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Abstract: Two Darboux transformations of the Korteweg-de Vries (KdV)equation and Boussinesq equation are constructed through
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1 Introduction

In this paper the solution nonlinear partial differential equations using the Darboux transformation method is presented.
This chapter is organized as follow:

(•) Section 2 : Darboux transformation method (DT).
(•) Section 3: The singular manifold method illustrated with the deduction of Lax pair for KdV and Hirota-Satsuma

equations.
(•) Section 4: Solution of KdV and Boussinesq using Darboux Transformation.
(•) Section 5: Summary

2 Darboux transformation method

Darboux transformation (DT) is one of the methods used in solving nonlinear evolution equation and applies to a linear
algebraic formulation called; Lax system of equations, associated with the nonlinear evolution equation [1], [2]. Using the
Darboux transformation, explicit multi soliton solutions(one to three soliton solutions) are obtained from a trivialinitial
solution. We will present hereafter one and two soliton solutions.

2.1 One soliton solution

Basically, the Darboux transformation is a linear algebra formulation of the Lax pair solution. Consider the
Sturm-Liouville equation [3]

−ψxx + uψ = λ ψ (1)

whereψ is the stream velocity and u is the potential andλ is an eigen value.
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At λ = λ1 eq. (1) solution is denoted byψ1(x,λ 1) and Darboux transformation of the arbitrary solution of (1) is defined
by;

ψ [1] =

(

d
dx

−σ
)

ψ =

(

d
dx

− ψ ′
1

ψ1

)

ψ =
W (ψ1,ψ)

ψ1
(2)

whereW (ψ1,ψ) = ψ1ψ ′ − ψ ′
1ψ is the usual wronskian determinant,ψ1and ψ satisfy solutions of equation (1) for

λ , λ1.

The functionψ [1] satisfy eq. (1);
−ψxx [1]+ u [1]ψ [1] = λ ψ [1] (3)

In parallel we evaluate the Darboux transformation for potential u

u [1] = u−2σx = u0−2
d2

dx2 ln(ψ1) (4)

whereu0 is an initial (seed) solution of eq. (1), u[1] is a new solution for the same equation.

2.2 Two soliton solution

The DT if applied to (3) once more, produces a new solvable Sturm-Liouville equation. For the second step of this
procedure we have;

ψ [2] =

(

d
dx

− ψ ′
2[1]

ψ2[1]

)

ψ [1] =

(

d
dx

− ψ ′
2[1]

ψ2[1]

)(

d
dx

− ψ ′
1

ψ1

)

ψ (5)

whereψ2 [1] is a solution of the eq. (3) with λ = λ2, generated by some fixed solutionψ2(x,λ 2) of eq.(1);

ψ2 [1] = ψ2x −
ψ1x

ψ1
ψ2 =

W (ψ1,ψ2)

ψ1
(6)

The potential corresponding toψ [2] is then evaluated as

u [2] = u[1]−2
d2

dx2 lnψ2[1] = u0−2
d2

dx2 lnW (ψ1,ψ2) (7)

The formula (7) can be generalized to for an Nth -times repeated Darboux transformation, expressed completely in the
required Reviews Completed regarding initial equation (1) solution. We present in the following sections the derivation of
Lax pair through the singular manifold method.

3 The Singular Manifold Method

The Singular Manifold Method (SMM) is a series solution of nonlinear partial differential equations [4]. The SMM allows
us to drive Bäcklund transformations, Lax pairs, Darboux transformations for a partial differential equation. The Singular
Manifold Method [5] series solution of the PDE is written as:

u(z1,z2, . . . ,zn) =

∫ ∞

j=0
u j (z1,z2, . . . zn)φ (z1,z2, . . . ,zn)

j−α (8)

where zn are the independent variables, theu j (z1,z2, . . . . . . ,zn) represent analytic functions andφ (z1,z2, . . . . . . ,zn) are
the eigen functions or geometric manifold andα is a real number expressing the difference between the highest differential
order for nonlinear terms and the highest degree in linear term. Through this method we derive the Lax pairs for KdV and
Hirota Satsuma equations.
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3.1 Derivation of KdV equation, Lax pair

