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Abstract: In this work, the dynamics of traveling waves of an improvedimear space-time fractional Schrodinger’s equatidth w
spatio-temporal dispersion in addition to group-velodigpersion are studied. This equation models the propagati solitons
through nano optical fibers. The fractional derivative fasrconsidered in the meaning of conformable fractionalvdgisie. The
exp(—@(&)) algorithm will be carried out for retrieving the optical €oh solutions containing the form of kink and multi-sofito
shapes. In addition, some graphical simulations of satstare provided for better understanding the physical phena.
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1 Introduction

The research area of optical soliton propagation is a quitgortant in nonlinear optics. This special type wave
propagation can be observed in many physical models. Fangbea optical solitons form the basic carriers for signal
propagation across long distances. Thanks to several egsam this field, many fascinating developments have placed
in our daily lives such as internet activity and social medij In the last two decades, the optical solitons have been
examined from different aspects such as birefringent filiarization mode dispersion, conservation laws, &iclip

the open literature, many powerful methods have been deedléor nonlinear evolution equations in the meaning of
integrability. Some of them are listed i8,4,5,6,7,8,9, 10].

The governing mathematical equation of optical solitonsoislinear Schrodinger equation (NLSE)
iQt+aQX+be<x+CF(|Q|2)q:07 i=v-1 1)

As can be seen, the above equation contains the nonlinearated the group velocity dispersion (GVD), besides the
linear evolution term. Therefore, the temporal opticalteal formation emerges delicate balance between GVD and
nonlinearity. These type optical solitons propagate atomgs-continental distances along the optical fib2}s [

However, as particularly emphasized ih1]12], the Eq.Q) is an ill-posed model. Therefore, the spatio-temporal
dispersion (STD) besides to GVD and nonlinear terms is atiwlathke the model well-posed.

On the other hand, a physical phenomenon may depend not orityedime (or space) instant but also on the time (or
space) history, which can be successfully modelled usiadghbory of derivatives and integrals of fractional ordEs, [
14]. This interesting topic goes back to L'Hospital’s famousgegtion in 1695 asked what does it m%fﬂ if n= % We
observe several approaches to the generalization of th@nnaif differentiation of fractional orders, e.g.,

®© 2018 BISKA Bilisim Technology * Corresponding author e-maémrullah.yasar@gmail.com


 http://dx.doi.org/10.20852/ntmsci.2018.300

117 BIS K A E. Yasar and E. Yasar: Optical solitons of conformablecspime fractional NLSE with Spatio-temporal...

Riemann—Liouville, Griinwald-Letnikow, Caputo and mastifRiemann—Liouville derivativelp,16,17,18], etc.

In this paper, our aim is to build optical soliton solutioes fmproved space-time fractional NLSE with spatio-tengbor
dispersion
iDfq+abfDZq+bDgDIa+cF (ja”)a=0, i=v-1 ©

in the sense of conformable fractional derivative. This hgve fractional derivative is introduced by Khalil et al9 in
2014 and some setbacks of other definitions are improved.

We observe several interesting works on the Bqr(cluding integer order derivatives. Savescu et. al. taoted optical
solitons for cases of Kerr law, power law, parabolic law, lca@wver law as well as the log law via ansatz methad]
Bhrawy et al. added to those results the cases of polynomidltaple-power laws by using the travelling wave
hypothesis 2]. Very recently, Yildirim et al. constructed systematigalark, bright and singular soliton solutions of
model equation by extended Kudryashov's algoritt28[ In addition to those papers, Biswas et al. obtained th&,dar
singular and singular periodic solutions employing byl eiguation methodZ4].

The main motivation of this work is to examine the EX).¢ia exp(—¢@(&)) approach. As noted in the above lines,
studying the EgZ) in the context of fractional derivative makes the physioaldel much more realistic. The three types
of nonlinearity -Kerr law, parabolic and dual power law-@siated with Eq.Z) will be considered.

The paper is structured thusly. In Section 2, conformalaetional derivate andxp—@(&)) method for handling the
reduced ordinary differential equations (ODES) are preskrSection 3 is devoted to present the optical solitontisols
for three distinct nonlinear cases. In the final section, ive gome concluding remarks.

