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Abstract: Travelling wave solutions of the Drinfeld-Sokolov system and Modified Benjamin-Bona-Mahony equations are studied
analytically by using two dependent(G′/G,1/G) and (1/G′)-expansion methods. Solutions are obtained with differentforms of
functions as hyperbolic, trigonometric and rational functions. These methods are really effective methods, and can besimply
applicable to the nonlinear evolution equations encountered in the different physical systems.
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1 Introduction

Mathematical solutions of different physical systems usually need non-linear differential equations. One of the these types

of equations is Drinfeld-Sokolov system (DS) of partial differential equations [1,2,3]. The system was first introduced by

Drinfeld and Sokolov and it is a system of nonlinear partial differential equations owner of the Lax pairs of a special form

[3]. The physical motivation of this system was explained in detail by Ref.[4]. In this paper, we write the Drinfeld-Sokolov

system in the following form [5],

ut +(v2)x = 0, (1)

vt −avxxx+3buxv+3kuvx = 0,

wherea,b andk are arbitrary constants. The other one is Benjamin- Bona- Mahony equation (BBM) which is an alternative

model for the Korteweg-de Vries equation (KdV) written by Benjamin et al. in Ref. [6], and given in the following form:

ut +ux+uux−uxxt = 0. (2)

The modified versions of the Benjamin- Bona- Mahony equation(MBBM) given in Eq.2 have been studied by many

authors [7,8,9,10]. MBBM equation can also be used for the solution of different physical systems, such as acoustic-

gravity waves in compressible fluids which are associated with variation in the background values of physical and fluid

variables, acoustic waves in enharmonic crystals which areexcited from the interactions of molecules, the hydromagnetic

waves in cold plasma [11],[12], etc. The existence and uniqueness of the solution of initial value problems for the MBBM

equation have been considered in Ref.[13]. In Ref.[9], Aslan has used the MBBM equation in the following form:

ut +αux+βu2ux− γuxxt = 0, (3)
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whereα,β andγ are arbitrary real constants.

In this paper, we will use the two-variable(G′/G,1/G)-expansion and(1/G′)-expansion methods to obtain exact

solutions of the DS and MBBM equations.(G′/G,1/G)-expansion method can be considered as a generalization of the

original (G′/G)-expansion method [14]. As a pioneer work Li et al. [15] has applied the two-variable

(G′/G,1/G)-expansion method and found the exact solutions of Zakharovequations. Some applications of the

(G′/G,1/G)-expansion method can be seen in [16,17,18,19,20]. (1/G′)-expansion method introduced by Yokus [21]

firstly. Some applications of the(1/G′)-expansion method can be seen in [20,22].

The paper covers the following sections: in section 2, the(G′/G,1/G) and(1/G′)-expansion methods to obtain exact

solutions of the above equations are introduced. In Sections3 and 4, the exact solutions of DS and MBBM equations are

given, respectively. Finally, Section 5 is devoted to the conclusion of the study.

2 Methods

2.1 (G′/G,1/G)-expansion method

In this section, we describe the main steps of the(G′/G,1/G)-expansion method for finding travelling wave solutions of

nonlinear evolution equations. First of all, considering following second order ordinary linear differential equation:

G′′(η)+λG(η) = µ , (4)

and defining for the simplicity

φ = G′/G, ψ = 1/G, (5)

Using Eq.4 and Eq.5 yields

φ ′ =−φ2+ µψ −λ , ψ ′ =−φψ , (6)

From the three cases of the general solutions of the Eq.4 we have:

Case I. Whenλ < 0,

The general solutions of the Eq.4 is

G(η) = c1sinh(
√

−λ η)+ c2cosh(
√

−λη)+
µ
λ
, (7)

and we have

ψ2 =−
λ

λ 2ν + µ2 (φ
2−2µψ +λ )

wherec1 andc2 are arbitrary constants andν = c2
1− c2

2.