As an example we study the Korteweg–de Vries equation. The combined knowledge of the Painlevé test (8) and the
singular manifold method provides a systematic procedure to obtain the Lax pair, Darboux transformation and solutions
for the PDE under consideration. To explain it, let us consider the KdV equation in the form [6];

ut + uxxx +6uux = 0. (9)

As in eq. (8), α is evaluated from the difference between the highest differential order for nonlinear terms and the highest
degree in linear term, we find hereα= 2 (uux anduxxx difference in differential order). In this case the series expansion
(8) reduces to;

u(x, t) =
∫ ∞

j=0
u j (x, t)φ (x, t) j−2 = u0φ−2+ u1φ−1+ u2 (10)

This solutionu(x, t) will be substituted in eq. (9) as well as all its derivatives. Differentiate eq. (10) w.r.t (x) once gives;

ux =
u0x

φ2 −2
u0φx

φ3 +
u1x

φ
− u1φx

φ2 + u2x (11)

The term uux is obtained multiplying eq. (10) by (11) giving;

uux = ( u0φ−2+ u1φ−1+ u2)(
u0x

φ2 −2
u0φx

φ3 +
u1x

φ
− u1φx

φ2 + u2x)

Expanding the two brackets product;

uux =
u0xu0

φ4 −2
u0

2φx

φ5 +
u1xu0

φ3 − u1u0φ x

φ4 +
u0u2x

φ2 +
u0xu1

φ3 −2
u0u1φ x

φ4 +
u1xu1

φ2 − u1
2φx

φ3 +
u1u2x

φ

+
u2u0x

φ2 −2
u2u0φx

φ3 +
u2u1x

φ
− u2u1φx

φ2 + u2xu2. (12)

(1) To get the termuxxx , differentiate eq. (11) twice w.r.t (x)

uxxx =
u0xxx

φ2 −6
u0xxφx

φ3 −6
u0xφxx

φ3 +18
u0xφx

2

φ4 − 2u0φxxx

φ3 +18
u0φxφ xx

φ4 −24
u0φx

3

φ5 +
u1xxx

φ

−3
u1xxφx

φ2 −3
u1xφxx

φ2 +4
u1xφx

2

φ
− u1φxxx

φ2 +
6u1φxφ xx

φ3 +
2u1xφx

2

φ3 −6
u1φx

3

φ4 + u2xxx (13)

(2) Differentiate eq. (10) w.r.t (t) once

ut =
u0t

φ2 −2
u0φt

φ3 +
u1t

φ
− u1φt

φ2 + u2t (14)

Substitute from eq. (12), eq. (13), and eq. (14) in eq. (9);

ut +uxxx +3uux =(u2t +u2xxx +3u2xu2)+
(

u1t +u1xxx +4u1xφx
2+3u1u2x +3u2u1x

)

φ−1 (15)

+(u0t −u1φt +u0xxx −3u1xxφx −3u1xφxx −u1φxxx +3u0u2x +3u1xu1+3u2u0x −3u2u1φx)φ−2

+
(

−2u0φt −6u0xxφx −6u0xφxx −2u0φxxx +2u1xφx
2+3u1xu0+3u0xu1−3u1

2φx −6u2u0φx +6u1φxφ xx

)

φ−3

+
(

18u0xφx
2+18u0φxφ xx −6u1φx

3+3u0xu0−3u1u0φ x −6u0u1φ x

)

φ−4+
(

−24u0φx
3−6u0

2φx

)

φ−5

= 0

Comparing both sides of this equation;
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(1) Coefficients ofφ−5;
−24u0φx

3−12u0
2φx = 0;

u0 =−2φx
2 (16)

Differentiating eq. (16) twice;
u0x =−4φxφxx

u0xx =−4φxx
2−4φxφxxx

(17)

(2) Coefficients ofφ−4

18u0xφx
2+18u0φxφ xx −6u1φx

3+6u0xu0−18u0u1φ x = 0 (18)

Substitute from eq. (17) in the coefficients ofφ−4 (eq. 18) which reduce to the form;

−72φx
3φxx −36φx

3φ xx −6u1φx
3+48φx

3φxx +36u1φx
3 = 0

Simplifying we obtain;
u1 = 2φxx. (19)

(3) Coefficients ofφ−3

−2u0φt −6u0xxφx −6u0xφxx −2u0φxxx +6u1xφx
2+6u1xu0+6u0xu1−6u1

2φx −12u2u0φx +6u1φxφ xx = 0. (20)

