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Abstract: Travelling wave solutions of the Drinfeld-Sokolov systemdaModified Benjamin-Bona-Mahony equations are studied
analytically by using two dependeri&’/G,1/G) and (1/G’)-expansion methods. Solutions are obtained with diffeferms of
functions as hyperbolic, trigonometric and rational fimes. These methods are really effective methods, and casirbgly
applicable to the nonlinear evolution equations encoendtér the different physical systems.
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1 Introduction

Mathematical solutions of different physical systems Ulgueed non-linear differential equations. One of the &gpes
of equations is Drinfeld-Sokolov system (DS) of partiafeliEntial equationsl 2, 3]. The system was first introduced by
Drinfeld and Sokolov and it is a system of nonlinear partifibdential equations owner of the Lax pairs of a speciafrfor
[3]. The physical motivation of this system was explained itadéy Ref.[]. In this paper, we write the Drinfeld-Sokolov
system in the following formg],

U+ (V)x =0, (1)
Vi — Vit 3buv + 3ku = 0,

wherea, b andk are arbitrary constants. The other one is Benjamin- Bondrxdvig equation (BBM) which is an alternative
model for the Korteweg-de Vries equation (KdV) written byrigemin et al. in Ref. §], and given in the following form:

Ut 4 Ux + Ul — Uyxt = O. 2

The modified versions of the Benjamin- Bona- Mahony equatiddBBM) given in Eq2 have been studied by many
authors ¥,8,9,10]. MBBM equation can also be used for the solution of différphysical systems, such as acoustic-
gravity waves in compressible fluids which are associatel wvariation in the background values of physical and fluid
variables, acoustic waves in enharmonic crystals whiclercéed from the interactions of molecules, the hydromégne
waves in cold plasmadlfl],[ 12], etc. The existence and uniqueness of the solution oéinitilue problems for the MBBM
equation have been considered in REJ)[ In Ref.[9], Aslan has used the MBBM equation in the following form:

U + Uy + BUPUx — Yuxx = 0, (3)
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wherea, 3 andy are arbitrary real constants.

In this paper, we will use the two-variabl&'/G,1/G)-expansion and1/G’)-expansion methods to obtain exact
solutions of the DS and MBBM equation$s’/G,1/G)-expansion method can be considered as a generalizatibe of t
original (G'/G)-expansion method 1§]. As a pioneer work Li et al. 15 has applied the two-variable
(G'/G,1/G)-expansion method and found the exact solutions of Zakhaquations. Some applications of the
(G'/G,1/G)-expansion method can be seen 116,[17,18,19,20]. (1/G’)-expansion method introduced by Yoku&l]
firstly. Some applications of thg /G')-expansion method can be seen20,p2].

The paper covers the following sections: in section 2,(1B&G, 1/G) and (1/G')-expansion methods to obtain exact
solutions of the above equations are introduced. In Sex8@md 4, the exact solutions of DS and MBBM equations are
given, respectively. Finally, Section 5 is devoted to theatasion of the study.

2 Methods
2.1(G'/G,1/G)-expansion method

In this section, we describe the main steps of(B&'G, 1/G)-expansion method for finding travelling wave solutions of
nonlinear evolution equations. First of all, considerinfidwing second order ordinary linear differential eqoati

G"(n)+AG(n) = u, 4)
and defining for the simplicity
9=G/G, y=1/G, ®)
Using Eq4 and Eg5 yields
¢=—@+up-Ar, ¥ =—oy, (6)

From the three cases of the general solutions of thé &q.have:

Casel. WhenA <0,
The general solutions of the E4jis

G(n) =clsinh(\/3n)+Czcosf(\/jn)+% 7)

and we have

PP =- (¢® —2uP+7)

A2V + 2

wherec; andc; are arbitrary constants amd= c% - c%.

Casell. WhenA > 0,
The general solutions of the E4jis

G(n) :clsin(\/Xn)nchcos(\/Xn)nL%, (8)
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and we have 3
2= -~ S (¢*-2 A
V= ey (@ A
wherec; andc; are arbitrary constants amd= c3 + c3.
Caselll. WhenA =0,
The general solutions of the E4is
_H 2
G(n)=3Zn"+an+cz, 9)
and we have 1
2
=——(¢°—2
V=G e )

wherec; andc; are arbitrary constants.

