Some properties of semi-tensor bundle

Murat Polat* and Nejmi Cengiz
Department of Mathematics, Faculty of Science, Atatürk University, Erzurum, Turkey

Received: 19 January 2018, Accepted: 10 June 2018
Published online: 10 August 2018.

Abstract

Using the fiber bundle M over a manifold B, we define a semi-tensor (pull-back) bundle $t B$ of type (p, q). The present paper is devoted to some results concerning with the vertical and complete lifts of some tensor fields from manifold B to its semi-tensor bundle $t B$ of type (p, q).

Keywords: Vector field, complete lift, pull-back bundle, semi-tensor bundle.

1 Introduction

Let M_{n} be an n-dimensional differentiable manifold of class C^{∞} and $\pi_{1}: M_{n} \rightarrow B_{m}$ the differentiable bundle determined by a submersion π_{1}. Suppose that $\left(x^{i}\right)=\left(x^{a}, x^{\alpha}\right), a, b, \ldots=1, \ldots, n-m ; \alpha, \beta, \ldots=n-m+1, \ldots, n ; i, j, \ldots=1,2, \ldots, n$ is a system of local coordinates adapted to the bundle $\pi_{1}: M_{n} \rightarrow B_{m}$, where x^{α} are coordinates in B_{m}, and x^{a} are fiber coordinates of the bundle $\pi_{1}: M_{n} \rightarrow B_{m}$. If $\left(x^{i^{\prime}}\right)=\left(x^{a^{\prime}}, x^{\alpha^{\prime}}\right)$ is another system of local adapted coordinates in the bundle, then we have [14]

$$
\left\{\begin{array}{l}
x^{a^{\prime}}=x^{a^{\prime}}\left(x^{b}, x^{\beta}\right) \tag{1}\\
x^{\alpha^{\prime}}=x^{\alpha^{\prime}}\left(x^{\beta}\right)
\end{array}\right.
$$

The Jacobian of (1) has components

$$
\left(A_{j}^{i^{\prime}}\right)=\left(\frac{\partial x^{i^{\prime}}}{\partial x^{j}}\right)=\left(\begin{array}{cc}
A_{b}^{a^{\prime}} & A_{\beta}^{a^{\prime}} \\
0 & A_{\beta}^{\alpha^{\prime}}
\end{array}\right)
$$

where

$$
A_{\beta}^{\alpha^{\prime}}=\frac{\partial x^{\alpha^{\prime}}}{\partial x^{\beta}}
$$

Let $\left(T_{q}^{p}\right)_{x}\left(B_{m}\right)\left(x=\pi_{1}(\tilde{x}), \tilde{x}=\left(x^{a}, x^{\alpha}\right) \in M_{n}\right)$ be the tensor space at a point $x \in B_{m}$ with local coordinates $\left(x^{1}, \ldots, x^{m}\right)$, we have the holonomous frame field

$$
\partial_{x_{1}} \otimes \partial_{x^{i_{2}}} \otimes \ldots \otimes \partial_{x^{i_{p}}} \otimes d x^{j_{1}} \otimes d x^{j_{2}} \otimes \ldots \otimes d x^{j_{q}}
$$

for $i \in\{1, \ldots, m\}^{p}, j \in\{1, \ldots, m\}^{q}$, over $U \subset B_{m}$ of this tensor bundle, and for any (p, q)-tensor field t we have [[4], p.163]:

$$
t \mid U=t_{j_{1} \ldots j_{q}}^{i_{1} \ldots i_{p}} \partial_{x_{1}} \otimes \partial_{x^{i_{2}}} \otimes \ldots \otimes \partial_{x_{p}} \otimes d x^{j_{1}} \otimes d x^{j_{2}} \otimes \ldots \otimes d x^{j_{q}}
$$

then by definition the set of all points $\left(x^{I}\right)=\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right), x^{\bar{\alpha}}=t_{j_{1} \ldots i_{q}}^{i_{1} \ldots i_{p}}, \bar{\alpha}=\alpha+m^{p+q}, I, J, \ldots=1, \ldots, n+m^{p+q}$ is a semi-tensor bundle $t_{q}^{p}\left(B_{m}\right)$ over the manifold M_{n} [14]. The semi-tensor bundle $t_{q}^{p}\left(B_{m}\right)$ has the natural bundle structure over B_{m}, its

