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Abstract: In this paper, a system of differential equations characterizing constant breadth curve mate of a curve on a surface is given.
It is shown that a collocation method based on Taylor polynomials can be used to find approximate solutions of the system. Then, an
example is given to illustrate the efficiency of the method.
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1 Introduction

Curves of constant breadth which were introduced by L. Euler[6] in 1778 have attracted many authors’ attention since

that date. Especially, after Reuleaux [17] has found applications of curves of constant breadth in kinematics of

machinery, particularly, in cam-follower mechanisms, interest of this subject has rapidly increased.

Initial works in the subject of curves of constant breadth were proposed in plane by Euler [6], Barbier [2], and Mellish

[15]. Later, this subject was studied in many different spaces by many authors, for example, in Euclidean 3-space by

Fujiwara [7], in Euclidean 4-space by Mağden and Köse [14], in Euclidean n-space by Akdoğan and Mağden [1], in

Minkowski 3-space by Kocayiğit and̈Onder [11] and Yılmaz and Turgut [20], in Minkowski 4-space by Kazaz et al. [8].

Furthermore, many authors contributed to the research areaof curves of constant breadth. Blaschke [3] defined curves of

constant breadth on sphere, Köse [12,13] presented some concepts of space curves of constant breadth and gave some

geometric properties for curves of constant breadth in plane, Kocayiğit and Çetin [9] studied space curves of constant

breadth according to Bishop frame.

One of the important problems in the research area of constant breadth curves is obtaining differential equations or

system of differential equations characterizing curves ofconstant breadth. This problem was handled by Sezer in

Euclidean 3-space [18]. Later, Önder et al. [16] and Kocayiğit and Çiçek [10] also obtained differential equations

characterizing curves of constant breadth in Minkowski 3-space and Minkowski 4-space, respectively. These differential

equations have variable coefficients, so one cannot find analytical solutions of them easily. In the works of [4] and [5],

approximate solutions of differential equations characterizing space curves of constant breadth were obtained by using

collocation methods based on Lucas polynomials and Taylor polynomials, respectively.

In the present paper, we try to determine a curve which is a constant breadth curve mate of a curve on a surface. To

accomplish this, we first give a system of differential equations characterizing constant breadth curve mate accordingto

Darboux frame. This system of differential equations has variable coefficients. So it is hard to find analytical solutions of
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the system. By using Taylor collocation method, we find approximate solutions of the system. Thus, we determine the

constant breadth curve mate approximately. Finally, by giving an example, we illustrate that this technique is efficient to

determine the constant breadth curve mate.

2 A brief overview of Darboux frame of a curve on a surface

In this section, we briefly introduce Darboux frame and its derivation formulas of a curve on a surface.

Let a surfaceM be given asX(u,v) andα be a unit speed curve on the surfaceM. The unit tangent vector field of the

curveα and the unit normal vector field of the surfaceM along the curveα can be given, respectively, as

T = α ′

and

nα =
Xu×Xv

‖Xu×Xv‖
(α)

whereXu andXv denote the partial derivatives ofX(u,v) with respect tou andv, respectively. If we define a unit vector

g= nα ×T, we will have a frame which is called Darboux frame. The Darboux frame is the analog of the Serret-Frenet

frame of a curve and is used to study differential geometry ofa curve embedded in a surface. The derivative formulae of

the Darboux frame can be given in matrix form as




T ′

g′

n′α


=




0 kg kn

−kg 0 τg

−kn −τg 0







T

g

nα


 (1)

wherekg, kn, andτg are called geodesic curvature, normal curvature, and geodesic torsion, respectively.

3 System of differential equations of constant breadth curve pair

In this section, we obtain a system of differential equations characterizing a constant breadth curve mate of a curve on a

surface by the aid of Darboux frame mentioned in Section 2. First, we will give the following definition of a curve pair of

constant breadth.

Definition 1. [12] A pair of curvesα andα∗ in E3, for which the tangents at the corresponding pointsα(s) andα∗(s∗) are

parallel and in opposite directions, and the distance between these points is always constant, is called constant breadth

curve pair.

