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1 Introduction

In this study, we establish some new inequalities for functions whosenth derivatives in absolute value are

m-logarithmically-convex. The theory of convex analysis has emerged as one of the most interesting and useful field of

mathematics and the other sciences in last few decades. For some inequalities, generalizations and applications

concerning convexity see [7,9-11,13,17,18]. Recently, inthe literature there are so many papers aboutn-times

differentiable functions on several kinds of convexities.In references [3,6,8,14-16,19,25], readers can find some results

about this issue. Logarithmically convex (log-convex) functions are of interest in many areas of mathematics and the

other science. They have been found to play an important rolein the theory of special functions and mathematical

statistics (see, e.g., [5], [23]). Many papers have been written by a number of mathematicians concerning inequalitiesfor

different classes of logarithmically-convex functions see for instance the recent papers [1,2,8,20-22,24] and the

references within these papers.

Definition 1. A function f : I ⊆ R→ R is said to be convex if the inequality

f (tx+(1− t)y)≤ t f (x)+ (1− t) f (y)

is valid for all x,y∈ I and t∈ [0,1]. If this inequality reverses, then f is said to be concave on interval I 6= /0. This definition

is well known in the literature.

Definition 2. A positive function f is called logarithmically-convex on areal interval I= [a,b], if for all x,y∈ [a,b] and

t ∈ [0,1],

f (tx+(1− t)y)≤ [ f (x)]t [ f (y)]1−t
.

If f is a positive logarithmically-concave function, then the inequality is reversed.

Equivalently, a functionf is logarithmically-convex onI if f is positive and logf is convex onI . Also, if f > 0 and f ′′

exists on I, thenf is logarithmically-convex if and only iff f
′′
− ( f ′)2 ≥ 0. Let 0< a < b. We will use the following

notations throughout this paper.
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(i) Arithmetic Mean:

A(a,b) =
a+b

2
, ∀a,b∈ R

+

(ii) Logarithmic Mean:

L(a,b) =
b−a

lnb− lna
, ∀a,b∈ R

+
, a 6= b

(iii) Generalized Logarithmic Mean:

Lp(a,b) =

(

bp+1−ap+1

(p+1)(b−a)

)

1
p

, ∀a 6= b, p∈ R, p 6=−1,0

(iv) Exponential Mean:

E (a,b) =
ea−eb

a−b
, a 6= b and E(a,a) = a

Throughout this paper, we will use the following natation for shortness:

µ f = µ f (a,b,m,n,q) =

∣

∣

∣
f (n) (a)

∣

∣

∣

q

∣

∣ f (n)
(

b
m

)∣

∣

qm

where, f : I ⊆ [0,∞)→ (0,∞) ben-times differentiable function onI
◦

anda, b
m ∈ I

◦
with 0≤ a< b< ∞, m∈ (0,1] and

q> 1.

Definition 3. [4] A positive f : [0,b]→ (0,∞) is said to be m-logarithmically-convex if the inequality

f (tx+m(1− t)y)≤ [ f (x)]t [ f (y)]m(1−t)
.

holds for all x,y∈ [a,b], m∈ (0,1] and t∈ [0,1] .

Obviously, if puttingm= 1 in the above definition, thenf is just the ordinary logarithmically convex function on[a,b] .

2 Main results

We will use the following Lemma [19] to obtain our main results.

Lemma 1.Let f : I ⊆ R→ R be n-times differentiable mapping on I
◦

for n∈ N and f(n) ∈ L[a,b], where a,b∈ I
◦

with

a< b, we have the identity

∫ n−1

k=0
(−1)k

(

f (k) (b)bk+1− f (k) (a)ak+1

(k+1)!

)

−

∫ b

a
f (x)dx=

(−1)n+1

n!

∫ b

a
xn f (n) (x)dx.

where an empty sum is understood to be nil.