[^0]bundle projection $\pi: t_{q}^{p}\left(B_{m}\right) \rightarrow B_{m}$ being defined by $\pi:\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right) \rightarrow\left(x^{\alpha}\right)$. If we introduce a mapping $\pi_{2}: t_{q}^{p}\left(B_{m}\right) \rightarrow M_{n}$ by $\pi_{2}:\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right) \rightarrow\left(x^{a}, x^{\alpha}\right)$, then $t_{q}^{p}\left(B_{m}\right)$ has a bundle structure over M_{n}. It is easily verified that $\pi=\pi_{1} \circ \pi_{2}$ [14].
On the other hand, let $\varepsilon=\pi: E \rightarrow B$ denote a fiber bundle with fiber F. Given a manifold B^{\prime} and a map $f: B^{\prime} \rightarrow B$, one can construct in a natural way a bundle over B^{\prime} with the same fiber: Consider the subset
$$
f^{*} E=\left\{\left(b^{\prime}, e\right) \in B^{\prime} \times E \mid f\left(b^{\prime}\right)=\pi(e)\right\}
$$
together with the subspace topology from $B^{\prime} \times E$, and denote by $\pi_{1}: f^{*} E \rightarrow B^{\prime}, \pi_{2}: f^{*} E \rightarrow E$ the projections. $f^{*} \varepsilon=\pi_{1}$: $f^{*} E \rightarrow B^{\prime}$ is a fiber bundle with fiber F, called the pull-back bundle of ε via f [[3], [5], [8], [10], [14]].
From the above definition it follows that the semi-tensor bundle $\left(t_{q}^{p}\left(B_{m}\right), \pi_{2}\right)$ is a pull-back bundle of the tensor bundle over B_{m} by π_{1} (see, for example [12], [14]).
In other words, the semi-tensor bundle (induced or pull-back bundle) of the tensor bundle $\left(T_{q}^{p}\left(B_{m}\right), \tilde{\pi}, B_{m}\right)$ is the bundle $\left(t_{q}^{p}\left(B_{m}\right), \pi_{2}, M_{n}\right)$ over M_{n} with a total $t_{q}^{p}\left(B_{m}\right)=\left\{\left(\left(x^{a}, x^{\alpha}\right), x^{\bar{\alpha}}\right) \in M_{n} \times\left(T_{q}^{p}\right)_{x}\left(B_{m}\right): \pi_{1}\left(x^{a}, x^{\alpha}\right)=\tilde{\pi}\left(x^{\alpha}, x^{\bar{\alpha}}\right)=\left(x^{\alpha}\right)\right\} \subset M_{n} \times\left(T_{q}^{p}\right)_{x}\left(B_{m}\right)$.To a transformation (1) of local coordinates of M_{n}, there corresponds on $t_{q}^{p}\left(B_{m}\right)$ the coordinate transformation
\[

\left\{$$
\begin{array}{l}
x^{a^{\prime}}=x^{a^{\prime}}\left(x^{b}, x^{\beta}\right), \tag{2}\\
x^{\alpha^{\prime}}=x^{\alpha^{\alpha^{\prime}}}\left(x^{\beta}\right), \\
x^{\bar{\alpha}^{\prime}}=t_{\alpha_{1}^{\prime} \ldots \alpha_{q}^{\prime}}^{\beta_{1}^{\prime} \ldots \beta_{p}^{\prime}}=A_{\alpha_{1} \ldots \alpha_{p}}^{\beta_{1}^{\prime} \ldots \beta_{p}^{\prime}} A_{\alpha_{1}^{\prime} \ldots \alpha_{q}^{\prime}}^{\beta_{1} \ldots \beta_{q}}{\underset{\beta}{1} \ldots \beta_{q}}_{\alpha_{1} \ldots \alpha_{p}}^{\alpha_{2}}=A_{(\alpha)}^{\left(\beta^{\prime}\right)} A_{\left(\alpha^{\prime}\right)}^{(\beta)} x^{\bar{\beta}}
\end{array}
$$\right.
\]

The Jacobian of (2) is given by [14]:

$$
\bar{A}=\left(A_{J}^{I^{\prime}}\right)=\left(\begin{array}{ccc}
A_{b}^{a_{b}^{\prime}} & 0 & 0 \tag{3}\\
0 & A_{\beta}^{\alpha^{\prime}} & 0 \\
0 & t_{(\sigma)}^{(\alpha)} \partial_{\beta} A_{(\alpha)}^{\left(\beta^{\prime}\right)} A_{\left(\alpha^{\prime}\right)}^{(\sigma)} A_{(\alpha)}^{\left(\beta^{\prime}\right)} A_{\left(\alpha^{\prime}\right)}^{(\beta)}
\end{array}\right)
$$

where $I=(a, \alpha, \bar{\alpha}), J=(b, \beta, \bar{\beta}), I, J \ldots=1, \ldots, n+m^{p+q}, t_{(\sigma)}^{(\alpha)}=t_{\sigma_{1} \ldots \sigma_{q}}^{\alpha_{1} \ldots \alpha_{p}}, A_{\beta}^{\alpha^{\prime}}=\frac{\partial x^{\alpha^{\prime}}}{\partial x^{\beta}}$.
It is easily verified that the condition $\operatorname{Det} \bar{A} \neq 0$ is equivalent to the condition:

$$
\operatorname{Det}\left(A_{b}^{a^{\prime}}\right) \neq 0, \operatorname{Det}\left(A_{\beta}^{\alpha^{\prime}}\right) \neq 0, \operatorname{Det}\left(A_{(\alpha)}^{\left(\beta^{\prime}\right)} A_{\left(\alpha^{\prime}\right)}^{(\beta)}\right) \neq 0
$$