The more details for théG'/G,1/G)- expansion method can be seen in Reg.20).

2.2(1/G')-expansion method

In this section, we describe the main steps of thgG')-expansion method for finding travelling wave solutions of
nonlinear evolution equations. The partial differentigiation (PDE)

P(U,UI,UX,U[t,Uxt,UXx,"') :07 (10)

whereu = u(x;t) is an unknown functionP is a polynomial depending om can be convert the ordinary differential
equations for the transformation= x — ct as given below:

P(u,—cu,u,c?u’, —cu’ u",...) =0, (11)

whereu' = g—;. Suppose that the solution of Bd.can be expressed by a polynomialiyG)

N 1 i
um=5a(g) 12)
% (e
whereG = G(n) and satisfies the following linear ordinary differentialiagjon.

G"(n)+AG(n)+u=0, (13)
whereg;(i=1,...,N), ¢, A andu are constants to be determined later, and the positivedntégan be determined by using
homogeneous balance between the highest order derivatidgbe nonlinear terms appearing in Eij Additionally, The
solution of the differential Eq.3is

G(n) =cie 1~ %n +Cy, (14)

wherec; andc; arbitrary integration constantl/G') term can be expressed as

1 A
(@) " ZH+Aci[coshAn) —sinh(An)]’ (15)
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The more details for thél/G')- expansion method can be seen in R&€] [

3 Exact solutionsof DS equation

3.1 Application of G’ /G, 1/G)-expansion method

DS system of equations given in Egezan be converted into following system of ordinary diffdialsystem of equations
by using transformation af = x— Bt,u=U(n),v=V(n),

—BU’+ (V¥ =0, (16)
BV’ +aVv" —3bU’V — 3kUV' =

dY andv’ =

wherel’ = an = dn The first equation given in Ef6 can be integrated as

umn)==(V(n)’+c), (17)

=R~

where c is an arbitrary integration constant. By using thd Eopto Eq16 and then integrating once, we get
2_
B 3ck)V (2b+k)v3+i _o, (18)

//(
Vit VT ap

wheree is an arbitrary integration constarti]| Balancing the termg/2 andV”, in Eq18, we have following form of
solution:

V(n)=aip+ap+boy. (19)

Substituting the E4.9 and its derivatives into Efj8 and using the Eg6.and7, we have a set of algebraic equations for
ai,ap,bo,k,a,b,c,e A, u andv and then by solving the algebraic equations, we get

Casel. A <0
a aB b — 41 a2f2u? + 4f4v — 24p32ckv + 36c2k2v
! h+2k °T 2 (BZ—3ck)(20+ k) ’
—2(B?—3ck
a =0, )\%, e=0. (20)
Substituting EqROinto Eq19we have the solution of the Eg8.
/ a2p2u2+ 4B4v — 2432ckv + 36c2k2v (21)
4b+ 2&? —3cK)(20+ k) v,
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whereg andy define as in Ed andG(n) define as in Eq. Eq21can be written explicitly follows:

(22)

B cicosh{v/—An) +csinh(v—An)
V(n)==+A (clsinh(\/jn) +cpcosh(v-An) +§>

1
=B (clsinh(ﬂn) +c2cosr(\/jn)+§> ’

where

A=

2(B? —3ck) 3ck a2p2u +4B4v 24B2ckv + 36¢2k2v 3 —2(B%—3ck) 2.2
—3ck)(2b+k) ’ ap ’ 1

4b+ 2k - -

c1 andc; are integration constantg,= x— 3t andU (n) is obtained from the Eq7.

