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Abstract: In this paper, we present two conjugate gradient methods choices for solving unconstrained optimization problems. This
attempts is to find suitable choices for parameter of a nonlinear conjugate gradient method proposed by Dai and Liao basedon the
matrix analysis and using the memoryless BFGS updating formula. Numerical results show that the proposed method is efficient for
the unconstrained problems in the CUTEr collection.
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1 Introduction

Conjugate gradient methods are a powerful line search method for solving large-scale optimization problems due to their

simplicity and low memory storage. The first CG-method was proposed by Hestenes and Stiefel [1] to solve the system of

linear equations, while a nonlinear method was introduced by Fletcher and Reeves [2] . Conjugate gradient (CG) methods

have attracted special attention for solving large-scale unconstrained optimization problems in the form.

minx∈Rn f (x) (1)

the objective functionf : R→Rn is supposed to be continuously differentiable, bounded from below, The method generate

a sequence of iterates.

xk+1 = xk+ sk, k= 0,1,2 (2)

wheresk = αkdk,αk is a suitable step length, anddk is a search direction computed recursively by:

d0 =−g0,dk+1 =−gk+1+βkdk k= 0,1,2 (3)

wheregk = ∇ f (xk)is the gradient of the objective function, andβk is a real scalar called conjugate parameter. The good

features of the method attracted many authors to develop it,and to design algorithms for solving optimization problems.

see the works by Polak and Ribière [3] , Polyak [4] , Dai and Liao [5] , Hager and Zhang [6,7] , Babaie-Kafaki and

Ghanbari [8,9,10,11,13], Babaie-Kafaki [12] and Andrei [14,15].

Usually, the step sizeαk is computed to satisfy some line search conditions [16]. In the convergence analyses and

implementation of conjugate gradient algorithms the standard Wolfe conditions [17,18]

f (xk+αkdk)− f (xk)≤ µαk gT
k dk (4)
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gT
k+1dk ≥ σgT

k dk (5)

wheredk is a descent direction andφ < µ < σ < 1, often have been considered. Also, the strong Wolfe line search

conditions consisting of (4) and can be used.

|gT
k+1dk| ≤ −σgT

k dk (6)

In an attempt to use quasi-Newton techniques in conjugate gradient algorithms, one of the essential CG parameters has

been proposed by Dai and Liao [5], can be written in the form.

β DL
k =

gT
k+1yk

dT
k yk

− t
gT

k+1sk

dT
k yk

(7)

whereyk = gk+1−gk , and t is a nonnegative parameter which has considerable effect on numerical performance of the

DL method.For general objective functions Dai and Liao proposed a new version for DL by using Powell’s nonnegative

restriction [20], that given by

β DL+
k = max{

gT
k+1yk

dT
k yk

,0}− t
gT

k+1sk

dT
k yk

(8)

Dai-Liao conjugate gradient method is one of the most efficient conjugate method, and is has been widely extended by

optimizing the parameter t in different ways. The search directions (7) of the DL method and (3) can be written as:

d0 =−g0, dk+1 =−Qk+1gk+1 k= 0,1,2 (9)

in which

Qk+1 = I −
skyT

k

yT
k sk

+ t
sksT

k

yT
k sk

(10)

is called the search direction matrix, and the above matrix (9) may not be symmetric and positive definite, therefore, the

direction generated by (8) does not satisfy the typical quasi-Newton condition. But, the direction (7) satisfies Dai-Liao

conjugate condition.

dT
k+1 yk =−t gT

k+1sk (11)

widely extended by optimizing the parameter t in different ways, Hager and Zhang [6] presented the following choice for

parameterβk.

βCGHZ
k = max{β HZ

K
−1

‖dk‖min{η ,‖gk‖}
} (12)

where

β HZ
k =

gT
k+1yk

dT
k yk

−2
‖yk‖

2

dT
k yk

gT
k+1sk

dT
k yk

(13)

The parameterβ HZ
k is one of the special case ofβ DL

k with t = 2‖yk‖
2

dT
k yk

. Then, minimizing some different upper bounds of

the spectral and Frobenius condition number of the search direction matrixQk+1, In [8] saman and Gambari, proposed

two choices for the parametert :

t∗k1
=

sT
k yk

‖sk‖2 +
‖yk‖

‖sk‖
, t∗k2

=
‖yk‖

‖sk‖
(14)

where‖.‖ stands for the Euclidean norm. Here, we propose a new two adaptive choices for t in (10), using the memoryless

BFGS updating formula [19]. The structure of the paper is as follows. In Section 2, based on a matrix analysis.
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2 Two new adaptive choices for (DL) Dai and Liao

In this part, we present the new adaptive choices for DL for the parameter t in (10) by minimizing the condition number.