Case II. Whenλ > 0,

The general solutions of the Eq.4 is

G(η) = c1sin(
√

λ η)+ c2cos(
√

λ η)+
µ
λ
, (8)
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and we have

ψ2 =
λ

λ 2ν − µ2(φ
2−2µψ +λ )

wherec1 andc2 are arbitrary constants andν = c2
1+ c2

2.

Case III. Whenλ = 0,

The general solutions of the Eq.4 is

G(η) =
µ
2

η2+ c1η + c2, (9)

and we have

ψ2 =
1

c2
1−2µc2

(φ2−2µψ)

wherec1 andc2 are arbitrary constants.

The more details for the(G′/G,1/G)- expansion method can be seen in Ref.[19,20].

2.2 (1/G′)-expansion method

In this section, we describe the main steps of the(1/G′)-expansion method for finding travelling wave solutions of

nonlinear evolution equations. The partial differential equation (PDE)

P(u,ut ,ux,utt ,uxt,uxx, · · · ) = 0, (10)

whereu = u(x, t) is an unknown function,P is a polynomial depending onu can be convert the ordinary differential

equations for the transformationη = x− ct as given below:

P(u,−cu′,u′,c2u′′,−cu′′,u′′, ...) = 0, (11)

whereu′ = du
dη . Suppose that the solution of Eq.11can be expressed by a polynomial in(1/G′)

u(η) =
N

∑
i=0

ai

(

1
G′

)i

, (12)

whereG= G(η) and satisfies the following linear ordinary differential equation.

G′′(η)+λG′(η)+ µ = 0, (13)

whereai(i = 1, ...,N), c, λ andµ are constants to be determined later, and the positive integerN can be determined by using

homogeneous balance between the highest order derivativesand the nonlinear terms appearing in Eq.11. Additionally, The

solution of the differential Eq.13 is

G(η) = c1e−λ η −
µ
λ

η + c2, (14)

wherec1 andc2 arbitrary integration constants.(1/G′) term can be expressed as

(

1
G′

)

=
λ

−µ +λc1[cosh(λ η)− sinh(λ η)]
. (15)
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The more details for the(1/G′)- expansion method can be seen in Ref. [19].

3 Exact solutions of DS equation

3.1 Application of(G′/G,1/G)-expansion method

DS system of equations given in Eq.1 can be converted into following system of ordinary differential system of equations

by using transformation ofη = x−β t, u=U(η), v=V(η),

−βU ′+(V2)′ = 0, (16)

βV ′+aV′′′−3bU′V −3kUV′ = 0,

whereU ′ = dU
dη andV ′ = dV

dη . The first equation given in Eq.16can be integrated as

U(η) =
1
β
(

V(η)2+ c
)

, (17)

where c is an arbitrary integration constant. By using the Eq.17 into Eq.16and then integrating once, we get

V ′′+
(β 2−3ck)

aβ
V −

(2b+ k)
aβ

V3+
e

aβ
= 0, (18)

wheree is an arbitrary integration constant [5]. Balancing the terms,V3 andV ′′, in Eq.18, we have following form of

solution:

V(η) = a1φ +a0+b0ψ . (19)

Substituting the Eq.19 and its derivatives into Eq.18 and using the Eqs.6 and7, we have a set of algebraic equations for

a1,a0,b0,k,a,b,c,e,λ ,µ andν and then by solving the algebraic equations, we get

Case I. λ < 0

a1 =±
√

aβ
4b+2k

, b0 =±
1
2

√

a2β 2µ2+4β 4ν −24β 2ckν +36c2k2ν
(β 2−3ck)(2b+ k)

,

a0 = 0, λ =
−2
(

β 2−3ck
)

aβ
, e= 0. (20)

Substituting Eq.20 into Eq.19we have the solution of the Eg.18.

