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Abstract: In this paper, we define generalized order of an entire function of several complex variables in terms of central index and
use it to estimate the growth properties of composite entirefunction of several complex variables with respect to one ofthe factor of
the composition function.
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1 Introduction, Definitions and Notations

We denote complexn-space byCn and indicate its elements (points):

(z1,z2, ...,zn) ,(|z1| , |z2| , ..., |zn|) ,(r1, r2, ..., rn) ,(k1,k2, ...,kn)

by their corresponding symbolsz, |z| , r,k etc. ThroughoutΩ = Ωn stands for a nonempty open completen-circular region

in Cn(see §3.3 of [3]) with center at(0,0, ...,0), the zero element ofCn. We write

|Ω |= {r : r = |z| for somez∈ Ω}

and

Ω+ =
{

r : r ∈ |Ω | , nor j = 0, 1≤ j ≤ n
}

and regard these as subsets of then-dimensional Euclidean spaceRn. For anyr,s∈ Rn, we say that

(i) r ≤ sor s≥ r, if and only if r j ≤ sj for 1≤ j ≤ n,

(ii) r < sor s> r, if and only if r ≤ sbut r is not equal tos

and

(iii) r << sor s>> r, if and only if r j < sj for 1≤ j ≤ n.

A function f (z), z∈ Cn is said to be analytic at a pointξ ∈ Cn if it can be expanded in some neighborhood ofξ as an

absolutely convergent power series. If we assumeξ = (0,0, ...,0), then f (z) has representation(see [6] and [8]).

f (z) =
∞

∑
k=(0,0,....,0)

ak1,k2,...,knzk1
1 zk2

2 ...zkn
n =

∞

∑
|k|=0

akz
k
,
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wherek= (k1,k2, .....,kn) belongs toN = {k : k∈Cn, eachk j is rational integer} and|k|= k1+ k2+ .....+ kn.

For r > (0,0, ...,0), the maximum termµ(r) = µ(r, f ), the maximum modulusM(r) = M(r, f ) and the central index

ν(r) = ν(r, f ) = (ν1(r, f ),ν2(r, f ), ...,νn(r, f )) of entire functionf (z) are given by (see [6] and [7]).

µ(r) = µ(r, f ) = max
k∈N

{|ak| r
k}

M(r) = M(r, f ) = max
|z|=r

| f (z)|

and

ν j (r) = ν j(r, f ) =

{

max
[

k j : |ak| rk = µ(r)
]

, if µ(r)> 0

0, if µ(r) = 0, for 1≤ j ≤ n.

}

Also, the central indexν(r, f ) for which maximum term is achieved

|ν(r, f )| = ν1(r, f )+ν2(r, f )+ ...+νn(r, f ).

Definition 1. ([3], p.339) The orderρ f and lower orderλ f of an entire function f(z) = f (z1,z2, .....,zn) are defined as

follows

ρ f = limsup
r1,r2,...,rn→∞

log[2]M(r1, r2, ..., rn, f )
log(r1r2...rn)

and

λ f = lim inf
r1,r2,...,rn→∞

log[2]M(r1, r2, ..., rn, f )
log(r1r2...rn)

.

where

log[k] x= log
(

log[k−1] x
)

fork= 1,2,3, ...and log[0] x= x.

Following Datta and Mallik (see [2]) definitions of hyper order (hyper lower order), generalized order (generalized lower

order) of entire functions of two complex variables, we may give the same for the entire functions ofn-complex variables.

Definition 2. The hyper orderρ f and the hyper lower orderλ f of an entire function f are defined as follows:

ρ f = limsup
r1,r2,...,rn→∞

log[3]M(r1, r2, ..., rn, f )
log(r1r2...rn)

and

λ f = lim inf
r1,r2,...,rn→∞

log[3] M(r1, r2, ..., rn, f )
log(r1r2...rn)

.

Definition 3. Let l be an integer≥ 1. The generalized orderρ [l ]
f and the generalized lower orderλ [l ]

f of an entire function

f are defined as follows:

ρ [l ]
f = limsup

r1,r2,...,rn→∞

log[l+1]M(r1, r2, ..., rn, f )
log(r1r2...rn)

and

λ [l ]
f = lim inf

r1,r2,...,rn→∞

log[l+1]M(r1, r2, ..., rn, f )
log(r1r2...rn)

.

