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Abstract: This work is devoted to some geometric inverse problemsneali elasticity. The problem considered is the cavities
identification in mechanical structures from the knowled@gartially overdetermined boundary data, namely theldegment field
and the normal component of the normal stress. We state aiemegs result from a single pair of data under some geomletric
assumptions. We propose an iterative method based on thirgpwf the data completion process through the Steklondzoé
operator to reconstruct the shear stress and of the shagiemgranethod combined with the level set method to identdyities.
Numerical simulations highlight the algorithm efficiency.
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1 Introduction

During the past few decades, special attention has been gvimverse problems in linear elasticity framewoflZ]|
These problems can be classified as the detection of defaalifties, cracks or inclusions) or the reconstruction of
unreachable boundary data, among others.

On one hand, the identification of flaws in mechanical stmagis extremely important in the indust4 30| since it is
crucial for engineers to assess the reliability of struetuaind to predict its remaining service life. On the otherdhan
overdetermined boundary data are crucial to such a gearakinverse problem. To the best of our knowledge, all
cavities identification problems in linear elasticity, @stigated in the literature, are based on the essentiaingsisun
that overspecified boundary conditions are complete, ath the displacement field and the normal stress are availabl
for the reconstruction of flaws5[9,10], expect of recent works6[22] where overdetermined boundary data are
incomplete.

Let us mention that the data completion problem mentionedahas been widely investigated (s&é&][and references
therein). Such a problem can be formulated as follows: gifiertractions and the displacement fields on the accessible
part of the boundary of the domain of interest, one aims ttuewa the same information on the inaccessible part of the
boundary. Needless to say, this ill-posed problem hasdjrbaen strongly studied with a lot of methods which can be
grouped as methods based on the minimization of an enekgyfdinctional [L,2] via the Steklov Poincaré operator,
quasi reversibility method13], iterative methods 18,26,27], iterative regularization methods (namely, relaxation
procedures for alternating iterative algorithm3,29] and Tikhonov regularizatiorlfg]. We refer the reader tdlfl].
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In some situations, no information about shear stress (lyaimetangential component of the normal stress) is aviglab
and only the displacement field and the normal component®fntirmal stress are accessible. We refer, here, to a
sub-Cauchy problem, that is partially overdetermined lolauy data ¢,22], which consists the main motivation of this
paper. Such non-standard situation derives for exampie fhe devices used to compute measurements on the exterior
boundary of the mechanical components.

Motivated by the recent results d][obtained to recover lacking boundary data via partiallgroletermined boundary
data and results ob] obtained to identify cavities from overdetermined bounyddata; both results obtained in linear
elasticity, we are concerned in this work with a geometrica¢rse problem related to the identification of cavities in
mechanical structures from partially overdetermined loiauy data.

Problem statement: Let 2 be a bounded, connected and open seRdfwith a Lipschitz boundary™ and w be a
subdomain of7 such thafto C 2. We consider the domai? = 2\ @ as a reference configuration of a homogeneous
and isotropic elastic material and the subdomairas a void to be recovered. The present topological situasion
depicted in Figl. The displacement field satisfies the following direct problem

Fig. 1: The computational domain.

divo(u) =0 inQ,
u=ugonrl, ()
o(un, =0 ony=dw.

Here,o(u) is the Cauchy stress tensor associated with the displaddialehu ande(u) is the linearized strain tensor
given by

(u) == (Ou+0Ou").

NI

o ande are related by the Hooke constitutive law via
ou)=A(tre(u)l+2ue(u)

and conversely
1+v Y
e(u) = ?a(u) —E (tro(u)l.
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Above, tr denotes the trace of matrixgdenotes the identity matrix and u are the Lamé coefficients related to Young'’s
modulusE and Poisson’s ratio via

_L and /\—L
H=5av) BRI IEE R

ny denotes the outward unit normal to the boundarywain y.

The geometric inverse problem under consideration cangtedsais follows : Given the displacement compongrin
" and measuring the normal tractidg, - n on ", identify the shape of .