Differentiating eq. (19) once;
u1x = 2φxxx (21)

and the coefficients ofφ−3 (eq. (20)) reduce to the form;

4φtφx
2−12φxφ xx

2+16φx
2φxxx +24u2φx

3 = 0

Simplifying results in;

u2 =−4φ xxx

6φx
+

φxx
2

2φx
2 − φt

6φ x

u2 is rewritten as follows;

u2 =−φxxx

2φx
+

φxx
2

4φ x
2 − 1

6
(

φxxx

φx
− 3φxx

2

2φ x
2 +

φt

φx
) (22)

The last term in eq. (22) is set equal toλ ,

λ =
1
6
(

φxxx

φx
− 3φ xx

2

2φ x
2 +

φt

φx
) =

1
6

φt

φx
+

1
6
{φxxx

φx
− 3φ xx

2

2φ x
2 } (23)

where the last term in eq. (23) is the Schwarzian derivative andλ rewrites as:

6λ =
φt

φx
+ {φ ;x}

and eq. (22) is rewritten as;

u2+λ =−φxxx

2φx
+

φxx
2

4φ x
2 (24)
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This equation can be written as;

u2+λ =
−1
2

∂
∂x

(

φxx

φx

)

− φxx
2

4φ x
2 (25)

Let;

φx = ψ2 (26)

this equation rewrites as;
φxx

φx
= 2

ψx

ψ
(27)

Substitute from eq. (27) in eq. (25);

u2+λ =− ∂
∂x

(

ψx

ψ

)

− (
ψx

ψ
)
2

(28)

Expand the differentiation;

u2+λ =−
(

ψxxψ −ψx
2

ψ2

)

− ψx
2

ψ2

Simplifying;

u2+λ =−
(

ψxx

ψ

)

So, the first Lax pair is expressed as;
(u2+λ )ψ =−ψxx. (29)

This first Lax pair is a Sturm - Liouville equation in u2andψ . To get the second Lax pair equation we start from eq.

(23); λ = 1
6

(

φxxx
φx

− 3φxx
2

2φ x
2 + φt

φx

)

. Rewriting this equation, we get;

λ =
1
6
(

φxxx

φx
− 3φ xx

2

2φ x
2 +

φt

φx
). (30)

Separate the termφ t ;

φt =−φxxx +
3φ xx

2

2φx
+6λ φx. (31)

Differentiate eq. (31) w.r.t (x) once;

φxt =−φxxxx +
3φxxφxxx

φx
− 3φ xx

3

2φx
2 +6λ φxx. (32)

As this equation contains nonlinear terms, we linearize them through the associated functionφx = ψ2 . Differentiating
both sides leads to;

φxt = 2ψψt

φxx = 2ψψx

φxxx = 2ψx
2+2ψψxx

(33)

From first Lax pair eq. (29) φxxx rewrites as;

φxxx = 2ψx
2−2(u2+λ )ψ2

Differentiate it once w.r.t (x);
φxxxx = 4ψxψxx −4ψψx(u2+λ )−2ψ2u2x (34)
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Replacing forψxx term with eq. (29) and substituting in eq. (34) yields;

φxxxx =−8ψxψ(u2+λ )−2ψ2u2x. (35)

Substitute from eq. (35), eq. (33) in eq. (32);

2ψψt = 8ψxψ(u2+λ )+2ψ2u2x +
12ψψx(ψx

2− (u2+λ )ψ2)

ψ2 − 12(ψψx)
3

ψ4 +12λ ψψx

Simplifying we obtain;
ψt =−2ψxu2+ψu2x+4λ ψx, (36)

this is the second Lax pair withu2 being a solution of the KdV; eq. (9) as long asλ is independent of time. As a result,
equations (29), (36) represent the Lax pair for KdV, with a spectral parameterλ = φt

φx
.

4 Applications of Darboux transformations to non-linear evolution equations

We here solve two nonlinear evolution equations; KdV and Boussinesq using Darboux transformation.