Let α be a unit speed curve on a surfaceM. If α∗ is a constant breadth curve pair ofα, then we can write

α∗(s∗) = α(s)+λ1(s) T(s)+λ2(s) g(s)+λ3(s) nα(s) (2)

whereT, g andnα are elements of Darboux frame ofα, andλi ,(i = 1,2,3) are functions ofs. By differentiating equation

(2) and using equation (1), we have

dα∗

ds
=

dα∗

ds∗
ds∗

ds
= (1+λ ′

1−λ2kg−λ3kn) T +(λ1kg+λ ′
2−λ3τg) g+(λ1kn+λ2τg+λ ′

3) n, (3)

wheres∗ is the arc-length parameter ofα∗, andkg, kn, andτg are geodesic curvature, normal curvature, and geodesic

torsion of the curveα, respectively.〈T,T∗〉 = −1 is the necessary and sufficient condition forα∗ be a constant breadth

c© 2018 BISKA Bilisim Technology



NTMSCI 6, No. 3, 103-115 (2018) /www.ntmsci.com 105

curve mate ofα, whereT andT∗ are unit tangent vector fields of the curvesα andα∗, respectively. Thus, from equation

(3), we obtain the following system of differential equations

λ ′
1 = kgλ2+ knλ3−

ds∗

ds
−1

λ ′
2 =−kgλ1+ τgλ3

λ ′
3 =−knλ1− τgλ2





. (4)

On the other hand, from equation (2), we can write

α∗−α = λ1 T +λ2 g+λ3 nα .

Sinceα andα∗ are the constant breadth curve pair, the distance between these curves can be constant, i.e.,

‖α∗−α‖=
√

λ 2
1 +λ 2

2 +λ 2
3 = c (5)

wherec is a constant. By differentiating equation (5), we get

λ1λ ′
1+λ2λ ′

2+λ3λ ′
3 = 0. (6)

By substituting system (4) into equation (6), we obtain the following equation which characterizes constant breadth curve

pair α andα∗:

λ1

(
− ds∗

ds
−1

)
= 0.

From the above equation, two cases should be considered.

Case 1.In the first case, we assume that− ds∗

ds
−1= 0. Therefore, the system (4) becomes

λ ′
1 = kgλ2+ knλ3

λ ′
2 =−kgλ1+ τgλ3

λ ′
3 =−knλ1− τgλ2






(7)

The system (7) is a system of differential equations with variable coefficients in normal form. Given a curveα and the

initial conditionsλ1(0) = µ1, λ2(0) = µ2, λ3(0) = µ3 which determine the initial point ofα∗, whereµ1, µ2 andµ3 are

real numbers. This system which gives the constant breadth curve mateα∗ of α can be solved approximately by using

Taylor collocation method to be described in Section 4.

Case 2.In the second case, we assume thatλ1 = 0. Then, the system (4) becomes

λ ′
1 = kgλ2+ knλ3−

ds∗

ds
−1= 0

λ ′
2 = τgλ3

λ ′
3 =−τgλ2





(8)
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From the second and third equations of the system (8), we obtain

λ2 = sin

(∫
τgds

)
,

and

λ3 = cos

(∫
τgds

)
.

By considering the initial conditionsλ2(0) = µ2 andλ3(0) = µ3, whereµ2 andµ3 are real numbers,λ2 andλ3 can be

determined. By substitutingλ2 andλ3 into the first equation of the system (8), the ratio
ds∗

ds
can be found.

4 Taylor collocation method for system of linear differential equations with variable

coefficients in normal form

In order to find approximate solutions of systems of high-order linear differential equations with variable coefficients, a

Taylor collocation method was given in [19]. In [5], this method was adapted for the systems of three linear differential

equations. In this study, we use the method described in [5] to obtain approximate solutions of the system of differential

equations characterizing constant breadth curve mate of a curve on a surface. In this section, we briefly introduce Taylor

collocation method for system of linear differential equations with variable coefficients in normal form (see [5] for details).

The system of three linear differential equations with variable coefficients in the normal form

L [yi(x)] = yi
′
(x)−

3

∑
j=1

pi, j(x)y j (x) = gi(x) , (i = 1,2,3) , (0≤ a≤ x≤ b) (9)

under the initial conditions

yi(a) = ci , (10)

whereyi(x) (i = 1,2,3) are unknown functions,pi, j(x) andgi(x) are the known continuous functions defined on interval

[a,b], andci (i = 1,2,3) are real constants. By using the Taylor collocation method,the approximate solutions of the

system (9) can be obtained as

yi
∼= yi,N(x) =

N

∑
n=0

ai,nxn (11)

which is the Taylor polynomial solution, whereai,n, (n= 0,1,2, ...,N) is the unknown Taylor coefficients.