2 Succinct overview of the conformable fractional derivative operator

2.1 Conformable fractional derivative operator

In 2014, Khalil et.al 19 have developed a quite important and efficient new fraetiaterivative calling as the
conformable fractional derivative operator. Its efficigican be observed especially in fractional differentialans in
both directions -i.e. space and time regard- containirgtifie new derivative operator.

Now we give the brief definition and its important propertighich will be employed in subsequent sections for
constructing the traveling wave solutions of improved gptime fractional NLSE with spatio-temporal dispersion.

Let f : [0,0) — R be a function. Ther th order conformable fractional derivative bis given by

DI(F)(t) = im f(t+ stl;") —f(t)

wheret > 0 anda € (0, 1].

In what follows, we give some important properties of abaaetional derivative operator without proofsd.

(1) DY(cf+dg) =cD?(f)+dD%(g) forall c,d € R.
(2) D9(tP) = ptP~? forall pe R.

(3) D(A) = 0 for all constant function§(t) = A.
(4) D%(fg) = fD(g) +gD"(f).
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g
(6) D(fog)(t) =t g (1) F'(g(t)).

(5) DY (1) _ gD“(f)ngDa(g)_

2.2 Exg—¢(¢)) method

The exg—@(&)) method RO,21] is one of the powerful approach for handling the nonlingactional differential
equations. As can be seen below, there exist many solutisraseording to coefficient classifications of the auxiliary
equation. In the literature, we observe many studies mhlatth this algorithm. For instance,i2p] the authors adopted
the exp(—@(&)) method to construct the solitary wave solutions of the fometl generalized Sawada-Kotera equation.
Hosseini et. al. yielded the exact solutions of densityetielent conformable space-time fractional diffusion-tieac
equation using the exp-@(&)) method R6].

Let's consider the space-time conformable fractional poiyial complex evolution equations as follows:
We give the main steps of this method as follows:

Step 1. We define the wave variable transformation
axt) =U ()™, @)

whereU (&) represents the shape of the pulse and

= —yv—
¢ T Vo

xd t?
D (x,t) :—K? +WE+9. (5)
The function®(x,t) is the phase component of the solitaris the soliton frequencyy is the wave number of the soliton,
6 is the phase constant ands the velocity of the soliton. If one uses the variable tfarmeation @) through 6) in Eq.(3),

then original equation EcB] converts to
E(U,UU"...)=0 (6)

nonlinear integer order ordinary differential equatiomb().

Step 2. To gain the solution(s) of Edf), we suppose that the form of solutions can be in finite séoies

U(&) = _iai exp(—@(§))' =ao+arexp(—@(§)) + ...+ avexp(—N@(§)), an#0 @)

where the arbitrary constardg, n=0,1,2,...,N should be fixed via the pursued algorithxhis a positive number, which
is determined by the highest order linear term and nonlitezars. In this stage, we assume that¢iié) is a solution of
the following auxiliary ODE:

@(&) =exp(—@(&)) + uexpe(&)) + A (8)
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According to coefficient classifications of E8)(we have the following solution sets:

A 2—4utanh<7\//\§74“(6+01)> “A

In P

A2—4u>0, p#0,

)

—\/A%ap coth<7“§’4“(§+cl)> -

In o

)\ 2 .
7'”(W), A?—4u>0, p=0,

= 22 ((E+C1)+2) 2 _
®(&) In(fW), A2_4u=0, u#0, A#0, (9)

Nz 2tan<@ <.§+cl)> )

In o
A2—4u <0, u=#o0.
Nz zcot<@(f+q)> )
In

2u

wherea,,--- ,A, U are constants to be determined later.

Step 3. Plugging Eq.7) into Eqg.6) with the aid of Maple and putting the coefficients of same p@nof exg—@(&)) to
zero, we obtain an algebraic system for getiing.

Step 4. Substituting these coefficients values and the solutiorsq@) into Eq.@) we obtain the exact solutions of
Eq.Q).

3 Confor mable fractional space-time NL SE with Spatio-temporal dispersion model and exact
traveling wave solutions

In this section, our purpose is to reveal the optical sofitohthe improved NLSE with spatio-temporal dispersion uihic
is defined in the form of space-time conformable fractiorative. First, we present mathematical backgroundef th
model and then application of the éxpp(&)) method to the model equation.