Also, $\operatorname{dim} t_{q}^{p}\left(B_{m}\right)=n+m^{p+q}$. In the special case $n=m, t_{q}^{p}\left(B_{m}\right)$ is a tensor bundle $T_{q}^{p}\left(B_{m}\right)$ [[6], p.118]. In the special case, the semi-tensor bundles $t_{0}^{1}\left(B_{m}\right)(p=1, q=0)$ and $t_{1}^{0}\left(B_{m}\right)(p=0, q=1)$ are semi-tangent and semi-cotangent bundles, respectively. We note that semi-tangent and semi-cotangent bundle were examined in [[1], [7], [9]] and [[11], [13], [15], [16]], respectively. Also, Fattaev studied the special class of semi-tensor bundle [2]. We denote by $\mathfrak{I}_{q}^{p}\left(t_{q}^{p}\left(B_{m}\right)\right)$ and $\mathfrak{I}_{q}^{p}\left(B_{m}\right)$ the modules over $F\left(t_{q}^{p}\left(B_{m}\right)\right)$ and $F\left(B_{m}\right)$ of all tensor fields of type (p, q) on $t_{q}^{p}\left(B_{m}\right)$ and B_{m} respectively, where $F\left(t_{q}^{p}\left(B_{m}\right)\right)$ and $F\left(B_{m}\right)$ denote the rings of real-valued C^{∞}-functions on $t_{q}^{p}\left(B_{m}\right)$ and B_{m}, respectively.

2 Some lifts of tensor fields and γ-operator

Let $\widetilde{X} \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$ be a projectable vector field [9] with projection $X=X^{\alpha}\left(x^{\alpha}\right) \partial_{\alpha}$ i.e. $\widetilde{X}=\widetilde{X}^{a}\left(x^{a}, x^{\alpha}\right) \partial_{a}+X^{\alpha}\left(x^{\alpha}\right) \partial_{\alpha}$. On putting

$$
{ }^{c c} \widetilde{X}=\left(\begin{array}{l}
{ }^{c c} \widetilde{X}^{b} \tag{4}\\
{ }^{c} \widetilde{X}^{\beta} \\
{ }^{c} \widetilde{X}^{\beta}
\end{array}\right)=\left(\begin{array}{l}
\widetilde{X}^{b} \\
\widetilde{X}^{\beta} \\
\sum_{\lambda=1}^{p} t_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}} \partial_{\varepsilon} X^{\beta_{\lambda}}-\sum_{\mu=1}^{q} t_{\beta_{1} \ldots \ldots \beta_{q} \ldots \beta_{q}}^{\alpha_{1}} \partial_{\beta_{\mu}} X^{\varepsilon}
\end{array}\right),
$$

we easily see that ${ }^{c c} \widetilde{X}^{\prime}=\bar{A}\left({ }^{c c} \widetilde{X}\right)$. The vector field ${ }^{c c} \widetilde{X}$ is called the complete lift of \widetilde{X} to the semi-tensor bundle $t_{q}^{p}\left(B_{m}\right)$ [14].

Now, consider $A \in \mathfrak{I}_{q}^{p}\left(B_{m}\right)$ and $\varphi \in \mathfrak{I}_{1}^{1}\left(B_{m}\right)$, then ${ }^{v v} A \in \mathfrak{I}_{0}^{1}\left(t_{q}^{p}\left(B_{m}\right)\right)$ (vertical lift), $\gamma \varphi \in \mathfrak{I}_{0}^{1}\left(t_{q}^{p}\left(B_{m}\right)\right)$ and $\widetilde{\gamma} \varphi \in \mathfrak{I}_{0}^{1}\left(t_{q}^{p}\left(B_{m}\right)\right)$ have respectively, components on the semi-tensor bundle $t_{q}^{p}\left(B_{m}\right)$ [14]