Classical Cauchy problems have been extensively studiedany authors in order to substantiate the uniqueness of the
inverse problems. Almost all the proofs rely on Holmgregise uniqueness theorem. For the first time, it was introduced
by Isakov P1] to prove the uniqueness of a discontinuous conductivigfft@ent. Then, this method has been used for
various classes of inverse problems. In our context, we teféhe work of Ang and al.3] who proved a uniqueness
result for the location and the shape of a cavity with an edg#get a non-vanishing traction hypothesis. The same
guestion has been investigated by Ben Ameld.[In this work, the main contribution is the treatment of tlly
overspecified boundary data when one seeks an identifjaissiie for voids.

The present research aims to develop an iterative methedi lmescoupling the Steklov Poincaré operator and the shape
gradient approach combined with the level set method thrdabig minimization of an energy-like functiona,p, 6,8,
23,22] to numerically solve the inverse problem. However, it dddie noted that some results related to the detection of
cracks [7,15] and obstaclesl3] for the Laplace problem are achieved through iterativenmés in the case of a Cauchy
problem. Indeed, a two-step recovery algorithm, based ast Isquares fit with an iterated Tikhonov regularization to
extend the available data to the whole external boundaryfiest atep and on the reciprocity gap to retrieve the crack as
a second step, was proposed 1%3][ While in [7], the recovery procedure was based firstly on building aeresibn of

the available data to the whole boundary using construdajproximation techniques in classes of analytic and
meromorphic functions and secondly on the reciprocity gapnique as it was the case tb]. The approach proposed

in [13] was based on an iterative procedure which consists in auyhe method of quasi-reversibilitf] and a
simple level set method.

The overview of the paper is as follows. In the upcoming sective discuss the identifiability issue for the voids
identification problem from an incomplete boundary measgms. In the third section, we introduce the shape gradient
to identify the cavities from complete data. In the fourtletimn, we investigate the inverse problem of recovering the
shear stress from the knowledge of partially overdeterthb@undary data on the external boundary of the domain of
interest. The first issue in the fifth section is a brief présgon of the level set method whilst the second one is devote
to the description of the algorithm to be implemented. Th¢hssection concerns the numerical results. Finally, some
concluding remarks and possible future work are reported.

2 Voids Identifiability

In the following, we intend to deal with the more general peob of linear elasticity theory in which the specified
overdetermined boundary data are the values of the dispkteand the traction over an arbitrarily portion of the
boundary, using the Muskhelishvili theorem for the plarestitity and the Almansi lemma for the three-dimensional
elasticity to prove the uniqueness question. In this workseek for conditions that guarantee that the difference/of t
possible displacement fields satisfying the same part@irspecified boundary data is either the null solution or at
most a rigid body displacement.

(© 2018 BISKA Bilisim Technology


www.ntmsci.com

(_/
2 BISKA A. Ben Abda, E. Jaiem, S. Khalfallah and B. Méjri: Voidsntiication from partially overspecified...

In the recent literature, a non-standard type of problemalttaacted considerable interest because it serves physioca
auxiliary role. Up to our knowledge, the first one who treasedh kind of problems is Hedenmalm. Recently, he has
proven a unicity theorem for the bilaplacien operator froartiplly overdetermined boundary dataq[. For the
sub-Cauchy elasticity problems, the question is still open

However, on an isotropic half-plane, some insights intoghestion of uniqueness can be gained using a simple cajculus
namely an integral representatiad], such that the sub-Cauchy problem reduces to the Cauclpfgondfor which the
uniqueness condition, that is, the unique (null) solutidntlte homogeneous Cauchy problem, is ensured by
Muskhelishvili’'s theorem. Remarkably, theorems for thé-péane impose much weaker restrictions on the elastigiti
than the corresponding theorems for domains of arbitratipe.

The main result of this section asserts that there is at mustvoid in the elastic solid which yields the same surface
measurements on an arbitrarily small plane portion of terduoundary. The key to the proof is the unique continuation
of the isotropic Lamé systenif] and the Muskhelishvili theoren3].

Theorem 1.Let w! andw? be two voids such thab® N w? # 0 with Ct-smooth boundary'? = dw*?. Fori = 1,2, letu'
be the solution of the probleri)defined inQ' = 2\ ' such thau® € [H(Q1)] ? Then, ifw! andw? both lead to the
same measured normal traction on an open plane portion Mebtiter boundary™, namelyn- o(ut)n =n-a(u?)n =
Tm-non M, we haveo! = w?.