Similarly, substituting the E49 and its derivatives in EG8 and using the Eg8.and 8 yields a set of simultaneous
algebraic equations fa, ag, bg, k,a,b, c,e, A, u andv and then by solving the algebraic equations, we have,

Casell.A >0
[ apB 1 [a?B2u2—4B% + 24B2%ckv — 36c2k2y
a; = + —_—, bo =4 ,
4b+ 2k 2 (B2 — 3ck)(2b+ k)
—2(B%—3ck
20-0. A— (BaB ) e—o (23)
Substituting Eq3into Eq19we have the solution of the E48.
a2p2u? — 4B4v + 24B2ckv — 36¢2k2v (24)
\ 2o+ 2k‘p “3ck)(2b 1 K) v

whereg andy define as in Ed andG(n) define as in EQ. Eq24 can be written explicitly follows:

V() = c1cogvVAn) —csin(vAn)
= csin(vAn) +ccogvVan) + &

(25)

1
=B (clsin(ﬁn)+czcos(\/xn)+§> ’

where

~2(B? - 30k \/aZBZ;.lZ 4[34v+24[32ckv 36c2k2y ~2(B2—3ck)

_ _~2 2
b+ 2k ~ 3K (201 K) AT T VAt ®

c1 andc; are integration constantg,= x— 3t andU (n) is obtained from the Eq7.

The last one, substituting the E§.and its derivatives in E@8 and using the Eg8.and9, we get algebraic equations for
ai,ap,bg,k,a,b,c, e u,c; andc, and then by solving the algebraic equations we arrive fatigvgolution:
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Caselll.A =0

e —aP(2cu —c2)
b2k 0T 4b+ 2k

B=+V3ck A=0, e=0. (26)

Substituting E6into Eq19we have the solution of the Ed8.

—af(2cou — c1

4b+ x? 4b+ 2k 27
wheref3 = +£v/3ck, ¢ andy define as in EhandG(n) define as in EQ. Eq27 can be written explicitly follows:
Hn+cq 1 >
vin)=+Al ——— | +B( 7——7——, 28
2 <%n2+cm+cZ) <%n2+cln+cZ (28)
where
—apep—cf) A
4b+2k btk MTTXTPL B Vack
andU (n) is obtained from the E47.
3.2 Application of(1/G’)-expansion method
We use balanch = 1 for the solution of the EdL8, we get the following type solution.
1
v(n)= ao+a1(G,), (29)

Substituting EqR9in Eq. 18 then collecting all coefficient with respect (b/G’) end equating to zero we get following
system of equations.

0
—2a3b — a3k + agf3? — 3agck+ €,

2
3a; (—2a1a0b — ajapk+aBA ),

(
(
(

1
) : & (—6agb— 3agk+aBA®+ B? —3ck),

- Q- Qln Qe

3
(a) : ay (—2ab—afk+2app?).

Solving the system of equations above, we have

280 1 [2ap
=kt = E

2(B?—3ck) 3ck

- ap
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Substituting these solutions into 2§, we obtain following solution.

228 (1 B2 — 3ck
Vm)i\/zb+|<“<§)+ 2o+ k (30)

where

(i)_ A Ay, |ABE=3cK)
G')  —u+AcicostAn) —sinh(An)]” ~ ap

andc; is arbitrary integration constant.

4 Exact solutions of MBBM equation
4.1 Application of G’ /G, 1/G)-expansion method

Eq.3 can be converted into following ordinary differential etjaa by using transformation of = kx+wt, u=U(n),
—ykewU"” 4 BKUU’ + (w+ ak)U’ = 0. (31)

Integration E¢31 once, we get

wrak), B s € _g (32)

U n_ _
yk2w 3ykw ykew

wherec is an integration constant. Considering the homogenedastabetween the termd?2 andU”, in Eq32, we
have reached the following form of solution:

U(n)=aip+aog+boy. (33)

Substituting the E®3 and its derivatives into E§2 Then, using the E§.with Egs.7, 8 ,9, we get simultaneous
algebraic equations fa ,ap, bo, k, W, B3, ¢, a, A, c1, ¢ andv in the cased < 0,A > 0 andA = 0. Then, solving the
algebraic equations for each cases, we can obtain follogohgions.