3.1 Model equation

The dimensionless form of NLSE is given by{])
in’q+aD{’Df{q+bD§’Df{q+cF(|q|2)q:0, i=v-1 (10)

wherex represents the non-dimensional distance along the fibepresents temporal variable in dimensionless form
anda, b andc are real valued constants. The dependent varglxl¢) is a complex valued wave profile.

The coefficient of the constart is spatio-temporal dispersion and the coefficient of cartstais group-velocity
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dispersion. In addition¢ is the coefficient of the nonlinear term where the functioRalepresents the non-Kerr law
nonlinearity in general. The nonlinear functi5r<|q|2) g is k times continuously differentiable, so tha2{])

F(laf)ae D Ci(-nmx(-mm; &)

Plugging the Eq4) into Eq.(L0) and then decomposing into imaginary and real parts, theviolg equations are deduced

_aw— 2bk

11
T ax (11)

(b—av)U” — (w—awk + bk?)U +cF(U?)U =0, (12)

respectively, where integration constants is chosen asizexach integration process.

3.2 Application of the exp-¢(&)) method to space-time NLSE with spatio-temporal dispersion

In this sub-section, the exact solutions of conformablerowpd space-time fractional NLSE with spatio-temporal
dispersion will be retrieved by using tleep— (¢ ))-expansion scheme.

Kerr-law nonlinearity
The Kerr law of nonlinearity originates from the fact thaight wave in an optical fiber faces nonlinear responses from
non-harmonic motion of electrons bound in molecules, chbyean external electric fiel®H].

The Kerr law nonlinearity is the case whEiis) = s. For Kerr law nonlinearity,{0) reads
iDZq+aDfDZq+bDIDYq+c|q2q=0 (13)
and Eq.(2) convertsto
(b—av)u” — (w—awk + bk?)U +cU®=0. (14)

Comparing the highest order linear tet¥{ with nonlinear termJ3, we conclude that thal = 1. This means that the
series {) must be expanded as the follows:

U (&) =ag+arexp(—@(&)). (15)

whereay anda; are constants to be determined, such #iat 0.

Plugging Eq.15) into (14) by aid of Maple and putting the coefficients of same powemx@f—¢(¢)) to zero, we yield
an algebraic systems of containiag a;, k,w,A andu as the follows:
—2avey + caf + 2ba; = 0, (16)
3bagA + 3cagal — 3avaih = 0,
—ava A + awkag+ bayuA —wag + cag — bk2ag = 0,
bay A2+ awka; 4 3cada; 4 2bay it — 2ava i — avagd 2 — wag — bk2a; = 0.
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After solving system16) through Eq.{1), we get the following coefficient results:

—b
= +A 17
& \/2a2K204aCK+4a2uca2)\ 2c+2¢ (A7)

—b
=42 18
& \/Zazxzc—4acx+4a2uc—a2/\ 2c+2c¢’ (18)
b(2k3a— 2k? + daKk U+ 4 — akA? — A?)
2a%K2 — daK + 4a2u — a2A2 42
Therefore, the solution of EQ.{) is

(19)

W =

—b —b
U()==A +2 — )
(&) \/2a2K204aCK+4a2uca2/\Zc+ 2c \/2a2K2c4aCK+4a2uca2)\ 2c+ ZceXp( 9(&))
Let us now discuss the following cases:

Casel.1f A2—4u>0, u#0,

Us(§) = ﬂ\/ _~ (20)

2a2k2c — 4ack + 4a2uc—a2A2c+ 2c

N

iz\/Zazxzc—4ac:<+4a2uc—a2/\ 2c+2c [—Mtanh(‘/’\_24“(f +C1)) —A}

)

2

Ua(E) = ﬂ\/ b (21)

2a2k2c — 4ack + 4a2uc—a2A2c+ 2c

T@

—b
+2 .
\/2a2K2c4aCK+4a2uca2)\ 2c+2c { w2 4ucoth( T )) /\}
v : ) -

Case2.1f A2—4u>0, u=0,

Us(€) = ﬂ\/ b (22)

2a2k2c — 4ack + 4a2uc—a2A2c+ 2c

—b A
+2 .
\/2a2K2c dack +4auc—alA2c+2cexp(A (€ +C1)) —1
Case3: If A2—4u=0, u+#0, A#0,

Ua(&) = j:/\\/ b (23)

2a%k2c — 4ack + 4a2uc—a2A2c+2c

- \/ b A2 +Cy)