Proof. Let Q¢ C 2 be the external connected componenfdin Q2 such thad Q® c y* Uy?UT (the one having M as
part of its boundary). Lew := u! — u? be the solution of the following problem

div g(w) = 0in Q€
n-ow)n=0onM,
w=0o0onM.
SinceQ¢® is connectedy vanishes in the whole domai®® by the Muskhelishvili theorem. Then

ul =u?in Q¢

Now, we prove by contradiction thad' = w?. Let us so suppose that* # w?. Since numerous possibilities exist for
the void, see Fig2 for one particular situation, we assume tlatis one of the connected components®t \ Q2.
Subsequently, we have tha# is a union of a finite number of ope&t-smooth curves. So, for atle 3, there are only
two cases to happen

(1) xe yh
(2) xeaQen(y?\ (ytur)).

In the first case, we have
a(uhn: =0 onyt, (2

wheren,, denotes the outward unit normal to the boundaty
In the second case, we have by the regularity assumptions

ul(x) =u?(x) andso a(ul(x)) = o (u?(x)).

(© 2018 BISKA Bilisim Technology
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Fig. 2: The connected components@f \ Q2.

Sincex € Q%N (y?\ (Y*UT) C y?), we have

o(u?)n,z =0 ony?, (3)

wheren . denotes the outward unit normal to the boundgty
By (2) and @), we get thau® is the solution of the following problem in the open gt

div o(ul) =0in o,
o(ub)n, =00nao.

From the Green formula, we get
1. oyl ' 1 1
o(ur):e(u dx:/ o(u)ny-u-ds=0.
| oh):etox= [ otutin,

We conclude thati! is a rigid displacement i7. By the unique continuation theorem, we deduce tiais a rigid
displacement in the whole domaé® which is in contradiction with the hypothesis of the load @his not identically
equal to zerd T - n # 0). Hence w! = w?.

Remark.For the case of disjoint voids, the proof has the same spiriha one presented above and for the case of
monotonous cavities the unicity was proved using the enengstional R2).

3 Voids Identification

In this part, we only outline briefly the cavities identificat method from overdetermined boundary data. We refesjto [
for a comprehensive analysis. In this section, we aim towecihe voidw, that is to solve the geometrical inverse problem
provided that the shear stress, namBly- T is known onl", wherer is the unit tangent vector t6. The reconstruction
problem of the shear stre3s,- T will be addressed in the next section. In order to solve thiblem, we follow the
same method investigated i5][ Indeed, we propose a Dirichlet-Neumann approach by thensief a self-regularization
technique namely the Kohn-Vogelius formulatids].[More precisely, we introduce two well-posed problemshva
couple of solutiongop,up) and(on,un) defined inQ, each of them satisfying the elasticity equation€dras well as
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a homogeneous Neumann boundary conditioryowe assign to the first problem a Dirichlet conditiah) é&nd to the
second one a Neumann conditid) both of them on the boundafy as follows

divop =0 in Q,
ep = Hop— L(trop)l in Q, @)

Up = Ug onfl,

ophy =0 ony,

divaoy =0 in Q,
en = oy — L(tron)l in Q, 5)

onn =T onl,

onny =0 ony.

Let us define the following spaces
4
L3(Q) = {a = (aij) € [L2(Q)] " aij = aji}

and
Vb = {ve [HLY(Q)]% v=0onT},

the bilinear symmetric forma: L2(Q) x L2(Q) — R and the bilinear forn : L2(Q) x [Hl(Q)]2 — R by

a(a,a):/Q{%tr(aa)—étr(a)tr(a) dx and b(a,v):—./flztr(aljv) ax.

The variational formulations of the Dirichlet probled) (respectively the Neumann probleB) ére

Find (op,up) € L23(Q) x [Hl(Q)]Z; Up = ugon Tl such that
a(O'D,Cf) +b(a7uD) = 07 Va e Lg(Q)v (6)
b(O'D,V) =0, VveVp,

respectively

Find (on,un) € L2(Q) x [Hl(Qﬂ2 such that
a(on,a)+b(a,uy) =0, Vacl3(Q), (7)
b(on,V) =— [ Tm'V, WE [Hl(Q)}Z.

We adopt above the formulation in two fields, namely the iHghir-Reissner principleLp]. It consists to write separately
the equilibrium equation and the Hooke law in variationaid5).