2.1 The first adaptive choice for DL:

Here, we suggest the first adaptive choice in the form

t1 = ζ (1+
‖yk‖

2

sT
k yk

) (15)

whereζ > 0 is real parameter. Ifζ = 1then this makes the search direction matrixQk+1 given by (10) to be similar to

the memoryless BFGS updating formulaHk+1 given by in the form

Hk+1 = I −
skyT

k + yksT
k

sT
k yk

+(1+
‖yk‖

2

sT
k yk

)
sksT

k

sT
k yk

(16)

WhereHk+1 is an approximation for∇2 f (xk+1) . Babaie-Kafaki and Ghanbari in [8], show that the matrixQk+1 given by

(10) hasn−2 eigenvalues equal to 1, and two other singular values∂+
k and∂−

k satisfying

∂−
k ∂+

k = t
‖sk‖

2

sT
k yk

(17)

∂−
k

2∂+
k

2
= t2 ‖sk‖

4

(sT
k yk)2

+
‖sk‖

2‖yk‖
2

(sT
k yk)2

(18)

where∂−
k ≥ 1≥ ∂+

k , and we can suggest the following upper bound for the spectral condition number ofQk+1:

k(Qk+1) =
∂+

k

∂−
k

≤
∂−

k
2
+ ∂+

k
2

∂−
k ∂+

k

(19)

Now, from (17), (18) and (15), we get

∂−
k ∂+

k = ζ (1+
‖yk‖

2

sT
k yk

)
‖sk‖

2

sT
k yk

= ζ
‖sk‖

2

sT
k yk

+ ζ
‖yk‖

2

sT
k yk

‖sk‖
2

sT
k yk

(20)

and

∂−
k

2
+ ∂+

k
2
= ζ 2(1+

‖yk‖
4

sT
k yk

)2 ‖sk‖
4

(sT
k yk)2

+
‖yk‖

2‖sk‖
2

(sT
k yk)2

(21)

we put (20) and (21) in (19), we obtain

k(Qk+1)≤ ζ (1+
‖yk‖

2

sT
k yk

)
‖sk‖

2

sT
k yk

+
1
ζ

‖yk‖
2

‖yk‖2+ sT
k yk

(22)

The unique minimizer of the upper bound ofk(Qk+1) given by (22), can be written

ζ H1
k =

‖yk‖

‖sk‖

sT
k yk

sT
k yk+ ‖yk‖2

(23)
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Now, from (23) and (15), we get

tH1
k = t1 =

‖yk‖

‖sk‖

sT
k yk

sT
k yk+ ‖yk‖2

(1+
‖yk‖

2

sT
k yk

) (24)

2.2 The second adaptive choice for DL:

We suggest the second adaptive choice in the form

t2 = (1+ ζ )
‖yk‖

2

sT
k yk

(25)

whereζ > 0 is real parameter. Ifζ = 1, then this makes the search direction matrixQk+1 given by (10) to be similar to

the search direction that proposed by Hager and Zhang in equation (13),If ζ = 0, then this makes the search direction

matrixQk+1 given by (10) to be similar to the search direction that givenby (16).

Now, from (17), (18) and (25), we get

∂−
k ∂+

k = (1+ ζ )
‖yk‖

2

sT
k yk

‖sk‖
2

sT
k yk

=
‖yk‖

2

sT
k yk

‖sk‖
2

sT
k yk

+ ζ
‖yk‖

2

sT
k yk

‖sk‖
2

sT
k yk

≥ ζ
‖yk‖

2

sT
k yk

‖sk‖
2

sT
k yk

(26)

and

∂−
k

2
+ ∂+

k
2
= (1+ ζ )2‖yk‖

4‖sk‖
4

(sT
k yk)4

+
‖yk‖

2‖sk‖
2

(sT
k yk)2

= ζ 2(1+
‖yk‖

2

sT
k yk

)2 ‖sk‖
4

(sT
k yk)2

+
‖yk‖

2‖sk‖
2

(sT
k yk)2

(27)

we put (26) and (27) in (19), we obtain

k(Qk+1)≤ ζ
‖yk‖

2‖sk‖
2

(sT
k yk)2

+
1
ζ
‖yk‖

2‖sk‖
2+(sT

k yk)
2

(sT
k yk)2

+ c1 (28)