V(η) =±
√

aβ
4b+2k

φ ±
1
2

√

a2β 2µ2+4β 4ν −24β 2ckν +36c2k2ν
(β 2−3ck)(2b+ k)

ψ , (21)
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whereφ andψ define as in Eq.5 andG(η) define as in Eq.7. Eq.21can be written explicitly follows:

V(η) =±A

(

c1cosh(
√
−λη)+ c2sinh(

√
−λη)

c1sinh(
√
−λ η)+ c2cosh(

√
−λη)+ µ

λ

)

(22)

±B

(

1

c1sinh(
√
−λ η)+ c2cosh(

√
−λη)+ µ

λ

)

,

where

A=

√

2(β 2−3ck)
4b+2k

, B=
1
2

√

a2β 2µ2+4β 4ν −24β 2ckν +36c2k2ν
(β 2−3ck)(2b+ k)

, λ =
−2
(

β 2−3ck
)

aβ
, ν = c2

1− c2
2,

c1 andc2 are integration constants,η = x−β t andU(η) is obtained from the Eq.17.

Similarly, substituting the Eq.19 and its derivatives in Eq.18 and using the Eqs.6 and 8 yields a set of simultaneous

algebraic equations fora1,a0,b0,k,a,b,c,e,λ ,µ andν and then by solving the algebraic equations, we have,

Case II. λ > 0

a1 =±
√

aβ
4b+2k

, b0 =±
1
2

√

a2β 2µ2−4β 4ν +24β 2ckν −36c2k2ν
(β 2−3ck)(2b+ k)

,

a0 = 0, λ =
−2
(

β 2−3ck
)

aβ
, e= 0. (23)

Substituting Eq.23 into Eq.19we have the solution of the Eg.18.

V(η) =±
√

aβ
4b+2k

φ ±
1
2

√

a2β 2µ2−4β 4ν +24β 2ckν −36c2k2ν
(β 2−3ck)(2b+ k)

ψ , (24)

whereφ andψ define as in Eq.5 andG(η) define as in Eq.8. Eq.24can be written explicitly follows:

V(η) =±A

(

c1cos(
√

λ η)− c2sin(
√

λ η)
c1sin(

√
λ η)+ c2cos(

√
λ η)+ µ

λ

)

(25)

±B

(

1

c1sin(
√

λ η)+ c2cos(
√

λ η)+ µ
λ

)

,

where

A=

√

−2(β 2−3ck)
4b+2k

, B=
1
2

√

a2β 2µ2−4β 4ν +24β 2ckν −36c2k2ν
(β 2−3ck)(2b+ k)

, λ =
−2
(

β 2−3ck
)

aβ
, ν = c2

1+ c2
2,

c1 andc2 are integration constants,η = x−β t andU(η) is obtained from the Eq.17.

The last one, substituting the Eq.19and its derivatives in Eq.18and using the Eqs.6 and9, we get algebraic equations for

a1,a0,b0,k,a,b,c,e,µ ,c1 andc2 and then by solving the algebraic equations we arrive following solution:

c© 2018 BISKA Bilisim Technology

www.ntmsci.com


88 D. Daghan and R. K. Esen: Exact solutions for two different non-linear partial differential equations

Case III. λ = 0

a1 =±
√

aβ
4b+2k

, b0 =±

√

−aβ (2c2µ − c2
1)

4b+2k
, a0 = 0,

β =±
√

3ck λ = 0, e= 0. (26)

Substituting Eq.26 into Eq.19we have the solution of the Eg.18.

V(η) =±
√

aβ
4b+2k

φ ±

√

−aβ (2c2µ − c2
1)

4b+2k
ψ . (27)

whereβ =±
√

3ck, φ andψ define as in Eq.5 andG(η) define as in Eq.9. Eq.27can be written explicitly follows:

V(η) =±A

(

µη + c1
µ
2 η2+ c1η + c2

)

±B

(

1
µ
2 η2+ c1η + c2

)

, (28)

where

A=

√

aβ
4b+2k

, B=

√

−aβ (2c2µ − c2
1)

4b+2k
, η = x−β t, β =±

√
3ck

andU(η) is obtained from the Eq.17.