3.1 Asymptotic expansions

Let % be an open and bounded domain containdh@nd letF; be a perturbation of the identity operator, defined by

Ft = id 4 th, whereh is a deformation field belonging to the following space

7 ={heC* % ,R?); h=00n0% UTl}.
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The conditionh. = 0 means that the boundafyis clamped during the iterative proce$s = Fi(I")). For sufficiently
small t,Fy is aCl! diffeomorphism fromQ onto its image. Let us define the family of doma{ } and{y} by

Qi =F(Q) and w=F(y),

as well as the following forms
a(a,a):/ divh [ﬂtr(aa)ztr(a)tr(a)] dx
Q E E

and

b(a,v):f/Q(divh) tr (o Ov) der/Qtr(or(Dht 0v)) dx.

Let us consider iri_g(Qt) X [Hl(Qt)]z, (opt,Upt), respectively(ont, Unt) the solution of the problen¥y, respectively
(5) defined on the perturbed domdih where

L3(@) = {a = (aij) € [LZ(Qt)]4: aij = dji}.

The following theorems establish the differentiabilitytef— (o}, uly) and t— (o, ul,) where(oh,uly) and(o¥, u,)
are the solutions transported to the fixed donfaiby

ub=uptoFy and  oh =opoFy

and
uy=untoFr and ok = onoFy

Theorem 2.[5] The map t— (o}, uly) is continuously differentiable in a neighborhood of 0 anchaee that op, Up) €
L2(Q) x HY(Q)] ? is the solution of the following variational problem

Find (6p,Up) € L2(Q) x [Hl(Q)}z; Up =0onT such that
a(op,a)+b(a,up) =Lp(a), Vacli(Q),
b(op,v) = —b(op,V), VeV,

where

Lp(a) = —a(op,a) —b(a,up).
A similar result can be expected for the Neumann problem.

Theorem 3[5] The map t— (o}, ul,) is continuously differentiable in a neighborhood of 0 anchaee tha oy, Un) €
L2(Q) x HY(Q)] ? is the solution to the following variational problem

Find (o, 0n) € L2(Q) x [H(Q)]? such that
a(on,a)+b(a,uy) =Ln(a), Vael?(Q),
b(on,v) = —b(on,v), W e [HY(Q)]?,

where

Ln(a) = —a(on, o) —b(a,un).

(© 2018 BISKA Bilisim Technology
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3.2 Shape gradient

A classical way to solve the voids identification problemadransform it into a shape optimization problem. Following
the same procedure described%h ve consider an energy gap function#l depending on the domai given by

J(Q):= %/Q(O‘D —on): (€(up) — €(un)) dx. (8)

We remark that # (Q) = 0 if and only if there is no misfit between both the Dirichletddeumann solutions, that is,
whenop = gy andup = un. The inverse problem can so be formulated as a shape optiomzme as follows

Find Q such that
9)

/(@)= min 7 (@),

In the perturbed domaife;, the functional # (8) is nothing but

1
7(@0):=3 [ (00— 0w (e(uoy) — s(uw))
t
Then, the directional Eulerian shape derivative fat Q in the direction oh is defined as

//(Q,h) —lim /(Qt)_f(g)

t—0 t

This derivative_# is called shape derivative if’(Q,h) exists for allh € ./ and the mappindn — #'(Q,h) is a
continuous and linear functional itf .
Now, we are able to state the main result.

Theorem 4[5] The mapping t— _7 (Q;) is C* in a neighborhood of 0 and its derivative at 0 is given by

7'(Q,h) = /y G(h-ny) ds

with

G=5[(op:&(up)) - (on:&(un))]- (10)

NI =

4 Shear stress reconstruction

This part concerns the recovery of lacking boundary datmetathe shear stresby - T = 7- g(u)n on the exterior
boundary of the domain of interest from the knowledge ofipbytoverdetermined boundary data. The important point
to note here is that, to the best of our knowledge, there atkauretical studies (existence and uniqueness) regatfisg
problem despite its great importance in applications.
The problem is formulated mathematically as follows: Gitke displacement componemy on I” and measuring the
normal tractionTy,-nonl .

divo(u) =0 in Q,

u=ug onfl, (12)
n-oun=Typ-nonrl.