Casel.A <0

3ykw 1 [—12a2k2v — 24akvw — 3y2k4u2w2 — 12vw?2
a; = + — bo =4 ,
23 2 Bk(w+ ak)

2(w+ ak)

ap=0, e c=0 (34)
Substituting E34into Eq33we have the solution of the E§2.
3ykw 1 [—12a2k2v — 24akvw — 3y2kALu2w2 — 12vw?2
=+t =
un) \/ 28 ¢ 2\/ Bk(w+ ak) v, (35)

(© 2018 BISKA Bilisim Technology


www.ntmsci.com

02 BISKA D. Daghan and R. K. Esen: Exact solutions for two different-finear partial differential equations

whereg andy define as in EandG(n) define as in Eq. Eq.35can be written explicitly follows:

U(n)= iA< c1cosiy—An) + cpsinhly—An) E) (36)
A

c1Sinh(v=An) +czcosiv—An) +

1
5 <018inh(\/jn)+czcosk(\/jn)+%> ’

where
—3(w+ ak) 1 [—12a2k?v — 24akvw — 3y2k* 2w? — 12vw?2 2(w+ ak) s o
Bk 2\/ Bk(W+ ak) ! dew VTG N=kwiwt
Casell.A >0

3ykw 1 [1202k2v + 24akvw — 3y2k* 2w2 4 12vw?2
==+ bo =+— )
2B 2 Bk(w+ ak)

2(w+ ak)

a0:07 A= yk2W ’

c=0. (37)

Substituting EqB7 into Eq33we have the solution of the E§2.

3ykw 12a2k2v + 24akvw — 3y2k4 u2w2 + 12vw?2 (38)
2[3 Bk(w+ ak) v

whereg andy define as in EandG(n) define as in EQ. Eq.38can be written explicitly follows:

) = c1cogVAn) —casin(vAn)
= cisin(vAn) +cocogvVAn) + &

(39)

1
+B (clsin(\/)_\n) +ccogVAN) +%> ’

where
3(w+ ak) 1 [12a2k?v + 24akvw — 3y2k* L2w? 4+ 12vw?2 2(w+ ak) s 2
Bk 2\/ BKWT ak) ! w0 VT At n=kwwt
Caselll.A =0

. 2
a -+ 3ywk bo = + \/ 6c2yuv;I;+3clywk,

ap=0, w=-ak, A=0 ¢=0 (40)

(© 2018 BISKA Bilisim Technology
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Substituting Eqt0into Eq33we have the solution of the E§2

/3 6c Wk+3C k
;\[/\; \/ 2YH 1YW w. (41)

wherew = —ak, g andy define as in Ed andG(n) define as in EQ. Eq41 can be written explicitly follows:
un +cy 1 )
un=+Al4———— | Bl +——"—"— ], 42
() (%r)2+cm+cz) (%nz+cln+cz (42)

WhereA:,/g’?_ﬂk, B= g/%;w(, n =kx+wt,w= —ak.

4.2 Application of(1/G’)-expansion method

We use balancH = 1 for the solution of the EqB2, we get the following type solution.

U(n) = ao+a1(é,), (43)

Substituting Egt3in Eq. 32 then collecting all coefficient with respect (&/G’) end equating to zero we get following
system of equations.

a3+ Bk+ 3apak + 3agw+ 3c,

1
) © 3ay (a@Bk+ ak— ykeA 2w+ w),
) gk (agapf3 — 3ykA uw), (44)

( )3 © ank (agpB — 6ykpAw),

Solving the system of equations above, we have

/6ykw _i 6ykw
2(w+ak) 1
A=y TE c=0. (45)

Substituting these solutions into B&, we obtain following solution.

. feyw (1Y [ 3wrak
U=+ Hu (G )+ - (46)

1\ A o [ 2wrak 1
(a)_u+/\cl[cosi()\r))sinh(/\r])]’ TV w k

where

(© 2018 BISKA Bilisim Technology
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andc; is arbitrary integration constant.

5 Conclusion

Drinfeld-Sokolov and Modified Benjamin-Bona-Mahony edqoas are studied analytically by using two dependent
(G'/G,1/G)-expansion and1/G')-expansion methods. We obtained exact solutions of thesatiegs for different
forms of functions as hyperbolic, trigonometric and rasibfunctions. These two types methods can be applied to the
nonlinear partial differential equations in the physicgstems such as various physical and astrophysical plasma
systems.
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