Theorem 1.For ∀n∈N; let f : I ⊆ [0,∞)→ (0,∞) be n-times differentiable function on I
◦

and a, b
m ∈ I

◦
with 0≤ a< b<∞

and m∈ (0,1]. If f (n) ∈ L[a,b] and
∣

∣

∣
f (n)
∣

∣

∣

q
for q> 1 is m-logarithmically-convex on[a,b], then the following inequality

holds:
∣

∣

∣

∣

∣

∫ n−1

k=0
(−1)k

(

f (k) (b)bk+1− f (k) (a)ak+1

(k+1)!

)

−

∫ b

a
f (x)dx

∣

∣

∣

∣

∣

≤
1
n!

(b−a)Ln
np(a,b)L

1
q

(∣

∣

∣

∣

f (n)
(

b
m

)∣

∣

∣

∣

qm

,

∣

∣

∣
f (n) (a)

∣

∣

∣

q
)

where1
p +

1
q = 1, L and Lp are logarithmic and generalized logarithmic means, respectively.
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Proof.Since
∣

∣

∣
f (n)
∣

∣

∣

q
for q> 1 ism-logarithmically-convex on[a,b], using Lemma 1, the Hölder integral inequality and

∣

∣

∣
f (n)(x)

∣

∣

∣

q
=

∣

∣

∣

∣

f (n)
(

b− x
b−a

a+m
x−a
b−a

b
m

)∣

∣

∣

∣

q

≤
[∣

∣

∣
f (n) (a)

∣

∣

∣

q] b−x
b−a
[∣

∣

∣

∣

f (n)
(

b
m

)∣

∣

∣

∣

q]m(1− b−x
b−a)

we have
∣

∣

∣

∣

∣

∫ n−1

k=0
(−1)k

(

f (k) (b)bk+1− f (k) (a)ak+1

(k+1)!

)

−
∫ b

a
f (x)dx

∣

∣

∣

∣

∣

≤
1
n!

∫ b

a
xn
∣

∣

∣
f (n) (x)

∣

∣

∣
dx

≤
1
n!

(

∫ b

a
xnpdx

)
1
p
(

∫ b

a

∣

∣

∣
f (n) (x)

∣

∣

∣

q
dx

)
1
q

≤
1
n!

(

∫ b

a
xnpdx

)
1
p
(

∫ b

a

[∣

∣

∣
f (n) (a)

∣

∣

∣

q] b−x
b−a
[∣

∣

∣

∣

f (n)
(

b
m

)∣

∣

∣

∣

q]m(1− b−x
b−a)

dx

)

1
q

=
1
n!

∣

∣

∣

∣

f (n)
(

b
m

)∣

∣

∣

∣

m(∫ b

a
xnpdx

)
1
p
(

∫ b

a
µ f

b−x
b−a dx

)
1
q

=
1
n!

∣

∣

∣

∣

f (n)
(

b
m

)
∣

∣

∣

∣

m( bnp+1

np+1
−

anp+1

np+1

)

1
p b−a

ln
∣

∣ f (n)
(

b
m

)∣

∣

qm
− ln

∣

∣ f (n) (a)
∣

∣

q

(

1− µ f
)

1
q

=
1
n!
(b−a)

[

bnp+1−anp+1

(np+1)(b−a)

]

1
p

∣

∣

∣
f (n)
(

b
m

)

∣

∣

∣

qm
−
∣

∣

∣
f (n) (a)

∣

∣

∣

q

ln
∣

∣ f (n)
(

b
m

)∣

∣

qm
− ln

∣

∣ f (n) (a)
∣

∣

q

1
q

=
1
n!

(b−a)Ln
np(a,b)L

1
q

(∣

∣

∣

∣

f (n)
(

b
m

)∣

∣

∣

∣

qm

,

∣

∣

∣
f (n) (a)

∣

∣

∣

q
)

This completes the proof of theorem.

Remark.If we takem= 1 in Theorem 1, then the results coincide with [12].

Corollary 1. Under the conditions Theorem 1 for n= 1 we have the following inequality.