Whenl = 1, Definition3 coincides with Definition1 and whenl = 2, Definition3 coincides with Definition2.

In 1988, He and Xiao [5] define the order of an entire function in terms of its centralindex as follows:
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Definition 4. The orderρ f of an entire function f(z) is defined by

ρ f = limsup
r→∞

logν(r, f )
logr

.

Similarly, the lower orderλ f of of an entire function f(z) is defined as

λ f = lim inf
r→∞

logν(r, f )
logr

.

Later in 1999, Chen and Yang [1] define the hyper order of an entire function in terms of the central index in the following

manner.

Definition 5. The hyper orderρ f of an entire function f(z) is defined by

ρ f = limsup
r→∞

log[2] ν(r, f )
logr

.

Similarly, the hyper lower orderλ f of of an entire function f is defined as

λ f = lim inf
r→∞

log[2] ν(r, f )
logr

.

So it is interesting to investigate that whether or not the generalized order of an entire function of several complex

variables can be define in terms of its central index.

In this paper, we establish that the generalized order (generalized lower order) of an entire function of several complex

variables can be defined in terms of its central index. Also westudy some comparative growth measure of composite

entire function of several complex variables with respect to left (right) factor of the composite entire function basedon

their central index.

2 Lemmas

In this section we present some lemmas which will be needed inthe sequel.

Lemma 1. [6] Let p, r ∈ |Ω | and letµ(p) andµ(r) be both positive. Then the line integral,

I =

r
∫

p

n

∑
j=1

ν j (x)
x j

dxj

taken over any connected polygon in|Ω | with sides parallel to the axes and from p to r,

(i) exists,

(ii) is independent of the polygon and

(iii) is such thatlogµ(r) = logµ(p)+ I .

Lemma 2. [6] Let r ∈ |Ω |. Let p∈ |Cn| and be such that p>> (1,1, ...,1), while pr= (p1r1, p2r2, . . . , pnrn) still ∈ |Ω |.

Let

Nj = max
r≤t≤pr

ν j(t) for 1≤ j ≤ n.

Then
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(i) µ(r)≤ M(r) ≤ µ(r)
n
∏
j=1

[

Nj +
p j

p j−1

]

,

(ii) µ(r) = M(r), if and only if the series
∞
∑

|k|=0
akrk has at most one non vanishing term,

(iii) the last relation in (i) is an equality if and only ifµ(r) = 0.

Lemma 3.Let f(z) be an entire function of n-complex variables with generalized orderρ [l ]
f , where l be a positive integer

≥ 1. Then

ρ [l ]
f = limsup

r1,r2,...,rn→∞

log[l ] |ν(r1, r2, ..., rn, f )|
log(r1r2...rn)

.

Proof.Set

f (z) =
∞

∑
k=(0,0,....,0)

ak1,k2,.....,knzk1
1 zk2

2 ...zkn
n =

∞

∑
|k|=0

akz
k
.

By Lemma1, we see the maximum termµ(r) of f satisfies

logµ(r) = logµ(p)+
r

∫

p

n

∑
j=1

ν j(x)

x j
dxj (1)

Krishna ([6], Corollary 2.9) proved thatν j(r) is increasing and right continuous inj-th variable for 1≤ j ≤ n. Therefore,

for anyp, r ∈ |Ω | such thatµ(r)> 0 andp>> (1,1, ...,1), we get for 1≤ j ≤ n,

ν j(r)≤
1

logp j

r
∫

p

ν j(r1, ..., r j−1, ..., rn)
dxj

x j
. (2)

From (1) and (2), we get

logµ(r)≥ logµ(p)+
n

∑
j=1

ν j(r) logp j (3)

By Lemma2, we have

µ(r, f ) ≤ M(r, f ) (4)

It follows from (3) and (4) that
n

∑
j=1

ν j (r) logp j ≤ logM(r, f )+C1 (5)

As p>> (1,1, ...,1) i.e., p= (p1, p2, ..., pn)>> (1,1, ...,1), choosingp j = 2 for 1≤ j ≤ n, we get

n

∑
j=1

ν j (r) log2≤ logM(r, f )+C1

⇒ log[l ] |ν (r, f )|+ log[l+2]2≤ log[l+2]M(r, f )+C2 (6)

⇒ log[l ] |ν(r, f )|+ log[l+1] 2≤ log[l+1]M(r, f )+C2

whereCj(> 0)( j = 1,2) is a suitable constant.