In order to find the solutions of the system (9) under the initial conditions (10), we can use the collocation points defined

by

xk = a+
b−a

N
k, k= 0,1, ...,N, 0≤ a≤ x≤ b. (12)

On the other hand, we can write the approximate solutionsyi,N(x) given by Eq.(11) in the matrix form

yi,N(x) = X(x)A i ,(i = 1,2,3) (13)

where

X(x) =
[
1 x x2

... xN]

and

A i =
[

ai,0 ai,1 ai,2 ... ai,N

]T
.
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From Eq.(13), the solutionsyi,N(x) , (i = 1,2,3) can be expressed as

Y(x) = X(x)A (14)

where

Y(x) =




y1,N(x)

y2,N(x)

y3,N(x)


 , X̄(x) =




X(x) 0 0

0 X(x) 0

0 0 X(x)


 ,A =




A1

A2

A3


 .

Also, the relation between the matrix X(x) and its derivative X′(x) is

X′(x) = X(x)B (15)

where

B =




0 1 0 0 . . . 0

0 0 2 0 · · · 0

0 0 0 3 . . . 0
...

...
...

...
. . .

...

0 0 0 0 · · · N

0 0 0 0 · · · 0




.

By using the relations (13) and (15), we obtain the following matrix relation

y′i,N(x) = X(x) B A i , (i = 1,2,3).

Therefore, we can write the following matrix relation

Y′(x) = X̄(x) B̄ A (16)

where

Y′(x) =




y′1,N(x)

y′2,N(x)

y′3,N(x)


 , B̄ =




B 0 0

0 B 0

0 0 B


 .

On the other hand, the system (9) can be written in matrix form as

Y′(x) = P(x)Y(x)+G(x) (17)

where

P(x) =




p1,1(x) p1,2(x) p1,3(x)

p2,1(x) p2,2(x) p2,3(x)

p3,1(x) p3,2(x) p3,3(x)


 , G(x) =




g1(x)

g2(x)

g3(x)


 .

By using the collocation points given by (12) into Eq.(17), we obtain the system of matrix equations

Y′(xk) = P(xk)Y(xk)+G(xk), (k= 0,1, ...,N).

This matrix equation can also be written briefly as

Y′ = PY+G (18)
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where

P=




P(x0) 0 · · · 0

0 P(x1) · · · 0
...

...
.. .

...

0 0 · · · P(xN)



, Y =




Y(x0)

Y(x1)
...

Y(xN)



, Y′ =




Y
′
(x0)

Y
′
(x1)
...

Y
′
(xN)



, G=




G(x0)

G(x1)
...

G(xN)



.

From the relations (14) and (16) and the collocation points given by (12), we obtain

Y(xk) = X̄(xk)A and Y′(xk) = X̄(xk)B̄A , (k= 0,1, ...,N)

or briefly

Y = XA and Y′ = XB̄A (19)

where

X =




X(x0)

X(x1)
...

X(xN)



, X(xk) =




X(xk) 0 · · · 0

0 X(xk) · · · 0
...

...
.. .

...

0 0 · · · X(xk)



.

By substituting the relations given by (19) into Eq.(18), we obtain the matrix equation as

{
XB−PX

}
A = G. (20)

In Eq.(20), the dimensions of the matrices P, X, B, A and G are 3(N + 1) × 3(N + 1), 3(N + 1) × 3(N + 1),

3(N+1)×3(N+1), 3(N+1)×1 and 3(N+1)×1, respectively.

The matrix equation (20) corresponding to the system (9) can be written in the form as

WA = G or [W;G] (21)

where

W = XB−PX= [wp,q] , p,q= 1,2, ...,3(N+1)

are the unknown Taylor coefficients. By using the conditionsgiven by (12) and the relations (14), the matrix form for the

conditions is obtained as

X(a)A = C

where

C=
[

c1 c2 c3

]T
.

Hence, the fundamental matrix form for conditions is

UA = C or [U;C] (22)

such that

U = X(a).

Consequently, we obtain the Taylor polynomial solution of the system (9) under the initial conditions (10) by replacing

the row matrices (22) with last rows of the matrix (21). Then, we obtain the new augmented matrix

W̃A = G̃ or
[
W̃;G̃

]
.
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If rank W̃ = rank
[
W̃;G̃

]
= 3(N+1), then the unknown Taylor coefficients matrix A is determinedas

A =
(

W̃
)−1

G̃.

By substituting the coefficientsai,0,ai,1, ...,ai,N (i = 1,2,3) into Eq.(11), we can find the Taylor polynomial solutions as

yi,N(x) =
N

∑
n=0

ai,NxN
, (i = 1,2,3).