∣

∣

∣

∣

f (b)b− f (a)a
b−a

−
1

b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ Lp (a,b)L
1
q

(∣

∣

∣

∣

f ′
(

b
m

)∣

∣

∣

∣

qm

,
∣

∣ f ′ (a)
∣

∣

q
)

.

Remark.If we takem= 1 in Corollary 1, then the results coincide with [12].

Proposition 1.Let a,b∈ (0,∞) with a< b, p,q> 1 with 1
p +

1
q = 1 and we have

∣

∣

∣

∣

qe
b
q − (q−a)E

(

a
q
,
b
q

)∣

∣

∣

∣

≤ Lp (a,b)E
1
q (a,b)

Proof.Under the assumption of the Proposition, letf (x) = qe
x
q , x∈ (0,∞). Then

∣

∣

∣
f
′
(x)
∣

∣

∣
= e

x
q

is m-log-convex on(0,∞) and the result follows directly from Corollary 1.

Theorem 2.For ∀n∈N; let f : I ⊆ [0,∞)→ (0,∞) be n-times differentiable function on I
◦

and a, b
m ∈ I

◦
with 0≤ a< b<∞

and m∈ (0,1]. If f (n) ∈ L[a,b] and
∣

∣

∣
f (n)
∣

∣

∣

q
for q≥ 1 is m-logarithmically-convex on[a,b], then the following inequality
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holds.
∣

∣

∣

∣

∣

∫ n−1

k=0
(−1)k

(

f (k) (b)bk+1− f (k) (a)ak+1

(k+1)!

)

−

∫ b

a
f (x)dx

∣

∣

∣

∣

∣

≤
1
n!

(b−a)

∣

∣

∣

∣

f (n)
(

b
m

)∣

∣

∣

∣

m

L
n
(

q−1
q

)

n (a,b)M
1
q

where M=
∫ 1

0 [b− (b−a)t]nµ f
tdt and Ln is generalized logarithmic mean.

Proof.From Lemma 1 and Power-mean integral inequality, we obtain

∣

∣

∣

∣

∣

∫ n−1

k=0
(−1)k

(

f (k) (b)bk+1− f (k) (a)ak+1

(k+1)!

)

−

∫ b

a
f (x)dx

∣

∣

∣

∣

∣

≤
1
n!

∫ b

a
xn
∣

∣

∣
f (n) (x)

∣

∣

∣
dx

≤
1
n!

(

∫ b

a
xndx

)1− 1
q
(

∫ b

a
xn
∣

∣

∣
f (n) (x)

∣

∣

∣

q
dx

)
1
q

≤
1
n!

(

∫ b

a
xndx

)1− 1
q
(

∫ b

a
xn
[∣

∣

∣
f (n) (a)

∣

∣

∣

q] b−x
b−a
[∣

∣

∣

∣

f (n)
(

b
m

)∣

∣

∣

∣

q]m(1− b−x
b−a)

dx

)

1
q

=
1
n!

∣

∣

∣

∣

f (n)
(

b
m

)∣

∣

∣

∣

m(∫ b

a
xndx

)1− 1
q
(

∫ b

a
xnµ f

b−x
b−a dx

)
1
q

=
1
n!
(b−a)

1
q

∣

∣

∣

∣

f (n)
(

b
m

)∣

∣

∣

∣

m(∫ b

a
xndx

)1− 1
q
(

∫ 1

0
[b− (b−a)t]nµ f

tdt

)
1
q

=
1
n!
(b−a)

1
q

∣

∣

∣

∣

f (n)
(

b
m

)
∣

∣

∣

∣

m(bn+1−an+1

n+1

)1− 1
q

M
1
q

=
1
n!

∣

∣

∣

∣

f (n)
(

b
m

)∣

∣

∣

∣

m

(b−a)
1
q (b−a)1−

1
q

[

bn+1−an+1

(n+1)(b−a)

]1− 1
q

M
1
q

=
1
n!