By (6) and Definition3, we have

limsup
r1,r2,...,rn→∞

log[l ] |ν(r1, r2, ..., rn, f )|
log(r1r2...rn)

≤ limsup
r1,r2,...,rn→∞

log[l+1]M(r1, r2, ..., rn, f )
log(r1r2...rn)

= ρ [l ]
f . (7)
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On the other hand, by choosingp j = 2 for 1≤ j ≤ n i.e., p= (2,2, ...,2) in (i) of Lemma2, we have

M(r, f ) ≤ µ(r, f )
n

∏
j=1

[Nj +2] ,

whereNj = max
r≤t≤pr

ν j (t), for 1≤ j ≤ n.

⇒ M(r, f ) ≤
∣

∣aν(r, f )
∣

∣ rν(r, f )
n

∏
j=1

[Nj +2] (8)

Since{|ak|} is bounded, from (8) we get

logM(r, f ) ≤
n

∑
j=1

ν j (r) logr j +
n

∑
j=1

logNj +C3

≤
n

∑
j=1

|ν(r, f )| logr j +
n

∑
j=1

logNj +C3

≤ |ν(r, f )| log(r1r2...rn)+ log(N1N2...Nn)+C3

⇒ log[l+1]M(r, f ) ≤ log[l ] |ν(r, f )|+ log[l+1](r1r2...rn)+ log[l+1](N1N2...Nn)+C4 (9)

whereCj (> 0)( j = 3,4) are suitable constants. By (9) and Definition3, we get

ρ [l ]
f = limsup

r1,r2,...,rn→∞

log[l+1]M(r1, r2, ..., rn, f )
log(r1r2...rn)

≤ limsup
r1,r2,...,rn→∞

log[l ] |ν(r1, r2, ..., rn, f )|
log(r1r2...rn)

. (10)

By (7) and (10), Lemma3 follows.

In the line of Lemma3, we can prove the following lemma:

Lemma 4.Let f(z) be an entire function of n-complex variables with generalized lower orderλ [l ]
f , where l is a positive

integer≥ 1. Then

λ [l ]
f = lim inf

r1,r2,...,rn→∞

log[l ] |ν(r1, r2, ..., rn, f )|
log(r1r2...rn)

.

The proof is omitted.

3 Theorems

In this section we present the main results of the paper.

Theorem 1.Let f and g be two entire functions of n-complex variables. Also, let0 < λ [l ]
f◦g ≤ ρ [l ]

f◦g < ∞ and0 < λ [l ]
g ≤

ρ [l ]
g < ∞. Then

λ [l ]
f◦g

ρ [l ]
g

≤ lim inf
r1,r2,...,rn→∞

log[l ] |ν(r1, r2, ..., rn, f ◦g)|

log[l ] |ν(r1, r2, ..., rn,g)|
≤ min{

λ [l ]
f◦g

λ [l ]
g

,
ρ [l ]

f◦g

ρ [l ]
g

}

≤ max{
λ [l ]

f◦g

λ [l ]
g

,
ρ [l ]

f◦g

ρ [l ]
g

} ≤ limsup
r1,r2,...,rn→∞

log[l ] |ν(r1, r2, ..., rn, f ◦g)|

log[l ] |ν(r1, r2, ..., rn,g)|
≤

ρ [l ]
f◦g

λ [l ]
g

.
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Proof. Using respectively Lemma3 and Lemma4 for the entire functiong, we have for arbitrary positiveε and for all

sufficiently large values ofr1, r2, ..., rn that

log[l ] |ν(r1, r2, ..., rn,g)| ≤ (ρ [l ]
g + ε) log(r1r2...rn) (11)

and

log[l ] |ν(r1, r2, ..., rn,g)| ≥ (λ [l ]
g − ε) log(r1r2...rn). (12)