Wherec1 is a constant and an independent ofζ . After some algebraic manipulations, we can get

ζ H2
k =

√

1+
(sT

k yk)2

‖sk‖2‖yk‖2 (29)

Is the unique minimizer of the upper bound of thek(Qk+1) that given by (28) Now, we put (29) in (25), it can be seen that

tH2
k = t2 = [1+

√

1+
(sT

k yk)2

‖yk‖2‖sk‖2 ]
‖yk‖

2

sT
k yk

. (30)

3 Convergence analysis

In this part, we discuss the global convergence of the DL method by using the choices (24) and (30) for the parametert.

We need to make the following standard assumptions on the objective function.

3.1 Assumptions

(i)The objective function is bounded on the bounded level set S= {x∈ Rn : f (x)≤ f (x1)}.

(ii) In some neighborhoodN of S, is continuously differentiable and its gradient is Lipschitz continuous i.e.∃ a constant
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0< L < 1 such that

‖g(x)−g(y)‖ ≤ L‖x− y‖ ∀ x,y∈ N (31)

is satisfies.

Under the above assumptions onf , there exist a constantγ > 0 such that

‖g(x)‖ ≤ γ, f or all x ∈ S (32)

Now, if the search directiondk is descent in the iterative method (2) with standard line search (4), then{xk}k≥0 ⊆ S. Based

on eigenvalue analysis, Babaie-Kafaki and Ghanbari [10] show that if

t >
1
4
(
‖yk‖

2

sT
k yk

−
sT
k yk

‖sk‖2 ), (33)

thendk of the DL method satisfy the descent condition. Directly, weseen, botht1 given by (24) andt2 given by (30)

satisfies (33). Therefore, the DL method witht = t1, t2 owns the descent condition. The uniform convexity of the objective

function f ensures that there exists a positive constantµ such that

sT
k yk ≥ µ‖sk‖

2
, (34)

As seen, the equation (34) which together with (31) yields

tH1
k = t1 ≤

Lµ
µ +L2 (1+

L2

µ
), (35)

and

tH2
k = t2 ≤ (1+

√

1+
µ2

L2 )
L2

µ
(36)

thus,t = t1, t2 are bounded for uniformly convex objective function. In theother hand it’s consequently if the step size

αk is computed to satisfy some line search conditions (strong Wolf condition) (4) and (6), then the theorem 3.3 in [5],

achieve the global convergence of the DL method with (24) and(30) for general objective function, even with uniform

objective function.

4 Numerical results

The numerical results of the two new adaptive witht = t1, t2 are displayed in this section. We selected a number of

75 large-scale unconstrained optimization test functionsin generalized or extended form, presented in [21], where the

vast majority of problems are taken from CUTEr collection [22]. For each test function we have considered 10 numerical

experiments with the number of variables increasing as n = 100, 200, ..., 1000. Therefore, the numerical experiments

include a set of 750 unconstrained optimization test functions of different structures and complexities with the stopping

condition‖∇ f (xk)‖∞ ≤ 10−6 . The new algorithms were implemented Fortran 77 applying to DL+ method with the

different formulas (14), (24) and (30). so we denote the two new proposed choices in (24) and (30) by DLT1 and DLT2

respectively, we compare the new algorithms (DLT1 and DLT2)versus DLK1 and DLK2 that showed in (14). All codes

are written in Fortran 77 on PC, Intel(R) Core(TM) 2 Duo CPU T6400 @ 2.00GHz (2 CPUs), RAM 4.00 GB. Fig. 1

presents the Dolan and Moré’s [23] performance profile of DLT1 and DLT2 versus DLK1 DLK2 in number of iterations.
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Fig. 2 show that the performance profile of DLT1 and DLT2 versus DLK1 DLK2 in number of function and gradient

evaluation. Fig. 3 show that the performance profile of DLT1 and DLT2 versus DLK1 DLK2 in the CPU time.

Fig. 1: Total number of iteration performance profiles

Fig. 2: Total number of function and gradient evaluation performance profiles

5 Conclusion

The new algorithms presented a new choices ofDL+ conjugate gradient with descent property and global convergence

with the Wolfe line search. The new algorithms DLT1 and DLT2 give a good result compares with the other algorithms.
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Fig. 3: CPU time performance profiless
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