(b−a)

∣

∣

∣

∣

f (n)
(

b
m

)∣

∣

∣

∣

m

L
n
(

q−1
q

)

n (a,b)M
1
q .

Remark.If we takem= 1 in Theorem 2, then the results coincide with [12].

Corollary 2. Under the conditions Theorem 2 for n= 1 we have the following inequality.

∣

∣

∣

∣

f (b)b− f (a)a
b−a

−
1

b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ A1− 1
q (a,b)

b
∣

∣ f ′
(

b
m

)∣

∣

qm
−a| f ′ (a)|q

ln
∣

∣ f ′
(

b
m

)∣

∣

qm
− ln| f ′ (a)|q

− (b−a)
L
(

∣

∣ f ′
(

b
m

)∣

∣

qm
, | f ′ (a)|

q
)

ln
∣

∣ f ′
(

b
m

)∣

∣

qm
− ln| f ′ (a)|q

1
q

Remark.If we takem= 1 in Corollary 2, then the results coincide with [12].

Proposition 2.Let a,b∈ (0,∞) with a< b, q> 1 and, we have

∣

∣

∣

∣

qe
b
q +(a−q)E

(

b
q
,
a
q

)∣

∣

∣

∣

≤ A1− 1
q (a,b)

[

eb+(a−1)E(a,b)
]

1
q
.

Proof.The result follows directly from Corollary 2 for the function f (x) = qe
x
q , x∈ (0,∞).

Corollary 3. Under the conditions Theorem 2 for q= 1 we have the following inequality.

∣

∣

∣

∣

∣

∫ n−1

k=0
(−1)k

(

f (k) (b)bk+1− f (k) (a)ak+1

(k+1)!

)

−
∫ b

a
f (x)dx

∣

∣

∣

∣

∣

≤
1
n!

(b−a)

∣

∣

∣

∣

f (n)
(

b
m

)∣

∣

∣

∣

m

M
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Remark.If we takem= 1 in Corollary 3, then the results coincide with [12].

Corollary 4. Under the conditions Theorem 2 for m= 1 we have the following inequality.

∣

∣

∣

∣

∣

∫ n−1

k=0
(−1)k

(

f (k) (b)bk+1− f (k) (a)ak+1

(k+1)!

)

−

∫ b

a
f (x)dx

∣

∣

∣

∣

∣

≤
1
n!

(b−a)
∣

∣

∣
f (n) (b)

∣

∣

∣
M.

Theorem 3.For ∀n∈N; let f : I ⊆ [0,∞)→ (0,∞) be n-times differentiable function on I
◦

and a, b
m ∈ I

◦
with 0≤ a< b<∞

and m∈ (0,1]. If f (n) ∈ L[a,b] and
∣

∣

∣
f (n)
∣

∣

∣

q
for q> 1 is m-logarithmically-convex on[a,b]. then the following inequality

holds.
∣

∣

∣

∣

∣

∫ n−1

k=0
(−1)k

(

f (k) (b)bk+1− f (k) (a)ak+1

(k+1)!

)

−
∫ b

a
f (x)dx

∣

∣

∣

∣

∣

≤
1
n!

(b−a)L
qn−1

q

p
(

n− 1
q

) (a,b)
b
∣

∣ f ′
(

b
m

)∣

∣

qm
−a| f ′ (a)|q

ln
∣

∣ f ′
(

b
m

)
∣

∣

qm
− ln| f ′ (a)|q

− (b−a)
L
(

∣

∣ f ′
(

b
m

)∣

∣

qm
, | f ′ (a)|

q
)

ln
∣

∣ f ′
(

b
m

)
∣

∣

qm
− ln| f ′ (a)|q

1
q

where1
p +

1
q = 1, M =

∫ 1
0 [b− (b−a)t]nµ f

tdt and Lp is generalized logarithmic mean.