In order to numerically recover the shear stress, we regditd same approach proposed&pthat we briefly present
herein. This part is concerned with the Steklov-Poincg@erator carried out to solve the sub-Cauchy probléihhich

(© 2018 BISKA Bilisim Technology
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is nothing more than a data completion problem. One way tesalch a problem is to decompose it through an unknown
functionn as follows

divop =0 inQ,
(Pp) up = ugonl, (12)
up =n onfl;

and

divony =0 in Q,
n-onn=Tm-nonrl,
UN-T=Ug-T Onl,
un =1 onlx,

(Pn) (13)

wheren is the virtual control defined on the fictif bounddryas depicted in Fig3. The solutionsip anduy are functions

Fig. 3: ¢ is a fictif boundary.

of n (up = up(n) andun = un(n)). The gap between these fields anduy is subsequently minimized with respect to
the unknown boundary datain order to produce the desired expanded elastic fields. @peuged herein is the same
Kohn-Vogelius error functional investigated in the sultimer3.2related to voids identification but in this case depending
on the virtual controh, that is

1
J(n)i=3 [ (000w (e(un) ~ e(un)) dx a4)
The inverse problem is then formulated via the minimizatibthe energy error functionay (14) as
Find n such that
J(n)=_min 7). (15)
fe[HY2(rp)]

The solutionup respectivelyuy of the problem 12) respectively {3) can be written as

up =Up + Up respectively un = UN + Ug, (16)

(© 2018 BISKA Bilisim Technology
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whereUp andun depend on the partially overdetermined boundary @agaT m - n), whilst u; anduy, depend om as
follows

divoj =0 in Q, divop =0 inQ,
(25) usy =0onl, (Zp) Up = ugonrl,
uj =nonfy, Up =0 onrl;
and
div of, =0 in Q, divony =0 in Q,
. Jn-ogn=0onr, — n-onn=Tm-nonrl,
(Z)q " ON T (Zn)d M ONT T
uy-T=0o0nr, UN-T=Ug-T Onl,
uy =nonfy, N =0 onls.
The solution of the problemni§) is recovered if
OpNnf = ONDNg onrls. a7
According to (6), the condition {7) leads to the boundary equation
ohpns — onNg = ONNg — OpNy onfls. (18)

Let us introduce some notations useful in the sequel
Sn=opns, Sn=oyne and &= —(dpnt—ONNt).
Then, one can rewrite the equatidr8) as
Sn=(S-Sn=¢& onlx, (19)

whereSis the Steklov-Poincaré operator well known in the doma&oamposition theory34].

5 Numerical analysis

5.1 Voids identification

This part aims to develop an algorithm to numerically sohe shape optimization problerl)( Indeed, the theorem 4
suggests the implementation of a numerical minimizatigo@athm using the gradient method. We consider fer@ and
K iteration, the deformation of, like it was the case in the subsection 3.1

W= Fu(y) = {x+th(x); x€ y}, (20)

whereh is chosen as follows
he.” suchthat h =-Gny, (22)

Gis given by (0). This descent directior2() guarantees the minimization of the shape functigga(8). To numerically
implement this iterative procedure, we resort to the lee¢lmethod. It is a numerical technique for tracking shapes,
developed in 1988 by Osher and Sethia# [ During the past few decades, this method has been appliatious fields
[32], since it provides a practical way to follow shapest hatgetopologies. Let us consider the evolution of a boundary
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1 (namely a domai2; C % C R?) under the velocity fieldh (21) related to the sensitivity of the energy error functional
Z (8). The basic idea of the level set method is to construct edetiween the boundagy (20) and a continuous function
@ defined on the whole domaizr . More precisely, the boundagycan be implicitly represented using the level curve of
a function® as follows

= 1{xe%,; ®(xt)=0}.

During the process, the cavities to recover will be iderdifig change in level set function values, with respect tdtifoets
time t. This change is related to the shape derivative oftthetfonal_# . Indeed, the derivation of the equatidx,t) =0
with respect to t leads to the transport equation

o®+h-00=0.
Since the normal vector tg is given byn, = % [32), the evolution of® is then governed by the Hamilton-Jacobi
equation

0@ +hp|0@| =0,
wherehp, is the normal velocity. Or, we have chodes- —Gny, = — %. As a consequence, the evolutionpfnamely

the evolution of®) is governed by the so-called level set equation

{atcp—emcm:o in% xR, 22)

®(-,0) = Oy,

where @ is the initial data chosen as the signed distance functiog.télence, moving the level-set lines along the
descent gradient directidn(21) is equivalent to evolving the functio® by solving the level set equatio3).