4.1 Solution of KdV equation using Darboux transformation

The Korteweg-de Vries (KdV) equation is a nonlinear partialdifferential equation modeling many physical phenomena
such as waves on shallow water surfaces, gas dynamics, hydromagnetic, plasma physics, and blood flow in arteries. This
equation writes as;

ut +6uux+ uxxx = 0 (37)

Their Lax pair system of equations;
ψxx =−(u+λ )ψ (38)

ψt =−4ψxxx −6uψx−3uxψ (39)

whereφx = ψ2
.

4.1.1 One soliton solution

From first DT;

ψ [1] = ψx −σψ ,σ =
ψ ′

1

ψ1
. (40)

This satisfies the first Lax pair equation;
ψxx [1] =−(u [1]+λ )ψ [1]

Replacing forψ [1] we obtain;
ψxx [1] =−(u [1]+λ )ψx +σ (u [1]+λ )ψ . (41)

Differentiate eq. (40) w.r.t (x) twice;

ψxx [1] = ψxxx −σxxψ −2σxψx −σψxx. (42)
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Differentiate the first Lax pair in eq. (38) w.r.t (x) once;

ψxxx =−(u+λ )ψx − uxψ (43)

Substitute from (43), (38) in (42);

ψxx [1] =−(u+λ+2σx)ψx +(−ux−σxx+σu+σλ )ψ (44)

Compare eq. (41) with eq. (44), coefficients ofψx;

u [1] = u [0]+2σx, (45)

whereu[0] is a seed solution. Consider a seed solution;

u [0] = 0 (46)

In this case Lax pair system reduces to;
ψxx =−λ ψ (47)

ψt =−4ψxxx (48)

Solve these equations (47), (48) together, we get;

ψ1 (x, t) = exp
(

0.5
(

k1x− k1
3t
))

+ exp
(

−0.5
(

k1x− k1
3t
))

(49)

whereλ =− k1
2

4 . Substituting from eq. (46), eq. (49) in eq. (45) gives:

u [1] =−0.5
(k1

2e0.5(k1 x−k1
3t) + k1

2e−0.5(k1 x−k1
3t))

e0.5(k1 x−k1
3t) + e−0.5(k1 x−k1

3t)
+0.5 (

k1e0.5(k1 x−k1
3t)− k1e−0.5(k1 x−k1

3t)

e0.5(k1 x−k1
3t) + e−0.5(k1 x−k1

3t)
)

2

Regrouping exponential terms give;

u [1] =
k1

2

2
sech2(0.5

(

k1x− k1
3t
))

(50)

This is an exact solution for the KdV equation. Fig. 1 shows this solution for various times and parameterk1. As time
increases fromt = 1 to t = 10 the wave moves keeping its amplitude. Increasing the parameter k1from 0.5 to 2 largely
increases the amplitude as it appears in Fig.1.c and d.

4.1.2 Comparison with previous work

We do in Fig. 2 compare our results using Darboux transformation with the tanh-coth method [8] results. They are found
similar.

4.2 Boussinesq equation

4.2.1 Historical background

Boussinesq approximation for water waves takes into account the vertical structure of the horizontal and vertical flow
velocity. This results in non-linear partial differentialequations, called Boussinesq-type equations, which incorporate
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(a). u[1] foru[0] = 0, k1 = 0.5, t = 1. (b). u[1] for u[0] = 0, k1 = 0.5, t = 10.

(c). u[1] for u[0] = 0, k1 = 2, t = 1. (d). u[1] for u[0] = 0, k1 = 2, t = 10.

Fig. 1: Soliton solutionu [1] = k1
2

2 sech2(0.5
(

k1x− k1
3t
))

for KdV equation with seed solutionu[0] = 0.

frequency dispersion as opposite to the shallow water equations, which are not frequency-dispersive. In coastal
engineering, Boussinesq-type equations are frequently used in computer models for the simulation of water waves in
shallow seas and harbors. While the Boussinesq approximation is applicable to fairly long waves - that is, when the
wavelength is large compared to the water depth - the Stokes expansion is more appropriate for short waves when the
wavelength is of the same order as the water depth, or shorter. Boussinesq equation writes as follows;

3εutt +(6uux+ uxxx)x = 0 ,ε =±1 (51)

Its Lax pair [9] write as;

ψxxx = λ ψ − 3
2

uψx −wψ (52)

ψt = β ψxx +β uψ (53)

wherewx =
3

4β (β uxx + ut), β 2 = ε, ψ is an eigen function weightingu andw series expansion.
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(a).u(x, t) = k1
2

2 sech2(0.5
(

k1x− k1
3t
))

, k1 =
1, t = 0.2.