Proof.Since
∣

∣

∣
f (n)
∣

∣

∣

q
for q> 1 ism-logarithmically-convex on[a,b], using Lemma 1 and the Hölder integral inequality, we

obtain the following inequality.

∣

∣

∣

∣

∣

∫ n−1

k=0
(−1)k

(

f (k) (b)bk+1− f (k) (a)ak+1

(k+1)!

)

−

∫ b

a
f (x)dx

∣

∣

∣

∣

∣

≤
1
n!

∫ b

a
xn− 1

q .x
1
q

∣

∣

∣
f (n) (x)

∣

∣

∣
dx

≤
1
n!

(

∫ b

a

(

xn− 1
q

)p
dx

)
1
p
(

∫ b

a

(

x
1
q

)q∣
∣

∣
f (n) (x)

∣

∣

∣

q
dx

)
1
q

≤
1
n!

(

∫ b

a
xpqn−1

q dx

)
1
p
(

∫ b

a
x
[∣

∣

∣
f (n) (a)

∣

∣

∣

q] b−x
b−a
[∣

∣

∣

∣

f (n)
(

b
m

)∣

∣

∣

∣

q]m(1− b−x
b−a)

dx

)

1
q

=
1
n!

∣

∣

∣

∣

f (n)
(

b
m

)∣

∣

∣

∣

m(∫ b

a
xpqn−1

q dx

)
1
p
(

∫ b

a
xµ f

b−x
b−a dx

)
1
q

=
1
n!

∣

∣

∣

∣

f (n)
(

b
m

)∣

∣

∣

∣

m

(b−a)
1
p





bpqn−1
q +1−apqn−1

q +1

(

pqn−1
q +1

)

(b−a)





1
p

×
(b−a)

[

a
∣

∣

∣
f (n) (a)

∣

∣

∣

q
−b
∣

∣

∣
f (n)
(

b
m

)

∣

∣

∣

qm]

ln
∣

∣ f (n) (a)
∣

∣

q
− ln

∣

∣ f (n)
(

b
m

)∣

∣

qm −
(b−a)2L

(
∣

∣

∣
f (n) (a)

∣

∣

∣

q
,

∣

∣

∣
f (n)
(

b
m

)

∣

∣

∣

qm)

ln
∣

∣ f (n) (a)
∣

∣

q
− ln

∣

∣ f (n)
(

b
m

)∣

∣

qm

1
q

=
1
n!
(b−a)





bpqn−1
q +1−apqn−1

q +1

(

pqn−1
q +1

)

(b−a)





1
p

×
a
∣

∣

∣
f (n) (a)

∣

∣

∣

q
−b
∣

∣

∣
f (n)
(

b
m

)

∣

∣

∣

qm

ln
∣

∣ f (n) (a)
∣

∣

q
− ln

∣

∣ f (n)
(

b
m

)∣

∣

qm −
(b−a)L

(∣

∣

∣
f (n) (a)

∣

∣

∣

q
,

∣

∣

∣
f (n)
(

b
m

)

∣

∣

∣

qm)

ln
∣

∣ f (n) (a)
∣

∣

q
− ln

∣

∣ f (n)
(

b
m

)∣

∣

qm

1
q

=
1
n!

(b−a)L
qn−1

q

p
(

n− 1
q

) (a,b)
b
∣

∣ f ′
(

b
m

)
∣

∣

qm
−a| f ′ (a)|q

ln
∣

∣ f ′
(

b
m

)∣

∣

qm
− ln| f ′ (a)|q

−
(b−a)L

(

∣

∣ f ′
(

b
m

)∣

∣

qm
, | f ′ (a)|

q
)

ln
∣

∣ f ′
(

b
m

)∣

∣

qm
− ln| f ′ (a)|q

1
q

.
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Remark.If we takem= 1 in Theorem 3, then the results coincide with [12].

Corollary 5. Under the conditions Theorem 3 for n= 1 we have the following inequality.

