hence the proof.

Definition 2.A generalizedk, 1t )-space forms is said to be Ricci symmetric if it satisfies
(OwS)(X,Y) =0

for all X,Y are orthogonal t& .

Theorem 3.Let M be a 3-dimensional generalizékl u1)-space form has constagksectional curvature with constants
(f1 — f3) and(f4 — fg), then the following are equivalent:

(1) Ricci symmetric witt{f4 — fg) # 0,
(2) Tensor his parallel.

Proof. Differentiating €) with respect toV, we get

(OwS)(X,Y) = {2nd(f1— f3)(W) 4 3d f2(W) + (2n — 1)d f3(W) }g(X,Y) — {3d (W) + (2n— 1)d f5(W) }n (X)n (Y)
+ {2(n—1)df4(W) +d(fa— fo) (W) }g(hX,Y) — (3f2+ (2n— 1) f3){ (Dwn) (X)n (Y)
+ Own)()N(X)}+{2(n— 1) fa+ (fa— fo) }o((Bwh) X, Y). (20)

If X andY are orthogonal td, then we have from20)

(Dws) (X,Y) = {an( f1— f3) (W) + 3d fz(W) + (2n — 1)d f3(W)}g(X,Y) + {2(” — 1)d f4(W)
£ d(fa— Te)W)g(hX,Y) + {20 = 1)fa-+ (fa— To) g (Cwh)X.Y). (21)

Suppose f1 — f3) and(fs — fs) are non-zero constants, thetl becomes
(DwS)(X.Y) = {3d f2(W) + (2n — 1)d f3(W) }g(X,Y) + {2(n— 1)d f4 (W) }g(hX,Y) + {(2n— 1) fs — fe)}g(DWh)X.Y).  (22)
Forn=1 (i.e. for three-dimensional case) @2, we have
(OwS)(X,Y) = d(3f2+ f3)(W)g(X,Y) + (f4 — f6)g((Cwh) X, Y). (23)
Let the g-sectional curvaturé3f, + f;) ( see P]) of generalizedk, ut)-space form be constant. The28] gives
(BwS)(X,Y) = (fa— fe)g((Cwh)X,Y). (24)
Hence the proof, moreover.

Theorem 4.Let (2n+ 1)-dimensionalk, u1)-space form with XY € &+, then the following are equivalent:

(I) Ricci symmetric wit{(2n—1)fs— fg} #0,
(Il) Tensor his parallel.
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Proof. Consider the function$y, ... fs in (4) are constants, then generalizédu )-space form reduces to tlil, u)-space
form. Now suppose that the functiofis.. fg are constants. Then by taking covariant differentiatio(edfvith respect to
W, we get

(OwS(X,Y) = =(Bf2+ (2n—=1)f){(Dwn)X)n(Y) +n(X)(Own)(Y)} +{(2n— 1) fa— fe}g((COwh)X,Y).  (25)
If X,Y are orthogonal td, then @5) yields
(OwS)(X,Y) = {(2n— 1) f4— fe}g((Owh)X,Y).
This completes the proof of the theorem.

When generalizing the spaces of constant curvature, alyosainmetric spaces were introduced by Cartzh All
locally symmetric space satisfi&s R= 0, where the first R represents the curvature operator witishes a derivation
and the secon® represents the Riemannian curvature tensor. Manifoldsfgag the conditionR- R = 0 are called
semisymmetric manifolds and were classified by Sz&dh [The condition of semisymmetry was weakened by Deszcz
as pseudosymmetry which are characterized by the condRtiB= LQ(g, R), here byL is a real function an@(g,R) is

the Tachibana tensor.

Definition 3. A Riemannian manifold M is said to be pseudosymmetric, ise¢hnee of Deszc2 4] if

holds. Where k is some smooth function ongd= {x € M|R— MG # 0 at x}, G is the(0,4)-tensor defined by

G(Xq1,X2,X3,Xa) = g((X1 A X2)X3,Xa) and (X1 A X2) X3 is the endomorphism and it is defined as,
(X1 A X2) X3 = g(X2, X3) X1 — 9(X1,X3) Xo. (27)

Definition 4. In a Riemannian manifold M, if RS and @g,S) are linearly dependent then M is called a Ricci pseudo
symmetric manifold and this condition is given by

where = {xe M :S— r‘j # 0at x} and fsis a function defined ongJ

Theorem 5. Let (2n+ 1)-dimensional Ricci pseudosymmetric generalizleds)-space form is Ricci semisymmetric,
provided £ # f; — fz and f, = fe.

Proof. Now equation 28) can be written as
(R(X,Y)S)(Z,W) = — f{S((X AgY)Z,W) + S(Z, (X AgY)W)}, (29)
where the endomorphistX AgY)Z = g(Y,Z)X — g(X,Z)Y. Now (29) yields
—S(R(X,Y)Z,W) = S(Z,R(X,Y)W) = —fs{S(Y,W)g(X,Z) = (X, W)g(Y,Z) + S(Z,Y)g(X,W) = S(Z,X)g(Y,W)}.  (30)
PuttingX = Z = £ in (30), we get

—S(R(§,Y)EW) = S(&,R(E, V)W) = —f5{S(Y,W)g(&, &) — (& W)gW, &) +S(&,Y)g(§, W) —S(§, §)g(Y, W)} (31)

(© 2018 BISKA Bilisim Technology


www.ntmsci.com

(_/
53 PBISK A  Shanmukha B, Venkatesha and Vishunuvardhana S. V.: Somiésres generalizedk, u)-space forms

Using (), (6) and (7) in the above equation, we have
((f1— fa) — fs)[S(Y, W) — 2n(f1 — Ta)g(Y,W)] + (4 — f6)[S(hY, W) — 2n(f1 — f3)g(hY,W)] = 0. (32)

Hence proof. Further, from (32) We can state the followirsgeshent.

