
NTMSCI 6, No. 4, 54-59 (2018) 54

New Trends in Mathematical Sciences
http://dx.doi.org/10.20852/ntmsci.2018.315

A note on the absoute indexed norlund summability
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Abstract: In the present article, we have established a result on indexed Norlund summability factors by generalizing a theorem of
Mishra and Sivastava[5] on Cesaro summabilty factors.
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1 Introduction

Let the infinite series with sequence of partial sums{sn} be∑an. Suppose for the sequence{sn}, the nth(C,1)- mean is

{tn}. If
∞

∑
n=1

(n)k−1|tn − tn−1|
k
< ∞, (1)

then∑anis said to be summable|C,1|k,k ≥ 1. (see [4]). Let

Qn =
n

∑
ν=0

qν → ∞, as n → ∞(Q−i = qi = 0, i ≥ 1) , (2)

where{qn} is a sequence withqn ∈ R+
. Let the(N,qn)-mean of the sequence{sn} be{Tn}, which is generated by the

sequence of coefficients{qn}, where

Tn =
1

Qn

∞

∑
ν=0

qn−νsν . (3)

If
∞

∑
n=1

(

Qn

qn

)k−1

|Tn −Tn−1|
k
< ∞, (4)

then∑an is said to be summable|N,qn|k,k ≥ 1 (see [3]).

Clearly,|N,qn|k-summabiity is same as|C,1|-summabiity whenqn = 1 ∀n. Mishra and Srivatava [5], established the

following result for|C,1|k summability.
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2 Known theorem

Suppose,(Yn) be a positive non-decreasing sequence and let there be sequences{βn} and{µn} such that

|∆ µn| ≤ βn; (5)

βn → 0 as n → ∞; (6)

|µn|Yn = O(1) as n → ∞; (7)
∞

∑
n=1

n|∆βn|Yn < ∞; (8)

∞

∑
n=1

1
n
|sn|

k = O(Ym) as m → ∞, (9)

then∑∞
n=1anµn is summable|C,1|k,k ≥ 1.

3 Main theorem

Suppose, for a non-decreasing sequence(Yn), let there be sequences{βn} and{µn} satisfying the conditions (5) to (9)

and{qn} be a sequence withqn ∈ R+ such that

Qn = O(nqn); (10)
∞

∑
n=1

qn

Qn
|sn|

k = O(Ym) as m → ∞; (11)

Qn−r−1

Qn
= O

(

qn−r−1

Qn

Qr

qr

)

; (12)

m+1

∑
n=r+1

(

Qn

qn

)k−1 qn−r

Qn
= O

(

qr

Qr

)

, (13)

then∑∞
n=1 anµn is summable|N,qn|k,k ≥ 1. The condition (11) reduces to condition (9) ifqn = 1 ∀n. After reading [1],

[2] and [6], we have established the following result. To establish our main result we need the following lemma.

4 Lemma

Suppose(Yn) be a positive non decreasing sequence and let there be sequences{βn} and{µn} such that the conditions

(6) to (10) are satisfied.Then,

βnYn = O(1) as n → ∞, (14)
∞

∑
n=1

βnYn < ∞. (15)

5 Proof of the main theorem

Let the(N,qn)- mean of the series∑∞
n=1 anµn be denoted by(τn) . Then, by definition, we have

τn =
1

Qn

n

∑
r=0

qn−r

r

∑
s=0

asµs =
1

Qn

n

∑
s=0

asµs

n

∑
r=s

qn−r =
1

Qn

n

∑
s=0

asµsQn−s =
1

Qn

n

∑
r=0

arQn−rµr
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Thus

τn − τn−1 =
1

Qn

n

∑
r=1

Qn−rar µr −
1

Qn−1

n−1

∑
r=1

Qn−r−1ar µr

=
n

∑
r=1

(

Qn−r

Qn
−

Qn−r−1

Qn−1

)

ar µr

=
1

QnQn−1

n

∑
r=1

(Qn−rQn−1−Qn−r−1Qn)ar µr

=
1

QnQn−1

[

n−1

∑
r=1

∆{(Qn−rQn−1−Qn−r−1Qn)µr}

]

r

∑
ν=1

aν , with q0 = 0

=
1

QnQn−1

[

n−1

∑
r=1

(qn−rQn−1−qn−r−1Qn)µrsr +
n−1

∑
r=1

(Qn−r−1Qn−1−Qn−r−2Qn)∆ µrYrsr

]

(ByAbel′strans f ormation)

= Tn,1+Tn,2+Tn,3+Tn,4,

In order to complete the proof of the main theorem by using Minkowski’s inequality, it is sufficient to show that

∞

∑
n=1

(

Qn

qn

)k−1

|Tn, j|
k
< ∞ f or j = 1,2,3,4.