Also, for a sequence of values of each ofr1, r2, ..., rn tending to infinity

log[l ] |ν(r1, r2, ..., rn,g)| ≤ (λ [l ]
g + ε) log(r1r2...rn) (13)

and

log[l ] |ν(r1, r2, ..., rn,g)| ≥ (ρ [l ]
g − ε) log(r1r2...rn). (14)

Using respectively Lemma3 and Lemma4 for the composite entire functionf ◦g, we have for arbitrary positiveε and

for all sufficiently large values ofr1, r2, ..., rn that

log[l ] |ν(r1, r2, ..., rn, f ◦g)| ≤ (ρ [l ]
f◦g+ ε) log(r1r2...rn) (15)

and

log[l ] |ν(r1, r2, ..., rn, f ◦g)| ≥ (λ [l ]
f◦g− ε) log(r1r2...rn). (16)

Again, for a sequence of values of each ofr1, r2, ..., rn tending to infinity

log[l ] |ν(r1, r2, ..., rn, f ◦g)| ≤ (λ [l ]
f◦g+ ε) log(r1r2...rn) (17)

and

log[l ] |ν(r1, r2, ..., rn, f ◦g)| ≥ (ρ [l ]
f◦g− ε) log(r1r2...rn). (18)

Now from (11) and (16), it follows for all sufficiently large values ofr1, r2..., rn that

log[l ] |ν(r1, r2, ..., rn, f ◦g)|

log[l ] |ν(r1, r2, ..., rn,g)|
≥

λ [l ]
f◦g− ε

ρ [l ]
g + ε

.

As ε(> 0) is arbitrary, we obtain

liminf
r1,r2,...,rn→∞

log[l ] |ν(r1, r2, ..., rn, f ◦g)|

log[l ] |ν(r1, r2, ..., rn,g)|
≥

λ [l ]
f◦g

ρ [l ]
g

. (19)

Again, combining (12) and (17), we get for a sequence of values of each ofr1, r2, ..., rn tending to infinity

log[l ] |ν(r1, r2, ..., rn, f ◦g)|

log[l ] |ν(r1, r2, ..., rn,g)|
≤

λ [l ]
f◦g+ ε

λ [l ]
g − ε

.

Sinceε(> 0) is arbitrary, it follows that

liminf
r1,r2,...,rn→∞

log[l ] |ν(r1, r2, ..., rn, f ◦g)|

log[l ] |ν(r1, r2, ..., rn,g)|
≤

λ [l ]
f◦g

λ [l ]
g

. (20)
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Similarly, from (14) and (15) it follows for a sequence of values of each ofr1, r2, ..., rn tending to infinity

log[l ] |ν(r1, r2, ..., rn, f ◦g)|

log[l ] |ν(r1, r2, ..., rn,g)|
≤

ρ [l ]
f◦g+ ε

ρ [l ]
g − ε

.

As ε(> 0) is arbitrary, we obtain

liminf
r1,r2,...,rn→∞

log[l ] |ν(r1, r2, ..., rn, f ◦g)|

log[l ] |ν(r1, r2, ..., rn,g)|
≤

ρ [l ]
f◦g

ρ [l ]
g

. (21)

Now combining (19), (20) and (21), we get

λ [l ]
f◦g

ρ [l ]
g

≤ lim inf
r1,r2,...,rn→∞

log[l ] |ν(r1, r2, ..., rn, f ◦g)|

log[l ] |ν(r1, r2, ..., rn,g)|
≤ min{

λ [l ]
f◦g

λ [l ]
g

,
ρ [l ]

f◦g

ρ [l ]
g

}. (22)

Now, from (13) and (16) we obtain for a sequence of values of each ofr1, r2, ..., rn tending to infinity that

log[l ] |ν(r1, r2, ..., rn, f ◦g)|

log[l ] |ν(r1, r2, ..., rn,g)|
≥

λ [l ]
f◦g− ε

λ [l ]
g + ε

.

Choosingε → 0 we get that

limsup
r1,r2,...,rn→∞

log[l ] |ν(r1, r2, ..., rn, f ◦g)|

log[l ] |ν(r1, r2, ..., rn,g)|
≥

λ [l ]
f◦g

λ [l ]
g

. (23)

Again from (12) and (15), it follows for all sufficiently large values ofr1, r2, ..., rn

log[l ] |ν(r1, r2, ..., rn, f ◦g)|

log[l ] |ν(r1, r2, ..., rn,g)|
≤

ρ [l ]
f◦g+ ε

λ [l ]
g − ε

.