∣

∣

∣

∣

f (b)b− f (a)a
b−a

−
1

b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ A
1
p (a,b)

b
∣

∣ f ′
(

b
m

)∣

∣

qm
−a| f ′ (a)|q

ln
∣

∣ f ′
(

b
m

)∣

∣

qm
− ln| f ′ (a)|q

−
(b−a)L

(

∣

∣ f ′
(

b
m

)
∣

∣

qm
, | f ′ (a)|

q
)

ln
∣

∣ f ′
(

b
m

)∣

∣

qm
− ln| f ′ (a)|q

1
q

.

where A is arithmetic mean.

Remark.If we takem= 1 in Corollary 5, then the results coincide with [12].

Corollary 6. Under the conditions Theorem 3 for n= 1 and m= 1 we have the following inequality

∣

∣

∣

∣

f (b)b− f (a)a
b−a

−
1

b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ A
1
p (a,b)

b
∣

∣

∣
f
′
(b)
∣

∣

∣

q
−a
∣

∣

∣
f
′
(a)
∣

∣

∣

q

ln
∣

∣ f ′ (b)
∣

∣

q
− ln

∣

∣ f ′ (a)
∣

∣

q −
(b−a)L

(∣

∣

∣
f
′
(b)
∣

∣

∣

q
,

∣

∣

∣
f
′
(a)
∣

∣

∣

q)

ln
∣

∣ f ′ (b)
∣

∣

q
− ln

∣

∣ f ′ (a)
∣

∣

q

1
q

,

which coincides with the result in [12].

Proposition 3.Let a,b∈ (0,∞) with a< b, p, q> 1, 1
p +

1
q = 1, we have

∣

∣

∣

∣

qe
b
q +(a−q)E

(

a
q
,
b
q

)∣

∣

∣

∣

≤ A1− 1
q (a,b)

[

eb+(a−1)E(a,b)
]

1
q
.

Proof.The result follows directly from Corollary 5 for the function f (x) = qe
x
q , x∈ (0,∞).

3 Conclusions

In this paper, by using an integral identity we obtain some new type inequalities forn-time differentiable

m-logarithmically-convex functions.
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[2] M. A. Ard ıç and M. EminÖzdemir, “Inequalities for log−convex functions vıa three times differentiability”, arXiv:1405.7480v1

[math.CA] 29 May 2014.

[3] S.-P. Bai, S.-H. Wang and F. Qi, “Some Hermite-Hadamard type inequalities for n-time differentiable (α,m) -convex functions”,

Jour. of Ineq. and Appl., 2012, 2012:267.

© 2018 BISKA Bilisim Technology



NTMSCI 6, No. 4, 1-7 (2018) /www.ntmsci.com 7

[4] R.-F. Bai, F. Qi, B.-Y. Xi, “Hermite-Hadamard type inequalities for them-and(α,m)-logarithmically convex functions”, Filomat

27:1 (2013), 1–7.

[5] B.C. Carlson, “Special Functions of Applied Mathematics”, Academic Press, New York, 1977.

[6] P. Cerone, S.S. Dragomir, J. Roumeliotis and J. Sunde, “Anew generalization of the trapezoid formula for n-time differentiable

mappings and applications”, Demonstratio Math., 33(4), (2000), 719–736.

[7] S.S. Dragomir and C.E.M. Pearce, “Selected Topics on Hermite-Hadamard Inequalities and Applications”, RGMIA Monographs,

Victoria University, 2000.

[8] S.S. Dragomir, “New jensen’s typeınequalıtıes for dıfferentıable log-convex functions of selfadjoınt operatorsın Hilbert spaces”,

Sarajevo Journal of Mathematics, Vol.7(19), (2011), 67-80.
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[16] H. Kadakal, M. Kadakal anḋI. İşcan, “Some new integral inequalities for n-times differentiable s-convex and s-concave functions

in the second sense”, Mathematics and Statistic, 5(2), 94-98, 2017.
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