5 Application of Taylor collocation method to determine constant breadth curve pair on a

surface

In this section, we give an example to illustrate the efficiency of the approximation method based on Taylor polynomials

used to find approximate solutions of system of differentialequations characterizing constant breadth curve mate of a

curve on a surface.

Let given a surface of helicoid and a curve on this surface expressed by the following equations

X(u,v) = (ucosv, usinv, v),(−2≤ u≤ 2, −π
/

2≤ v≤ π
/

2 )

and

α(t) = (t2cost, t2sint, t),( 0≤ t ≤ 2π
/

5 )

respectively. By using the definition of Darboux frame mentioned in Section 2, we can obtain the elements of Darboux

frame of the curveα(t) as

T(t) =
1√

t4+4t2+1
(2t cost − t2sint, 2t sint + t2cost, 1),

g(t) =
1√

t4+1
√

t4+4t2+1
(−cost −2t3sint − t4cost, −t4sint +2t3cost − sint, 2t),

nα(t) =
1√

t4+1
(sint, −cost, t2).

The geodesic curvature, the normal curvature, and the geodesic torsion of the curveα(t) can also be found as

kg =
t6+6t4+ t2−2√

t4+1(t4+4t2+1)3/2
,

kn =− 4t√
t4+1(t4+4t2+1)

,

τg =
t4−4t2+1

(t4+1)(t4+4t2+1)
,

respectively. We can express constant breadth curve mate ofthe curveα(t) as

α∗(t∗) = α(t)+λ1(t) T(t)+λ2(t) g(t)+λ3(t) nα(t),
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whereλi(t) , (i = 1,2,3) are the unknown functions which should be found. By using thecurvatures of the curveα(t) and

assuming the condition
dt∗

dt
= −1, we obtain the following system of differential equationscharacterizing the constant

breadth curve mate of the curveα(t)





λ1
′
(t) =

t6+6t4+ t2−2√
t4+1(t4+4t2+1)

λ2(t)−
4t√

t4+1
√

t4+4t2+1
λ3(t),

λ2
′
(t) =− t6+6t4+ t2−2√

t4+1(t4+4t2+1)
λ1(t)+

t4−4t2+1

(t4+1)
√

t4+4t2+1
λ3(t),

λ3
′
(t) =

4t√
t4+1

√
t4+4t2+1

λ1(t)−
t4−4t2+1

(t4+1)
√

t4+4t2+1
λ2(t).

(23)

The system (23) is a system of differential equations with variable coefficient. It is difficult to find analytical solutions

of this system. We can find approximate solutions of the system (23) by using Taylor collocation method described in

Section 4 under the initial conditions defined by

λ1(0) = 2, λ2(0) = 1, λ3(0) = 3.

These initial conditions have a geometric interpretation such that we can find the distance between the curvesα(t) and

α∗(t∗) at initial pointt = 0 (t∗ = 0) by using these conditions as

‖α∗(0)−α(0)‖=
√

λ 2
1 (0)+λ 2

2(0)+λ 2
3(0) = c,

where c = 3.741657387 is the constant distance between the curvesα(t) and α∗(t∗). By using Taylor collocation

method, we obtainλi(t), (i = 1,2,3) approximately. Since analytical solutions of the system are not known, we use

distance functiond(t) = ‖α∗(t)−α(t)‖ =
√

λ 2
1 (t)+λ 2

2 (t)+λ 2
3(t) to control the accuracy of the solutions. Since the

curves are constant breadth curve pair, the distance between the corresponding points of the curves should be constant

for all t ∈ [0,2π
/
5]. Thus, we can find the absolute error of approximate solutions obtained from Taylor collocation

method by comparing the constant distancec which is known from initial conditions.

The approximate solutionsλ1,3(t), λ2,3(t), λ3,3(t) by the truncated Taylor series forN = 3 are given by

λi,3(t) =
3

∑
n=0

ai,nt
n
, (i = 1,2,3).

The set of the collocation points fora= 0, b=
2π
5

andN = 3 is calculated as

{
t0 = 0, t1 =

2π
15

, t2 =
4π
15

, t3 =
2π
5

}
.

By using the Taylor collocation technique described in Section 4, the approximate solutions of the system (23) for N = 3

are obtained as

λ1,3 = 2−2t−8.726196696t2+6.798258238t3
,

λ2,3 = 1+7t−10.44465286t2+4.823723197t3
,

λ3,3 = 3− t+1.583886831t2−1.439830030t3
.
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The comparison of the distance function obtained from approximate solutions forN = 3 and the constant breadthc can

be seen in Table 1.