3.2 Application of(1/G′)-expansion method

We use balanceN = 1 for the solution of the Eq.18, we get the following type solution.

V(η) = a0+a1

(

1
G′

)

, (29)

Substituting Eq.29 in Eq.18 then collecting all coefficient with respect to(1/G′) end equating to zero we get following

system of equations.

(

1
G′

)0

: −2a3
0b−a3

0k+a0β 2−3a0ck+e,

(

1
G′

)1

: a1
(

−6a2
0b−3a2

0k+aβ λ 2+β 2−3ck
)

,

(

1
G′

)2

: 3a1(−2a1a0b−a1a0k+aβ λ µ),
(

1
G′

)3

: a1
(

−2a2
1b−a2

1k+2aβ µ2) .

Solving the system of equations above, we have

a1 =±
√

2aβ
2b+ k

µ , a0 =±
1
2

√

2aβ
2b+ k

λ ,

λ =±

√

2(β 2−3ck)
aβ

, e= 0.
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Substituting these solutions into Eq.29, we obtain following solution.

V(η) =±
√

2aβ
2b+ k

µ
(

1
G′

)

+

√

β 2−3ck
2b+ k

(30)

where
(

1
G′

)

=
λ

−µ +λc1[cosh(λ η)− sinh(λ η)]
, λ =±

√

2(β 2−3ck)
aβ

andc1 is arbitrary integration constant.

4 Exact solutions of MBBM equation

4.1 Application of(G′/G,1/G)-expansion method

Eq.3 can be converted into following ordinary differential equation by using transformation ofη = kx+wt, u=U(η),

−γk2wU′′′+βkU2U ′+(w+αk)U ′ = 0. (31)

Integration Eq.31once, we get

U ′′−
(w+αk)

γk2w
U −

β
3γkw

U3−
c

γk2w
= 0. (32)

wherec is an integration constant. Considering the homogeneous balance between the terms,U3 andU ′′, in Eq.32, we

have reached the following form of solution:

U(η) = a1φ +a0+b0ψ . (33)

Substituting the Eq.33 and its derivatives into Eq.32. Then, using the Eq.6 with Eqs. 7, 8 ,9, we get simultaneous

algebraic equations fora1 ,a0, b0, k, w, β , c, α, λ , c1, µ andν in the casesλ < 0, λ > 0 andλ = 0. Then, solving the

algebraic equations for each cases, we can obtain followingsolutions.

Case I. λ < 0

a1 =±

√

3γkw
2β

, b0 =±
1
2

√

−12α2k2ν −24αkνw−3γ2k4µ2w2−12νw2

βk(w+αk)
,

a0 = 0, λ =
2(w+αk)

γk2w
, c= 0. (34)

Substituting Eq.34 into Eq.33we have the solution of the Eg.32.

U(η) =±

√

3γkw
2β

φ ±
1
2

√

−12α2k2ν −24αkνw−3γ2k4µ2w2−12νw2

βk(w+αk)
ψ , (35)
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whereφ andψ define as in Eq.5 andG(η) define as in Eq.7. Eq.35can be written explicitly follows:

U(η) = ±A

(

c1cosh(
√
−λ η)+ c2sinh(

√
−λ η)

c1sinh(
√
−λη)+ c2cosh(

√
−λ η)+ µ

λ

)

(36)

±B

(

1

c1sinh(
√
−λη)+ c2cosh(

√
−λ η)+ µ

λ

)

,

where

A=

√

−3(w+αk)
βk

, B=
1
2

√

−12α2k2ν −24αkνw−3γ2k4µ2w2−12νw2

βk(w+αk)
, λ =

2(w+αk)
γk2w

, ν = c2
1−c2

2, η = kw+wt.