(b). u(x, t) = w
2 sech2 (0.5

√
w(x−wt)) , w =

1, t = 0.2.

Fig. 2: Comparison betweenu(x, t) at w=1, u[0] = 0, t = 0.2 using D.T method and Tanh-Coth method.

4.2.2 One soliton solution

Starting from eq. (40);

ψ [1] = ψx −σψ , σ =
ψ ′

1

ψ1
(54)

The function ofψ [1] satisfy the equation (54), so;ψxxx [1] = λ ψ [1]− 3
2u[1]ψx [1]−w [1]ψ [1] (53). Differentiateψ [1] w.r.t

x.
ψx [1] = ψxx −σxψ −σψx. (55)

Substitute from eq. (55) in eq. (54);

ψxxx [1] = λ ψx −λ σψ − 3u [1]
2

(ψxx −σxψ −σψx)−w [1] (ψx −σψ)

ψxxx [1] =−3u [1]
2

ψxx +

(

λ +
3σu [1]

2
−w [1]

)

ψx +

(

−λ σ +
3σxu [1]

2
+w [1]σ

)

ψ (56)

Differentiate (55) w.r.tx twice,
ψxx [1] = ψxxx −σxxψ −2σxψx −σψxx

Then;
ψxxx [1] = ψxxxx −σxxxψ −3σxxψx −3σxψxx −σψxxx (57)

Differentiate first Lax pair eq. (52) w.r.t (x);

ψxxxx = (λ − 3ux

2
−w)ψx −

3
2

uψxx −wxψ (58)
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Substitute from eq. (58) in eq. (57);

ψxxx[1] = ( λ − 3ux

2
−w−3σxx+

3σu
2

)ψ
x
+

(

−3u
2

−3σx

)

ψxx +(−wx −σxxx −σλ +σw)ψ (59)

compare the coefficients of eq. (59) with eq. (57); Coefficients ofψxx;

u [1] = u [0]+2σx (60)

which this solution is a new solution for the Boussinesq equation (51).

4.2.3 Solitary wave solution of the Boussinesq equation andits Lax pair

Consider the seed solution in the form;
u [0] = 0 (61)

So the Lax pair equations (52, 53) will be;
ψxxx = λ ψ (62)

ψt = ψxx (63)

Solve these equations (62), (63) together, we get;

ψ1 (x, t) = exp
(

0.5
3
√

λ (−1+ I
√

3
)

x+
λ

2
3

4

(

−2−2I
√

3
)

t)+exp
(

−0.5
3
√

λ (−1+ I
√

3
)

x+
λ

2
3

4

(

−2+2I
√

3
)

t) (64)

asσ =
ψ ′

1
ψ1

hence,

σ=−
√

3
2

3
√

λ tan(

√
3

2
3
√

λ
(

−x+
3
√

λ t
)

−0.5
3
√

λ (65)

substitute from (65), (61) in (60);

u [1] =
−3
2

λ
2
3 (1+ tan(

√
3

2
3
√

λ
(

−x+
3
√

λ t
)

2

) (66)

This recurrent solution of Boussinesq equation (51) is plotted in Fig.3 for various times andλ . In Fig. (3-a, 3-b) the sharp
vertical waveu(x, t) downward response to a vertical force is depicted. The amplitude of the response decay with time
from 0 to 5 sec and the wave amplitude distribute [10-14]. Thehump’s amplitudes increase by increasing as shown in Fig.
(3-c, 3-d).

5 Conclusion

In this paper, we derive KdV and Boussinesq Lax pair. We then we solve two integrable systems KdV and Boussinesq
equations using Darboux transformation and plotted the results for different seeds solutions.
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(a).u[1] for u[0] = 0 , λ = 0.25, t = 0. (b). u[1] for u[0] = 0 , λ = 0.25, t = 5.

(c). u[1] for u[0] = 0 , λ = 1, t = 0. (d). u[1] for u[0] = 0 , λ = 1, t = 5.

Fig. 3: Soliton solution for Boussinesq equation for seed solutionu[0] = 0.
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