The set of the collocation points fora= 0, b=
2π
5

andN = 4 is calculated as

{
t0 = 0, t1 =

π
10

, t2 =
π
5
, t3 =

3π
10

t4 =
2π
5

}
.

By using the Taylor collocation technique, the approximatesolutions of the system (23) for N = 4 are obtained as

λ1,4 = 2−2 t −13.99013604t2+18.92678564t3−6.932188065t4
,

λ2,4 = 1+7 t −8.425862894t2+0.204720105t3+2.573201945t4
,

λ3,4 = 3− t +1.471888354t2−2.546105833t3+1.085891320t4
.

The comparison of the distance function obtained from approximate solutions forN = 4 and the constant breadthc can

be seen in Table 2.

The set of the collocation points fora= 0, b=
2π
5

andN = 5 is calculated as

{
t0 = 0, t1 =

2π
25

, t2 =
4π
25

, t3 =
6π
25

, t4 =
8π
25

, t5 =
2π
5

}
.

By using the Taylor collocation technique, the approximatesolutions of the system (23) for N = 5 are obtained as

λ1,5 = 2−2 t −16.01444043t2+26.29588723t3−16.10226871t4+3.807538795t5
,

λ2,5 = 1+7 t −4.183603447t2−16.40261814t3+24.02114642t4−8.973032078t5
,

λ3,5 = 3− t +0.530344699t2+0.1901936784t3−1.897904809t4+1.127048776t5
.

The comparison of the distance function obtained from approximate solutions forN = 5 and the constant breadthc can

be seen in Table 3.

The set of the collocation points fora= 0, b=
2π
5

andN = 6 is calculated as

{
t0 = 0, t1 =

π
15

, t2 =
2π
15

, t3 =
π
5
, t4 =

4π
15

, , t5 =
π
3

t6 =
2π
5

}
.

By using the Taylor collocation technique, the approximatesolutions of the system (23) for N = 6 are obtained as

λ1,6 = 2−2 t −15.42148709t2+23.06443038t3−9.799241814t4−1.431077548t5+1.576173710t6
,

λ2,6 = 1+7 t −2.089908983t2−27.67621133t3+47.10766701t4−29.63709927t5+6.762066403t6
,

λ3,6 = 3− t +0.159351405t2+2.181206439t3−6.131673130t4+5.114820336t5−1.371285620t6
.

The comparison of the distance function obtained from approximate solutions forN = 6 and the constant breadthc can

be seen in Table 4.
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Table 1: The absolute error of the approximate solutions of the Taylor collocations method forN = 3.

ti λ1,3(ti) λ2,3(ti) λ3,3(ti) di |di − c|
0 2 1 3 3.741657387 0

π
/

25 1.624364488 1.724282801 2.896490831 3.741840496 0.000183109
2π

/
25 1.054074677 2.176128134 2.825861932 3.719153498 0.022503889

3π
/

25 0.3700734212 2.412969229 2.770970095 3.692918913 0.048738474
4π

/
25 -0.3466964314 2.49223931 2.714672113 3.701472664 0.040184723

π
/

5 -1.015292028 2.471371610 2.639824781 3.755951332 0.014293945
6π

/
25 -1.554770516 2.407799351 2.529284889 3.822576503 0.080919116

7π
/

25 -1.884189046 2.358955761 2.365909233 3.835670364 0.094012977
8π

/
25 -1.922604764 2.382274065 2.132554604 3.730874956 0.010782431

9π
/

25 -1.589074814 2.535187497 1.812077794 3.497993759 0.243663628
2π

/
5 -0.80265635 2.875129283 1.387335598 3.291705587 0.449951800

Table 2: The absolute error of the approximate solutions of the Taylor collocations method forN = 4.

ti λ1,4(ti) λ2,4(ti) λ3,4(ti) di |di − c|
0 2 1 3 3.741657387 0

π
/

25 1.563578900 1.747637968 2.892797712 3.723881852 0.017775535
2π

/
25 0.8864598746 2.240585044 2.805557703 3.698268037 0.043389350

3π
/

25 0.1317612114 2.504378914 2.717713278 3.698004897 0.043652490
4π

/
25 -0.5788866667 2.579957399 2.615196604 3.718943833 0.022713554

π
/

5 -1.165341195 2.523658461 2.490438703 3.732178594 0.009478793
6π

/
25 -1.588947669 2.407220193 2.342369457 3.715663929 0.025993458

7π
/

25 -1.852539254 2.317780827 2.176417605 3.679783043 0.061874344
8π

/
25 -2.000436929 2.357878733 2.004510742 3.685024198 0.056633189

9π
/

25 -2.11844963 2.645452421 1.845075328 3.858827584 0.117170197
2π

/
5 -2.33387403 3.313840520 1.723036673 4.404243676 0.662586289

Table 3: The absolute error of the approximate solutions of the Taylor collocations method forN = 5.