$$
{ }^{v v} A=\left(\begin{array}{l}
0 \tag{5}\\
0 \\
A_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}}
\end{array}\right), \gamma \varphi=\left(\begin{array}{l}
0 \\
0 \\
\sum_{\lambda=1}^{p} t_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}} \varphi_{\varepsilon}^{\alpha_{\lambda}}
\end{array}\right), \widetilde{\gamma} \varphi=\left(\begin{array}{l}
0 \\
0 \\
\sum_{\mu=1}^{q} t_{\beta_{1} \ldots \varepsilon \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}} \varphi_{\beta_{\mu}}^{\varepsilon}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$ on $t_{q}^{p}\left(B_{m}\right)$, where $A_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}}, \varphi_{\varepsilon}^{\alpha_{\lambda}}$ and $\varphi_{\beta_{\mu}}^{\varepsilon}$ are local components of A and φ.
On the other hand, ${ }^{v v} f$ the vertical lift of function $f \in \mathfrak{I}_{0}^{0}\left(B_{m}\right)$ on $t_{q}^{p}\left(B_{m}\right)$ is defined by [14]:

$$
\begin{equation*}
{ }^{v v} f={ }^{v} f \circ \pi_{2}=f \circ \pi_{1} \circ \pi_{2}=f \circ \pi . \tag{6}
\end{equation*}
$$

Theorem 1. For any vector fields $\widetilde{X}, \widetilde{Y}$ on M_{n} and $f \in \mathfrak{I}_{0}^{0}\left(B_{m}\right)$, we have
(i) ${ }^{c c}(\widetilde{X}+\widetilde{Y})={ }^{c c} \widetilde{X}+{ }^{c c} \widetilde{Y}$,
(ii) ${ }^{c c} \widetilde{X}^{v v} f={ }^{v v}(X f)$.

Proof. (i) This immediately follows from (4).
(ii) Let $\widetilde{X} \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$. Then we get by (4) and (6):

$$
{ }^{c c} \widetilde{X}^{v v} f={ }^{c c} \widetilde{X}^{I} \partial_{I}\left({ }^{(v v} f\right)={ }^{c c} \widetilde{X}^{a} \underbrace{\partial_{a}\left({ }^{v v} f\right)}_{0}+{ }^{c c} \widetilde{X}^{\alpha} \partial_{\alpha}\left({ }^{v v} f\right)+{ }^{c c} \widetilde{X}^{\bar{\alpha}} \underbrace{\partial_{\bar{\alpha}}\left({ }^{v v} f\right)}_{0}=X^{\alpha} \partial_{\alpha}\left({ }^{v v} f\right)={ }^{v v}(X f),
$$

which gives (ii) of Theorem 1.
Theorem 2. If $\varphi \in \mathfrak{I}_{1}^{1}\left(B_{m}\right)$, $f \in \mathfrak{I}_{0}^{0}\left(B_{m}\right)$ and $A \in \mathfrak{I}_{q}^{p}\left(B_{m}\right)$, then
(i) $\left({ }^{v v} A\right)^{v v} f=0$,
(ii) $(\gamma \varphi)\left({ }^{v v} f\right)=0$,
(iii) $(\widetilde{\gamma} \varphi)\left({ }^{v v} f\right)=0$.

Proof. (i) If $A \in \mathfrak{I}_{q}^{p}\left(B_{m}\right)$, then, by (5) and (6), we find

$$
\left({ }^{v v} A\right)^{v v} f=\left({ }^{v v} A\right)^{I} \partial_{I}\left({ }^{v v} f\right)=\left({ }^{v v} A\right)^{a} \underbrace{\partial_{a}\left({ }^{v v} f\right)}_{0}+\underbrace{\left({ }^{v v} A\right)^{\alpha}}_{0} \partial_{\alpha}\left({ }^{v v} f\right)+\left({ }^{v v} A\right)^{\bar{\alpha}} \underbrace{\partial_{\bar{\alpha}}\left({ }^{v v} f\right)}_{0}=0 .
$$

Thus, we have (i) of Theorem 2.
(ii) If $\varphi \in \mathfrak{J}_{1}^{1}\left(B_{m}\right)$, then we have by (5) and (6):

$$
(\gamma \varphi)\left({ }^{v v} f\right)=(\gamma \varphi)^{I} \partial_{I}\left({ }^{v v} f\right)=(\gamma \varphi)^{a} \underbrace{\partial_{a}\left({ }^{v v} f\right)}_{0}+\underbrace{(\gamma \varphi)^{\alpha}}_{0} \partial_{\alpha}\left({ }^{v v} f\right)+(\gamma \varphi)^{\bar{\alpha}} \underbrace{\partial_{\bar{\alpha}}\left({ }^{v v} f\right)}_{0}=0 .
$$

Thus, we have (ii) of Theorem 2.
(iii) If $\varphi \in \mathfrak{I}_{1}^{1}\left(B_{m}\right)$, then we have by (5) and (6):

$$
(\widetilde{\gamma} \varphi)\left({ }^{v v} f\right)=(\widetilde{\gamma} \varphi)^{I} \partial_{I}\left({ }^{v v} f\right)=(\widetilde{\gamma} \varphi)^{a} \underbrace{\partial_{a}\left({ }^{(v v} f\right)}_{0}+\underbrace{(\widetilde{\gamma} \varphi)^{\alpha}}_{0} \partial_{\alpha}\left({ }^{v v} f\right)+(\widetilde{\gamma} \varphi)^{\bar{\alpha}} \underbrace{\partial_{\bar{\alpha}}\left({ }^{v v} f\right)}_{0}=0 .
$$

Thus, we have (iii) of Theorem 2.