2a2k2c — 4ack + 4a2uc—a2A2c+2c2[A (E+Cp) + 2]
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Case4: If A2—4u < 0andu #0,

b
Us(€) = £A \/2a2K20—4aCK+4a2uc—a2A2C+2C (24)
iz\/ o /—ZH
PP 2c— a2\ 2 ’
2a°K“C—4ack +4aUc—a‘A“c+2c [ 4u—A2tan( 4’;’\2(5 +C1)) —A}
Us(&) = +A - .
6\ = 2a?k2c — 4ack + 4a2lic—a?A2c+2c
iz\/ b Ll
212A 2 _a2)2 '
282k 2c — 4ack + 4a’c—a?A2c+ 2c [\/mcot(#(f +Cl)) —A}
Then, the solutions ofl@) corresponding to20), (21) (22), (23), (24) and @5) are given by
(xt) = Uy ()€l 7 19), (26)
(1) = Up(§)e 5 /5 0), @
Qo(x1) = Us(£)d e a9, @9
Ga(x,1) = Ug(§) 5+ +0) (29)
Os(x,t) = Us(f)é(7K§+W%+9)’ (30)
Go(x1) = Us(£)d e 9 3D

where the value ofv is fixed in Eq.L9). In the below figure (Figure 1), the kink shape soliton peofif the model
equation {0) is observed for some special choices of parameters.

Par abolic-law Nonlinearity
This law arises in the nonlinear interaction between Larigmaves and electrons. It describes the nonlinear intenact
between the high frequency Langmuir waves and the ion aiconaves by ponder-motive force27].

For parabolic-law nonlinearity, we considefs) = ys+ 3s®> wherey and are constants. Therefore, Et) takes the
form
iD{'q+aDf D q+bD{DS -+ c(v|al*+ Bla*)a=0 (32)

and Eq.(2) convertsto
(b—av)u” — (w—awk +bk?)U + yU3+ puU® = 0. (33)
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@) (b)

Fig. 1: The real and imaginary part of wave profile of E2f{whena=b=c=1,k=1/2,C;=0,w=2,a = %, 6=
LA=3u=2.

In order to use the balancing procedure, we need to make Hatzah— V3in (33), so that 83) transforms to
(b—av)(2vV" —V'?) — 4v2(w— awk + bk?)U +4W°3 +4BV* = 0. (34)
Balancingv V" with V4 in Eq.(34) yieldsN = 1. Thus, we have the following series expansion

V(&) =ap+asexp(—p(&)).

Substitutingv and its necessary derivatives in®4) and equating all the coefficients of dxpp(&) to zero, we obtain a
highly complicated system of algebraic equations:
12yagal + 24Ba3a; + 2bas u — 4bk%a; + 4awk a3 + 6bagasA — 4was — 2avau + bagA % — 6avagaA —avégA? = 0,
4baga; + 4batA — davapa + 4ya; — daval + 16Bapas = 0,
3bas — 3avé +4Ba7 = 0,
2bagaiA 2 4 8awk apa; — 8wapay + 4bagar i + 16Baga; — 8bk2agay — 2avaparA 2 + 12yada; — davapagu = O,

dawk a3+ dyal+ avag u? — 4ok ?a — 4wag — 2avapar A + 4Bag+ 2bagaiuA —baZu? = 0.

Solving this system with the help of Maple, we reach to théofeing coefficient results through EqJ):

Result 1:
1 1
ag = 5)\ +§\/)\274u a
. —3b
- a2(4a2k2 —8ak +a2A2 —da2u +4)’
4b
y

" a(da’k?—8ak +alA2—4@2u+4)
b(—4k?+ A2 — 4u+4k3a+akA? — 4ak 1)

= . 35
W 422k2 — BaK + a2A2 — da2j1 1 4 (35)
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Then, the solutions of EBR) corresponding to35) are given by

1
5

ql(X,t) — a0+ alef(p(é) e'(*K%JrW%‘Fe) (36)

where@(&) holds Eq.2.2) andw is fixed in Eq.B5).