Theorem 6. A (2n+ 1)-dimensional Ricci pseudosymmetric generalizledi)-space form is Ricci pseudosymmetric
generalized Sasakian space form if and onlyfif— fg) = 0.

In [22] Tripathi et.al., introduced-curvature tensor and which is the generalization of con&dyconcircular, projective
etc. This curvature tensor was studiediorrontact, Sasakian ar(#, (t)-contact metric manifolds by the authors Bil[
22]. The t-curvature tensor is defined b27)

T(X,Y)Z =aoR(X,Y)Z+a1S(Y,Z)X +axS(X,Z)Y +asS(X,Y)Z+ asg(Y,Z)QX

Definition 5. A (2n+ 1)-dimensional generalize(k, 1 )-space form is said to beflat if it satisfies
1(X,Y)Z=0. (34)

Theorem 7.A t-flat (2n+ 1)-dimensional generalize(k, t)-space form is am-Einstein manifold.

Proof. Consider ar-flat (2n+ 1)-dimensional generalizelg, ut)-space form. Then fronBd) we have

o g(R(XvY)Zv\N) = alS(YaZ)g(wi) - aZS(X,Z)g(Y,W) - a3S(XaY)g(va) - a49(YaZ>S(XaW)
- aSQ(sz)S(Yv\N) - aGQ(XvY)S(ZaW) - a7r{g(YaZ)g(X7W) - g(X,Z)g(Y,W)}. (35)

PuttingX =W = £ in the above equation and usirg) énd (), it follows that

where
A _{ (an 1) fa— f6)(a42n(f1 — f3) + a7r) — ao(f4f f6)(2nf1+3f27 f3) }
ao(fa—fe) —ar((2n—1)fs— fo)
and
((2n—1)fs— fs)(—ap+2n(az+az+as+ag))(f1 — fa3) +asr) + (3f2+ (2n—1)f3
B=—{ — = — }.
ao(f4 fG) al((Zn 1) f4 f6)
This complete the proof of the theorem.
Definition 6. A Riemaniann manifol@M, g) satisfying the condition1,22]
¢ (T(@X, 9Y)9Z) =0, (36)
is called -1 flat.
Suppose that the generalizgdu)-space formM2™1(fy, ... fg) is @-1-flat. Then
9(T(pX, @Y)pZ, W) =0, 37)

for all vector fieldsX,Y,Z andW.
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Theorem 8.A ¢-T flat generalizedk, 1)-space form M™1(fy, .....fs) is ann-Einstein manifold.

Proof. We know thatM?™1(fy, .- fe) is @-T flat, (33) can be written as

a0 9(R(QX, oY) QZ, o) = —a1S(@Y, 9Z)g(@X, PW) — a;S(pX, @Y )g(@Z, PN
— a3S(@X, QY )g(9Z, QW) — a49(@Y, 9Z)S(9X, PW)
—asg(@X, PZ)S(@Y, W) — asg(PX, @Y )S(@Z, pV)
—arr[9(eY, 9Z)g(@X, gW) — g(@X, pZ)g(@Y, pW)]. (38)

Let {ey,....en_1,&} be a local orthonormal basis of vector fields M?"*1(f;,... fs) and using the fact that
{pey,...,pen_1,&} is also a local orthonormal basis, if we put= Z = g in (38) and sum up with respect fothen we
get

2n 2n 2n
ao;g(R(qu, ve)pe, QW) = —alzs(coa, Pe)g(¢X, W) — az_;S(qu, pe)g(per, W)
2n 2n
- a3-ZS(¢X’ ve)g(¢e, pW) — a4_;g(<oei, P8)S(¢X, pW)

2n 2n
- aslzg(th,coa)S(fpa,«p\N) —ae_;g(coX,tpa)S(coa,co\N)

2n

—agf i;[@J(coa,cpe)@l(qu,«pW) —9(eX, pe)g(pe, pW)]. (39)
It can be easily verified that,
izzng(R(X,coa)coa,W) = S(@X, W) +g(@X, pW), (40)
izzng(a,e) = iig(fpa,(pa) =2n, (41)
23(%,4’&) =r—2n(f,—f3), (42)
izzng(X, ve)g(pe,W) = g(¢X, pW). (43)

Using @), (8) and @0)-(43) in (39) we get
S(X,W) = Ag(X,W) +Bn(X)n(W).

where
ap+ag(r —2n(fy — f3)) +ar(2n—1)

A= —
{ a+2nay+ax+az+as+as

}

and
ap+au(r—2n(fy— f3))+ar(2n—1) + 2n(f; — f3)(ap+2nay + ax+ az+ as + ag)

B={
a+2nag+ax+az+as+ag

1.

Hence the result.
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