Theorem 3. Let $A, B \in \mathfrak{I}_{q}^{p}\left(B_{m}\right)$. For the Lie product, we have

$$
\left[{ }^{\nu v} A,{ }^{\nu v} B\right]=0 .
$$

Proof. If $A, B \in \mathfrak{I}_{q}^{p}\left(B_{m}\right)$ and $\left(\begin{array}{c}{\left[{ }^{v v} A,{ }^{v v} B\right]^{b}} \\ {\left[{ }^{v v} A,{ }^{v v} B\right]^{\beta}} \\ {\left[{ }^{v v} A,{ }^{v \nu} B\right]^{\bar{\beta}}}\end{array}\right)$ are components of $\left[{ }^{[v} A,{ }^{v v} B\right]^{J}$ with respect to the coordinates $\left(x^{b}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t_{q}^{p}\left(B_{m}\right)$, then we have

$$
\begin{aligned}
\left.{ }^{[v v} A,{ }^{v v} B\right]^{J} & =\left({ }^{(v v} A\right)^{I} \partial_{I}\left({ }^{v v} B\right)^{J}-\left({ }^{(v v} B\right)^{I} \partial_{I}\left({ }^{(v v} A\right)^{J} \\
& =\underbrace{\left({ }^{v v} A\right)^{a}}_{0} \partial_{a}\left({ }^{(v v} B\right)^{J}+\underbrace{\left({ }^{v v} A\right)^{\alpha}}_{0} \partial_{\alpha}\left({ }^{v v} B\right)^{J}+\left({ }^{v v} A\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{v v} B\right)^{J}-\underbrace{\left({ }^{v v} B\right)^{a}}_{0} \partial_{a}({ }^{\left({ }^{v v} A\right)^{J}-\underbrace{\left({ }^{v v} B\right)^{\alpha}}_{0} \partial_{\alpha}\left({ }^{v v} A\right)^{J}-\left({ }^{v v} B\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{v v} A\right)^{J}} \\
& =A_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}} \partial_{\bar{\alpha}}\left({ }^{v v} B\right)^{J}-B_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}} \partial_{\bar{\alpha}}\left({ }^{v v} A\right)^{J} .
\end{aligned}
$$

Firstly, if $J=b$, we have

$$
\left[{ }^{[v} A,{ }^{v v} B\right]^{b}=A_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}} \partial_{\bar{\alpha}} \underbrace{\left({ }^{v v} B\right)^{b}}_{0}-B_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}} \partial_{\bar{\alpha}} \underbrace{\left.{ }^{(v v} A\right)^{b}}_{0}=0
$$

by virtue of (5). Secondly, if $J=\beta$, we have

$$
\left[{ }^{{ }^{v}} A,{ }^{v v} B\right]^{\beta}=A_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}} \partial_{\bar{\alpha}} \underbrace{\left({ }^{v v} B\right)^{\beta}}_{0}-B_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}} \partial_{\bar{\alpha}} \underbrace{\left.{ }^{v v} A\right)^{\beta}}_{0}=0
$$

by virtue of (5). Thirdly, if $J=\bar{\beta}$, then we have

$$
\left[{ }^{[v} A,{ }^{v v} B\right]^{\bar{\beta}}=A_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}} \partial_{\bar{\alpha}}\left({ }^{v v} B\right)^{\bar{\beta}}-B_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}} \partial_{\bar{\alpha}}\left({ }^{v v} A\right)^{\bar{\beta}}=A_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}} \underbrace{\partial_{\bar{\alpha}} B_{\theta_{1} \ldots \theta_{q}}^{\beta_{1} \ldots \beta_{p}}}_{0}-B_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}} \underbrace{\partial_{\bar{\alpha}} A_{\theta_{1} \ldots \theta_{q}}^{\beta_{1} \ldots \beta_{p}}}_{0}=0
$$

by virtue of (5). Thus, we have Theorem 3.