Result 2:
1 1
ag = <§/\ - E\//\24u> a1
5 —3b
- a%(4a’k2—8ak +a2A2 —4a2u +4)’
—4b
4

~ ay(4a%k2 — Bak + a2A% — 422 + 4)’
W= b(—4k2+ A2 — 4 + 4k3a+ ak A2 — dak ) (37)
N 4a%Kk? — 8Bak +a’A2 —4a’u + 4 '

Again, the solutions of Eq3Q) corresponding to37) are given by

NI

R(x,t) = |ag+ age 9% (K5 il 16)

where@(&) holds Eq.2.2) andw is fixed in Eq.B7).

@ (b)

Fig. 2: The real and imaginary part of wave profile (multi-solitompk) of Eq.86) whena=b=c=a; =1,k = %,Cl =

O,W:%aa:%’ezlaA =2,u=0.

Dual Power-law Nonlinearity

Dual-power law nonlinearity is used to explain the satoratf the nonlinear refractive index. Moreover, this lavwssr
as a basic model to describe the solitons in photovoltaatgyefractive materials such as LiNbO37]. The form of
functionF (s) in this case i (s) = ys" + Bs?" wherey and3 are constants. Therefore, Et) takes the form

iD{q+aD{DYq+bDIDIq+c(y|g ™+ B|d*")g =0
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and Eq.(2) converts to
(b—av)u” — (w—awk + bk?)U + 214 gyl — o, (38)

In order to use the balancing procedure, we need to make Hatzah— V7 so that Eq.88) transforms to
(b—av)(2nVV" + (1— 2n)V'2) — 4nV2(w — awk + bk2)U + 4yn?V3 + 4Bn2Vv4 = 0. (39)
Balancingv V" with V4 in Eq.(39) yieldsN = 1. Thus, we have the following series expansion
V(&) =ao+arexp(—@(&)).

Substitutingv and its necessary derivatives in89f and equating all the coefficients of éxpp()) to zero, we obtain a
tedious the system of algebraic equations. Solving thiseayswith the help of Maple, we reach to the following
coefficient results through EQ.]):

Result 1:
A A2—4u
R

B —b(2n+1)
a2 (4n2a2k2 — 8n2ak — 4a2U + a2 2 4 4n2)’

% <«/)\24;.1n/\ +2n <%+—”224“)>
ay (4n2a2k2 — 8n?ak —4a2u +a2A2 +4n2) ’

b (4nak3 — 4n%k?+ A2 — dapk — 411+ aA %K)
4n2a2k?2 — 8n%aK — 4a2u + acA2 +4n?

y:

W=

Then, the solutions of EBQ) corresponding to40) are given by

Qu(x.t) = [ao+ ale*“’(f)}%é“"%w%”) (40)
where@(&) holds Eq. 2.2) andw is fixed in Eq.40).
Result 2:
a = % - #al, (41)

- _b(2n+1)
&2 (4n2a2k2 — 8n2ak — 4a2 + a2A2 4 4n2)’

A AZ-ap
zb(_m_m +2n(7— VA ))
a; (4n%a2k?2 — 8n2ak — 4a2l + a2A 2 + 4n?)

b (4n%ak®— 4n?k2+ A2 — dauk — 4p +ar %K)
4n2a2k2 — 8n%aK — 4a2u +acA2 +4n?

y:

)

Then, the solutions of EBQ) corresponding to41) are given by

1

Go(x,t) = [ao+ ale*fP(f)} (K twg o) (42)

where@(¢) holds Eq.2.2) andw is fixed in Eq.41).

(© 2018 BISKA Bilisim Technology



NTMSCI 6, No. 3, 116-127 (2018)www.ntmsci.com BISKKA 12

@ (b)

Fig. 3: The real and imaginary part of wave profile (kink shape) of{#g.whena=b=c=a;=1n=1k = %,Cl =

ow=32a=306=0A=3pu=2.

4 Concluding remarks

In this paper, we secured optical soliton solutions coimigikink and multi-soliton shapes ( for instance, E@6)( (36)

and @0)) of space-time fractional NLSE with spatio-temporal disgion. The model is examined in Kerr, parabolic and
dual-power law cases separately. To best of our knowledgphlsical model is examined for the first time in the form
of conformal fractional derivative. Thexp(—@(&)) scheme was systematically used for revealing the soluétsaf the
under considered model. We note that due to the the balapadssjbility we could use the series expansion. We shall
focus the model equation together with the perturbatiomsan the forthcoming works. The presented approach enables
us to derive in a direct manner optical soliton solutiongtifier conformable fractional differential equations.
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