5.2 Shear stress reconstruction

Going back to the resolution of the linear system of equati@8), one can use an iterative preconditioned gradient
algorithm which appears to be very efficient. Indeed, attatien, one can reinitializg as

nk=n*t+pm(Sn*t-¢)

and the key point, here, relies on choosing the preconditigh—= %l. Above,p is a relaxation coefficient. Hence, each
iteration of the algorithm, to be implemented in order toorestruct the shear stress bninvolves the solution of both
problems 12) and (L3), to getSn and the solution of the following problem

div o(w) =0 in Q,
o(w)ng =Sn-¢ onls, (23)
w =0 onl,

needed to solve the systé8gx =Sn — & (x =won /).

5.3 Algorithm

Herein, we outline the algorithm to be implemented in oradesalve the inverse problem, that is to retrieve the void
w from the partially overdetermined boundary détg, T, - n) available onl". Let Q™€ be a domain containing a
cavity (or multiple cavities) whose location and shape arbd retrieved from boundary measurements. The partially
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overdetermined boundary data, namely the displacemgahd the normal component of the normal strégs n are
issued from a numerical computation of a direct problem alrerdomainQ® containing the cavity(ies) to recover
(synthetic data) as follows.

= 2
GivenTgy € [H*%(I’)} , we solve the direct problem

div o(u) =0 in QUYe,
o(u)n =Tq onl,
o(un, =0 ony,

up to a constant. Then, we takey, Tm-n) = (U, (Tq-n)- ). Since the partially overdetermined boundary dataTm-n)
are overspecified, the numerical procedure could be repesé the following algorithm stages. Let us assume that we
know the interfacgX and a level set functiok associated tgX.

(1) Shear stress reconstruction

(a) Choose an initial datg®.

(b) Solve the problemsl@) and (L3) in the domainQy, whereQy = 2\ .

(c) Solve the problem23) and getw.

(d) Letnk=n*1+pw.

(e) Go back to the first step (a) until the stopping condition:

|lup — unl| 2@ < gis reachedq is a given tolerance level; in the following section, we whioosee = 1072).

(2) Voids identification

(a) Compute the solutior®p,up) and(on, un) of the problems4) and 6) in the domainQy.

(b) Compute the velocity functiod on y¥, given by (L0).

(c) Update the level set functioh¥ by solving the level set equatio82) and get a new functiomk+1,

(d) Go back to the first step (1 a) until the stopping critei®fulfilled.

It should be noted that the stopping criterion of the al¢poniexposed above is

du (V1) <C (892,

whereC is a constant independent of the grid paramébterdy denotes the Hausdorff distance defined for two sets
A B C R? by
dy (AB) = max(supd (a,B) , supd (A, b))
beB

acA

where
d(a,B) =infla—b|.
beB

6 Results

The purpose of this section is to present numerical restiis.domair?/ is the squaré—1,1] x [—1,1] and we consider
the inverse problem of the identification of two cavitiesddéed, we consider disconnected cavities: the union of the tw
disjointed circles of radius 0.15 centred(at0.35,0) and(0.35,0) and a connected initial guess: the circle of radius 0.65
centred at the origin. The initial guess is sufficiently lidriclude the unknown cavities. The results reported in &aye

in good agreement with the exact ones and show the flexilofitie proposed methodology to recover multiple cavities
even from partially overdetermined boundary data.
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the exterior boundary (the dashed green liggle exact solution (the black line), the evolution of the thadary
V< (the red line) fokk = 1,300,434, 448 449 (left to right, top to bottom).

This paper introduces an iterative method for solving a getaoal inverse problem in linear elasticity. The problem
consists in recovering voids from partially overspecifiedibdary data. The approach proposed combines the resolutio
of a data completion problem and a cavities identificatioa. &hile transforming these both problems into optimizatio
ones, the same energy gap-cost functional is introducetheXoal simulations have highlighted the efficiency of the
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method. Some open questions such as the existence and tipeeness of solution concerning the shear stress
reconstruction problem deserve an answer. An extensioartdinear elasticity framework could be an interestingifet
direction of the investigation.
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