As ε(> 0) is arbitrary, we obtain

limsup
r1,r2,...,rn→∞

log[l ] |ν(r1, r2, ..., rn, f ◦g)|

log[l ] |ν(r1, r2, ..., rn,g)|
≤

ρ [l ]
f◦g

λ [l ]
g

. (24)

Similarly, combining (11) and (18), we get for a sequence of values of each ofr1, r2, ..., rntending to infinity

log[l ] |ν(r1, r2, ..., rn, f ◦g)|

log[l ] |ν(r1, r2, ..., rn,g)|
≥

ρ [l ]
f◦g− ε

ρ [l ]
g + ε

.

Sinceε(> 0) is arbitrary, it follows

limsup
r1,r2,...,rn→∞

log[l ] |ν(r1, r2, ..., rn, f ◦g)|

log[l ] |ν(r1, r2, ..., rn,g)|
≥

ρ [l ]
f◦g

ρ [l ]
g

. (25)
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Therefore, combining (23), (24) and (25) we get

max{
λ [l ]

f◦g

λ [l ]
g

,
ρ [l ]

f◦g

ρ [l ]
g

} ≤ limsup
r1,r2,...,rn→∞

log[l ] |ν(r1, r2, ..., rn, f ◦g)|

log[l ] |ν(r1, r2, ..., rn,g)|
≤

ρ [l ]
f◦g

λ [l ]
g

. (26)

Thus the theorem follows from (22) and (26).

Remark.If we take 0< λ [l ]
f ≤ ρ [l ]

f < ∞ instead of 0< λ [l ]
g ≤ ρ [l ]

g < ∞ and the other conditions remain the same, then also

Theorem1 holds withg replaced byf in the denominator as we see in the next theorem.

Theorem 2.Let f and g be two entire functions of n-complex variables. Also let0 < λ [l ]
f◦g ≤ ρ [l ]

f◦g < ∞ and 0 < λ [l ]
f ≤

ρ [l ]
f < ∞. Then

λ [l ]
f◦g

ρ [l ]
f

≤ lim inf
r1,r2,...,rn→∞

log[l ] |ν(r1, r2, ..., rn, f ◦g)|

log[l ] |ν(r1, r2, ..., rn, f )|
≤ min{

λ [l ]
f◦g

λ [l ]
f

,
ρ [l ]

f◦g

ρ [l ]
f

}

≤ max{
λ [l ]

f◦g

λ [l ]
f

,
ρ [l ]

f◦g

ρ [l ]
f

} ≤ limsup
r1,r2,...,rn→∞

log[l ] |ν(r1, r2, ..., rn, f ◦g)|

log[l ] |ν(r1, r2, ..., rn, f )|
≤

ρ [l ]
f◦g

λ [l ]
f

.

The proof is omitted.

Example 1.Taking f = expz, g= z andn= 1 one can easily verify that the sign “≤ ” in Theorem2 cannot be replaced

by “ < ” only.

Corollary 1. Let f and g be two entire functions of n-complex variables such that0< λ [l ]
f◦g ≤ ρ [l ]

f◦g < ∞. Also let0< λ [l ]
f =

ρ [l ]
f < ∞. Then

lim inf
r1,r2,...,rn→∞

log[l ] |ν(r1, r2, ..., rn, f ◦g)|

log[l ] |ν(r1, r2, ..., rn, f )|
=

λ [l ]
f◦g

λ [l ]
f

,

and

limsup
r1,r2,...,rn→∞

log[l ] |ν(r1, r2, ..., rn, f ◦g)|

log[l ] |ν(r1, r2, ..., rn, f )|
=

ρ [l ]
f◦g

ρ [l ]
f

.

4 Conclusion

The main aim of the paper is to investigate some growth properties of entire function of several complex variables on the

basis of central index. There are several other growth properties of entire function of several complex variables, namely

type(weak type), exponent of convergence, L-order(lower order), L*-order(lower order), and properties related to these

can be investigate using the central index and we feel that our theory will provide a helping tool for the investigation.
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