Theorem 4. Let \widetilde{X} and \widetilde{Y} be projectable vector fields on M_{n} with projections X and Y on B_{m}, respectively. For the Lie product, we have

$$
\left[{ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right]={ }^{c c}[\widetilde{X}, \widetilde{Y}]\left(\text { i.e. } L_{c c}^{c c} \widetilde{X}{ }^{c c}\left(L_{\widetilde{X}} \widetilde{Y}\right)\right)
$$

 of $\left[{ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right]^{J}$ with respect to the coordinates $\left(x^{b}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t\left(B_{m}\right)$, then we have

$$
\left[{ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right]^{J}=\left({ }^{c c} \widetilde{X}\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{Y}\right)^{J}-\left({ }^{c c} \widetilde{Y}\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{X}\right)^{J} .
$$

Firstly, if $J=b$, we have

$$
\begin{aligned}
{\left[{ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right]^{b} } & =\left({ }^{c c} \widetilde{X}\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{Y}\right)^{b}-\left({ }^{c c} \widetilde{Y}\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{X}\right)^{b} \\
& =\left({ }^{c c} \widetilde{X}\right)^{a} \underbrace{\partial_{0}\left({ }^{c c} \widetilde{Y}\right)^{b}}_{0}+\left({ }^{c c} \widetilde{X}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{Y}\right)^{b}+\left({ }^{c c} \widetilde{X}\right)^{\bar{\alpha}} \underbrace{\partial_{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{b}}_{0}-\left({ }^{c c} \widetilde{Y}\right)^{a} \underbrace{\partial_{a}\left({ }^{c c} \widetilde{X}\right)^{b}}_{0}-\left({ }^{c c} \widetilde{Y}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{X}\right)^{b}-\left({ }^{c c} \widetilde{Y}\right)^{\bar{\alpha}} \underbrace{\partial_{\bar{\alpha}}\left({ }^{c c} \widetilde{X}\right)^{b}}_{0} \\
& =\left({ }^{c c} X\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} Y\right)^{b}-\left({ }^{c c} Y\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} X\right)^{b} \\
& =X^{\alpha} \partial_{\alpha} \widetilde{Y}{ }^{b}-Y^{\alpha} \partial_{\alpha} \widetilde{X}^{b} \\
& =\widetilde{[X, Y]} b
\end{aligned}
$$

by virtue of (4). Secondly, if $J=\beta$, we have

$$
\begin{aligned}
{\left[{ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right]^{\beta} } & =\left({ }^{c c} \widetilde{X}\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{Y}\right)^{\beta}-\left({ }^{c c} \widetilde{Y}\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{X}\right)^{\beta} \\
& =\left({ }^{c c} \widetilde{X}\right)^{a} \underbrace{\partial_{a}\left({ }^{c c} \widetilde{Y}\right)^{\beta}}_{0}+\left({ }^{c c} \widetilde{X}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{Y}\right)^{\beta}+\left({ }^{c c} \widetilde{X}\right)^{\bar{\alpha}} \underbrace{\partial_{\bar{\alpha}\left({ }^{c c} \widetilde{Y}\right)^{\beta}}^{\beta}}_{0}-\left({ }^{c c} \widetilde{Y}\right)^{a} \underbrace{\partial_{a}\left({ }^{c c} \widetilde{X}\right)^{\beta}}_{0}-\left({ }^{c c} \widetilde{Y}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{X}\right)^{\beta}-\left({ }^{c c} \widetilde{Y}\right)^{\bar{\alpha}} \underbrace{\partial_{\bar{\alpha}\left({ }^{c c} \widetilde{X}\right)^{\beta}}}_{0} \\
& =\left({ }^{c c} \widetilde{X}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{Y}\right)^{\beta}-\left({ }^{c c} \widetilde{Y}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{X}\right)^{\beta} \\
& =X^{\alpha} \partial_{\alpha} Y^{\beta}-Y^{\alpha} \partial_{\alpha} X^{\beta} \\
& =[X, Y]^{\beta}
\end{aligned}
$$