Now, we have

m+1

∑
n=2

(

Qn

qn

)k−1

|Tn,1|
k

m+1

∑
n=2

(

Qn

qn

)k−1

|
1

QnQn−1

n−1

∑
r=1

qn−rQn−1µrsr|

k

≤
m+1

∑
n=2

(

Qn

qn

)k−1 1
Qn

(

n−1

∑
r=1

qn−r|µr|
k|sr|

k

)(

1
Qn

n−1

∑
r=1

qn−r

)k−1

(Using Holder′s inequality)

= O(1)
m

∑
r=1

|µr|
k|sr|

k
m+1

∑
n=r+1

(

Qn

qn

)k−1(qn−r

Qn

)

= O(1)
m

∑
r=1

|µr|
k|sr|

k qr

Qr
, by (13)

= O(1)
m

∑
r=1

qr

Qr
|sr|

k|µr||µr|
k−1

= O(1)
m−1

∑
r=1

∆ |µr|
r

∑
w=1

qw

Qw
|sw|

k +O(1)|µm|
m

∑
r=1

qr

Qr
|sr|

k

= O(1)
m−1

∑
r=1

|∆ µr|Yr +O(1)|µm|Ym , by (11)

= O(1), as m → ∞.(By the lemma and (7))
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Next,

m+1

∑
n=2

(

Qn

qn

)k−1

|Tn,2|
k =

m+1

∑
n=1

(

Qn

qn

)k−1

|
1

QnQn−1

n−1

∑
r=1

qn−r−1Qnµrsr|

k

≤
m+1

∑
n=2

(

Qn

qn

)k−1 1
Qn−1

(

n−1

∑
r=1

qn−r−1|µr|
k|sr|

k

)(

1
Qn−1

n−1

∑
r=1

qn−r−1

)k−1

= O(1)
m

∑
r=1

|µr|
k|sr|

k
m+1

∑
n=r+1

(

Qn

qn

)k−1(qn−r−1

Qn−1

)

= O(1)
m

∑
r=1

|µr|
k|sr|

k qr

Qr

= O(1), as m → ∞, As in proo f o f the 1st part.

Further,

m+1

∑
n=2

(

Qn

qn

)k−1

|Tn,3|
k =

m+1

∑
n=1

(

Qn

qn

)k−1

|
1

QnQn−1

n−1

∑
r=1

Qn−r−1Qn−1∆ µrsr|

k

≤
m+1

∑
n=2

(

Qn

qn

)k−1 1
Qn

(

n−1

∑
r=1

Qn−r−1|∆ µr||sr|
k

)(

1
Qn

n−1

∑
r=1

Qn−r−1|∆ µr|

)k−1

.

Since,
(

1
Qn

n−1

∑
r=1

Qn−r−1|∆ µr|

)

≤
n−1

∑
r=1

|∆ µn| ≤ n|∆ µr| ≤ nβn.

Therefore,

m+1

∑
n=2

(

Qn

qn

)k−1

|Tn,3|
k

≤ O(1)
m

∑
r=1

(rβr)
k−1|∆ µr||sr|

k
m+1

∑
n=r+1

(

Qn

qn

)k−1 Qn−r−1

Qn

= O(1)
m

∑
r=1

|∆ µr||sr|
k qr

Qr

≤ O(1)
m

∑
r=1

βr|sr|
k qr

Qr

= O(1)
m−1

∑
r=1

∆ (βr)
r

∑
w=1

qw

Qw
|sw|

k +O(1)(βm)
m

∑
r=1

qr

Qr
|sr|

k

= O(1)
m−1

∑
r=1

|∆βr|Yr +O(1)(βm)Ym

= O(1)
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Now,

m+1

∑
n=2

(

Qn

qn

)k−1

|Tn,4|
k =

m+1

∑
n=2

(

Qn

qn

)k−1

|
1

QnQn−1

n−1

∑
r=1

Qn−r−2Qn∆ µrsr|

k

≤
m+1

∑
n=2

(

Qn

qn

)k−1 1
Qn−1

(

n−1

∑
r=1

Qn−r−2|∆ µr||sr|
k

)

1
Qn−1

n−1

∑
r=1

Qn−r−2|∆ µr|

k−1

= O(1)
m

∑
r=1

(rβr)
k−1|∆ µr||sr|

k
m+1

∑
n=r+1

(

Qn

qn

)k−1(Qn−r−1

Qn

)

, (as above)

= O(1)
m

∑
r=1

|∆ µr||sr|
k qr

Qr

= O(1), (as above)

This completes the proof of the theorem.

Conclusion

If (Yn) is a positive non-decreasing sequence and let there be sequences{βn} and{µn} such that the conditions(5) to

(9) along with the conditions (14) and (15) are satisfied then theseries∑∞
n=1 anµn is summable|N,qn|k,k ≥ 1, under the

conditions (10) to (13). Thus, our result generalizes the result of Mishra and Srivastava [5].
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