Case II. λ > 0

a1 =±

√

3γkw
2β

, b0 =±
1
2

√

12α2k2ν +24αkνw−3γ2k4µ2w2+12νw2

βk(w+αk)
,

a0 = 0, λ =
2(w+αk)

γk2w
, c= 0. (37)

Substituting Eq.37 into Eq.33we have the solution of the Eg.32.

U(η) =±

√

3γkw
2β

φ ±
1
2

√

12α2k2ν +24αkνw−3γ2k4µ2w2+12νw2

βk(w+αk)
ψ , (38)

whereφ andψ define as in Eq.5 andG(η) define as in Eq.8. Eq.38can be written explicitly follows:

U(η) = ±A

(

c1cos(
√

λ η)− c2sin(
√

λ η)
c1sin(

√
λη)+ c2cos(

√
λ η)+ µ

λ

)

(39)

±B

(

1

c1sin(
√

λ η)+ c2cos(
√

λ η)+ µ
λ

)

,

where

A=

√

3(w+αk)
βk

, B=
1
2

√

12α2k2ν +24αkνw−3γ2k4µ2w2+12νw2

βk(w+αk)
, λ =

2(w+αk)
γk2w

, ν = c2
1+c2

2, η = kw+wt.

Case III. λ = 0

a1 =±

√

3γwk
2β

, b0 =±

√

−6c2γµwk+3c2
1γwk

2β
,

a0 = 0, w=−αk, λ = 0, c= 0 (40)

c© 2018 BISKA Bilisim Technology



NTMSCI 6, No. 3, 83-93 (2018) /www.ntmsci.com 91

Substituting Eq.40 into Eq.33we have the solution of the Eg.32.

U(η) =±

√

3γwk
2β

φ ±

√

−6c2γµwk+3c2
1γwk

2β
ψ . (41)

wherew=−αk, φ andψ define as in Eq.5 andG(η) define as in Eq.9. Eq.41can be written explicitly follows:

U(η) =±A

(

µη + c1
µ
2 η2+ c1η + c2

)

±B

(

1
µ
2 η2+ c1η + c2

)

, (42)

whereA=
√

3γwk
2β , B=

√

−6c2γµwk+3c2
1γwk

2β , η = kx+wt, w=−αk.

4.2 Application of(1/G′)-expansion method

We use balanceN = 1 for the solution of the Eq.32, we get the following type solution.

U(η) = a0+a1

(

1
G′

)

, (43)

Substituting Eq.43 in Eq.32 then collecting all coefficient with respect to(1/G′) end equating to zero we get following

system of equations.

(

1
G′

)0

: a3
0+βk+3a0αk+3a0w+3c,

(

1
G′

)1

: 3a1
(

a2
0βk+αk− γk2λ 2w+w

)

,

(

1
G′

)2

: 3a1k(a1a0β −3γkλ µw) , (44)

(

1
G′

)3

: a1k
(

a2
1β −6γkµ2w

)

,

Solving the system of equations above, we have

a1 =±

√

6γkw
β

µ , a0 =±
1
2

√

6γkw
β

λ ,

λ =±

√

−
2(w+αk)

γw
1
k
, c= 0. (45)

Substituting these solutions into Eq.43, we obtain following solution.

U(η) =±

√

6γkw
β

µ
(

1
G′

)

+

√

−
3(w+αk)

βk
(46)

where
(

1
G′

)

=
λ

−µ +λc1[cosh(λ η)− sinh(λ η)]
, λ =±

√

−
2(w+αk)

γw
1
k
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andc1 is arbitrary integration constant.

5 Conclusion

Drinfeld-Sokolov and Modified Benjamin-Bona-Mahony equations are studied analytically by using two dependent

(G′/G,1/G)-expansion and(1/G′)-expansion methods. We obtained exact solutions of these equations for different

forms of functions as hyperbolic, trigonometric and rational functions. These two types methods can be applied to the

nonlinear partial differential equations in the physical systems such as various physical and astrophysical plasma

systems.
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