by virtue of (4). Thirdly, if $J=\bar{\beta}$, then we have

$$
\begin{aligned}
& {\left[{ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right]^{\bar{\beta}}=\left({ }^{c c} \widetilde{X}\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{Y}\right)^{\bar{\beta}}-\left({ }^{c c} \widetilde{Y}\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{X}\right)^{\bar{\beta}}} \\
& =\left({ }^{c c} \widetilde{X}\right)^{a} \underbrace{\partial_{a}\left({ }^{c c} \widetilde{Y}\right)^{\bar{\beta}}}_{0}+\left({ }^{c c} \widetilde{X}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{Y}\right)^{\bar{\beta}}+\left({ }^{c c} \widetilde{X}\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{\bar{\beta}}-\left({ }^{c c} \widetilde{Y}\right)^{a} \underbrace{\partial_{a}\left({ }^{c c} \widetilde{X}\right)^{\bar{\beta}}}_{0}-\left({ }^{c c} \widetilde{Y}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{X}\right)^{\bar{\beta}}-\left({ }^{c c} \widetilde{Y}\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} \widetilde{X}\right)^{\bar{\beta}} \\
& =X^{\alpha} \partial_{\alpha}\left(\sum_{\lambda=1}^{p} t_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \varepsilon \alpha_{p}} \partial_{\varepsilon} Y^{\beta_{\lambda}}-\sum_{\mu=1}^{q} t_{\beta_{1} \ldots \varepsilon \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}} \partial_{\beta_{\mu}} Y^{\varepsilon}\right) \\
& +\left(\sum_{\lambda=1}^{p} t_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \ldots \alpha_{p}} \partial_{\varepsilon} X^{\alpha_{\lambda}}-\sum_{\mu=1}^{q} t_{\beta_{1} \ldots \gamma \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}} \partial_{\alpha_{\mu}} X^{\gamma}\right) \partial_{\bar{\alpha}}\left(\sum_{\lambda=1}^{p} t_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \sigma \alpha_{p}} \partial_{\sigma} Y^{\beta_{\lambda}}-\sum_{\mu=1}^{q} t_{\beta_{1} \ldots \gamma \beta_{q} \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}} \partial_{\beta_{\mu}} Y^{\gamma}\right) \\
& -Y^{\alpha} \partial_{\alpha}\left(\sum_{\lambda=1}^{p} t_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \varepsilon \ldots \alpha_{p}} \partial_{\varepsilon} X^{\beta_{\lambda}}-\sum_{\mu=1}^{q} t_{\beta_{1} \ldots \alpha_{p} \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{\mu}} \partial_{\beta_{\mu}} X^{\varepsilon}\right) \\
& -\left(\sum_{\lambda=1}^{p} t_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \ldots \alpha_{p}} \partial_{\varepsilon} Y^{\alpha_{\lambda}}-\sum_{\mu=1}^{q} t_{\beta_{1} \ldots \varepsilon \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}} \partial_{\beta_{\mu}} Y^{\varepsilon}\right) \partial_{\bar{\alpha}}\left(\sum_{\lambda=1}^{p} t_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \sigma \ldots \alpha_{p}} \partial_{\sigma} X^{\beta_{\lambda}}-\sum_{\mu=1}^{q} t_{\beta_{1} \ldots \gamma \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}} \partial_{\beta_{\mu}} X^{\gamma}\right) \\
& =X^{\alpha} \partial_{\alpha}\left(\sum_{\lambda=1}^{p} t_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \varepsilon \alpha_{p}} \partial_{\varepsilon} Y^{\beta_{\lambda}}\right)-X^{\alpha} \partial_{\alpha} \sum_{\mu=1}^{q} t_{\beta_{1} \ldots \varepsilon \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}}\left(\partial_{\beta_{\mu}} Y^{\varepsilon}\right) \\
& +\sum_{\lambda=1}^{p} t_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \varepsilon \beta_{p}} \partial_{\varepsilon} X^{\alpha_{\lambda}} \underbrace{\partial_{\bar{\alpha}} \sum_{\lambda=1}^{p} t_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \sigma \beta_{p}}}_{\delta_{\alpha_{\lambda}}^{\sigma}} \partial_{\sigma} Y^{\beta_{\lambda}}-Y^{\alpha} \partial_{\alpha}\left(\sum_{\lambda=1}^{p} t_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \varepsilon \beta_{p}} \partial_{\varepsilon} X^{\beta_{\lambda}}\right)+Y^{\alpha} \partial_{\alpha} \sum_{\mu=1}^{q} t_{\beta_{1} \ldots \varepsilon \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}}\left(\partial_{\beta_{\mu}} X^{\varepsilon}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{\sum_{\mu=1}^{q} t_{\beta_{1} \ldots \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}} \partial_{\alpha_{\mu}} Y^{\varepsilon} \underbrace{\beta_{\beta_{\mu}}}_{\delta_{\bar{\alpha}}^{\alpha} \sum_{\mu=1}^{q} t_{\beta_{1} \ldots \gamma . \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}}} \partial_{\beta_{\mu}}^{\gamma}}_{\sum_{\mu=1}^{q} 1_{\beta_{1} \ldots \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}} \partial_{\alpha_{\mu}} Y^{\varepsilon}\left(\partial_{\beta_{\mu}} X^{\alpha}\right)} \\
& =\sum_{\lambda=1}^{p} t_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}}\left(\partial_{\varepsilon} X^{\sigma}\right)\left(\partial_{\sigma} Y^{\beta_{\lambda}}\right)+\sum_{\lambda=1}^{p} t_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \ldots \alpha_{p}} X^{\alpha} \partial_{\alpha} \partial_{\varepsilon} Y^{\beta_{\lambda}}-\sum_{\lambda=1}^{p} t_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \varepsilon \alpha_{p}}\left(\partial_{\varepsilon} Y^{\sigma}\right)\left(\partial_{\sigma} X^{\beta_{\lambda}}\right) \\
& -\sum_{\lambda=1}^{p} t_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \beta_{q}} Y^{\alpha} \partial_{\alpha} \partial_{\varepsilon} X^{\beta_{\lambda}} \underbrace{\sum_{\mu=1}^{q} \underbrace{\alpha_{1} \ldots \alpha_{p}}_{\beta_{1} \ldots \ldots, \ldots \beta_{q}}\left(-X^{\alpha} \partial_{\alpha_{\alpha_{\mu}}} Y^{\varepsilon}-Y_{\alpha_{\alpha}}^{\alpha} \partial_{\alpha_{\mu}} X^{\varepsilon}\right)}_{-\sum_{\mu=1}^{q} t_{\beta_{1}, \ldots \ldots \ldots \mathcal{F}_{q}}^{\alpha_{1} \ldots \alpha_{p}}\left(\partial_{\beta_{\mu}}\right.}) \\
& =\sum_{\lambda=1}^{p} t_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \ldots \alpha_{p}} \partial_{\varepsilon}[X, Y]^{\beta_{\lambda}}-\sum_{\mu=1}^{q} t_{\beta_{1} \ldots \ldots, \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}}\left(\partial_{\beta_{\mu}}[X, Y]^{\varepsilon}\right)
\end{aligned}
$$