ti λ1,5(ti) λ2,5(ti) λ3,5(ti) di |di − c|
0 2 1 3 3.741657387 0

π
/

25 1.544068221 1.786740647 2.882650626 3.726427705 0.015229682
2π

/
25 0.8428103816 2.321481107 2.778749183 3.717667399 0.023989988

3π
/

25 0.08265966223 2.582390840 2.678819941 3.721780669 0.019876718
4π

/
25 -0.6176843455 2.623917574 2.570504786 3.724778146 0.016879241

π
/

5 -1.192937885 2.543045384 2.442801371 3.722560834 0.019096553
6π

/
25 -1.616915264 2.445552771 2.290301211 3.720298773 0.021358614

7π
/

25 -1.888211119 2.412270753 2.117427821 3.723962867 0.017695520
8π

/
25 -2.015882626 2.465340916 1.942674825 3.730371841 0.011285546

9π
/

25 -2.005131834 2.53447355 1.802844083 3.700588688 0.041068699
2π

/
5 -1.84298780 2.42320566 1.757283811 3.515192184 0.226465203
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Table 4: The absolute error of the approximate solutions of the Taylor collocations method forN = 6.

ti λ1,6(ti) λ2,6(ti) λ3,6(ti) di |di − c|
0 2 1 3 3.741657387 0

π
/

25 1.548433072 1.802567720 2.879806902 3.733655469 0.008001918
2π

/
25 0.8492569158 2.347854943 2.773683963 3.731887307 0.009770080

3π
/

25 0.08574104898 2.604304372 2.673682201 3.733407197 0.008250190
4π

/
25 -0.6185719159 2.640939138 2.565199060 3.733285566 0.008371821

π
/

5 -1.194075520 2.563831749 2.436492195 3.733034128 0.008623259
6π

/
25 -1.614839862 2.471790208 2.284305276 3.733028959 0.008628428

7π
/

25 -1.883883169 2.431156258 2.115605892 3.733004800 0.008652587
8π

/
25 -2.013974474 2.469820915 1.945435479 3.733741787 0.007915600

9π
/

25 -2.003967523 2.59039395 1.790871331 3.732726453 0.008930934
2π

/
5 -1.810665726 2.80254874 1.661100674 3.727203410 0.014453977

The comparison of the distance function, which consist of approximate solutions obtained by Taylor collocation method

for N = 3,4,5,6, and the constant breadthc, which is found by initial conditions, can be seen in Figure 1.

It is seen from Figure 1 that accuracy of the solution of system (23) increase when the value ofN is increased. Thus, the

distance functiond(t) =
√

λ 2
1 (t)+λ 2

2(t)+λ 2
3(t) obtained by Taylor collocation method gets closer to the constant

breadthc. Therefore, it can be said that this method is effective to find approximate solutions of system (23) which is

used to find a constant breadth curve mate of the curve on the surface.

Fig. 1: Comparison of the approximate solutions forN = 3,4,5,6.

Now, we can approximately draw the constant breadth curve mate α∗ of the curveα on the surface of helicoid by using

the Taylor collocations method forN = 6 (see Figure 2).

c© 2018 BISKA Bilisim Technology
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Fig. 2: The curveα (red curve) on the surface of helicoid and its constant breadth curve mateα∗ (blue curve) forN = 6.

6 Conclusions

In this paper, we give a system of differential equations characterizing constant breadth curve mate of a curve on a

surface. This system of differential equations has variable coefficients. It is usually difficult to find analytical solutions of

the system. So, we use Taylor collocation method to obtain approximate solutions of the system. We give an example to

show the efficiency of the method. The approximate solutionsare obtained, and the graphics are drawn easily by using the

computer program Maple12. It is seen from Tables 1-4 and Figure 1 that the distance function obtained from approximate

solutions are very close to constant breadth when the valuesof N are selected big enough. In other words, it can be said

that the errors decrease when the values ofN increase. This method can also be used to find approximate solutions of

other problems similar to our problem. But some modifications are required.
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