by virtue of (4). On the other hand, we know that ${ }^{c c} \widetilde{X X, Y]}$ have components

$$
{ }^{c c} \widetilde{[X, Y]}=\left(\begin{array}{l}
\widetilde{[X, Y]}{ }^{b} \\
{[X, Y]^{\beta}} \\
\sum_{\lambda=1}^{p} t_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \ldots \alpha_{p}} \partial_{\varepsilon}[X, Y]^{\beta_{\lambda}}-\sum_{\mu=1}^{q} t_{\beta_{1} \ldots \varepsilon \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{q}} \partial_{\beta_{\mu}}[X, Y]^{\varepsilon}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{b}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t_{q}^{p}\left(B_{m}\right)$. Thus Theorem 4 is proved.

3 Acknowledgment

The authors would like to thanks the referees for useful and improving comments.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

References

[1] T.V. Duc, Structure presque-transverse. J. Diff. Geom., 14 (1979), no. 2, 215-219.
[2] H. Fattaev, The Lifts of Vector Fields to the Semitensor Bundle of the Type (2, 0), Journal of Qafqaz University, 25 (2009), no. 1, 136-140.
[3] D. Husemoller, Fibre Bundles. Springer, New York, 1994.
[4] V. Ivancevic and T. Ivancevic, Applied Differential Geometry, A Modern Introduction, World Scientific, Singapore, 2007.
[5] H.B. Lawson and M.L. Michelsohn, Spin Geometry. Princeton University Press., Princeton, 1989.
[6] A. Salimov, Tensor Operators and their Applications. Nova Science Publ., New York, 2013.

[8] N. Steenrod, The Topology of Fibre Bundles. Princeton University Press., Princeton, 1951.
[9] V. V. Vishnevskii, Integrable affinor structures and their plural interpretations. Geometry, 7.J. Math. Sci. (New York) 108 (2002), no. 2, 151-187.
[10] G. Walschap, Metric Structures in Differential Geometry, Graduate Texts in Mathematics, Springer-Verlag, New York, 2004.
[11] F. Yıldırım, On a special class of semi-cotangent bundle, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 41 (2015), no. 1, 25-38.
[12] F. Yıldırım, A pull-Back bundle of tensor bundles defined by projection of the tangent bundle, Ordu University Journal of Science and Technology, 7 (2017), no. 2, 353-366.
[13] F. Yıldırım, Complete lift of a tensor field of type (1,2) to semi-cotangent bundle, New Trends in Mathematical Sciences, 5 (2017), no. 4, 261-270.
[14] F. Yıldırım, Note on the cross-section in the semi-tensor bundle, New Trends in Mathematical Sciences, 5 (2017), no. 2, 212-221.
[15] F. Yildirim, M.B. Asl, F. Jabrailzade, Vector and affinor fields on cross-sections in the semi-cotangent bundle, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 43 (2017), no. 2, 305-315.
[16] F. Yıldırım and A. Salimov, Semi-cotangent bundle and problems of lifts. Turk J Math, 38 (2014), no.2, 325-339.

[^0]: * Corresponding author e-mail: murat_sel_22@hotmail.com

