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1 Introduction

In this paper the solution nonlinear partial differentigbations using the Darboux transformation method is ptesen
This chapter is organized as follow:

(e) Section 2 : Darboux transformation method (DT).

(e) Section 3: The singular manifold method illustrated witk teduction of Lax pair for KdV and Hirota-Satsuma
equations.

(e) Section 4: Solution of KdV and Boussinesq using Darboux i@mation.

(e) Section 5: Summary

2 Darboux transfor mation method

Darboux transformation (DT) is one of the methods used iisglnonlinear evolution equation and applies to a linear
algebraic formulation called; Lax system of equationspeisded with the nonlinear evolution equation [1], [2]. bigithe
Darboux transformation, explicit multi soliton solutiof@ne to three soliton solutions) are obtained from a triiidlal
solution. We will present hereafter one and two soliton tohs.

2.1 One soliton solution

Basically, the Darboux transformation is a linear algeboamiulation of the Lax pair solution. Consider the
Sturm-Liouville equation [3]
—PotuP=2Ay¢ (1)

wherey is the stream velocity and u is the potential anis an eigen value.
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At A = A1 eq. () solution is denoted byy, (x, A ) and Darboux transformation of the arbitrary solutionBfié defined

whereW (¢, ) = Yy — Y1y is the usual wronskian determinantp;and ¢ satisfy solutions of equatiort) for
A, AL

The functiony[1] satisfy eq. 0);
—U[U+ull]@[1) =2 y[1] 3)

In parallel we evaluate the Darboux transformation for ptigdu

d2
ull]=u—20x= uofzwln(tpl) 4)

whereug is an initial (seed) solution of eql), u[1] is a new solution for the same equation.

2.2 Two soliton solution

The DT if applied to 8) once more, produces a new solvable Sturm-Liouville eguati-or the second step of this

procedure we have;
_(d g, S (d gL\ /d
v~ (G- gm ) v = (& i) (& )¢ ©

whereys, [1] is a solution of the eq.3) with A = A,, generated by some fixed solutiga(x, A ,) of eq.(L);

Pix W(in, ¢)
1 = _— = _— 6
Yo (1] = Pax wltl-lz m (6)
The potential corresponding tp[2] is then evaluated as
ul2] =u[l] - 2d—2|nl.[_l 1] =uo— Zd—2|nW(L[J W) (7
= dXZ 2 = Yo dXZ 1, Y2

The formula ) can be generalized to for an Nth -times repeated Darboumsfivtamation, expressed completely in the
required Reviews Completed regarding initial equatirsplution. We present in the following sections the dertvabf
Lax pair through the singular manifold method.

3 The Singular Manifold Method

The Singular Manifold Method (SMM) is a series solution ohtinear partial differential equations [4]. The SMM allows
us to drive Backlund transformations, Lax pairs, Darboarsformations for a partial differential equation. Thedgilar
Manifold Method [5] series solution of the PDE is written as:

u(zl,zz,...,zn):/ Ouj (zl,zz,...zn)qo(zl,zz,...,zn)j"’ (8)
P J:

where z are the independent variables, i€z, 2,...... ,Zn) represent analytic functions angl(zy, 2y, .... .. ,Zn) are
the eigen functions or geometric manifold amdk a real number expressing the difference between the stigiferential
order for nonlinear terms and the highest degree in linear.t€hrough this method we derive the Lax pairs for KdV and
Hirota Satsuma equations.
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3.1 Derivation of KdV equation, Lax pair

As an example we study the Korteweg—de Vries equation. Thebowed knowledge of the Painlevé te$) @nd the
singular manifold method provides a systematic procedumbtain the Lax pair, Darboux transformation and solutions
for the PDE under consideration. To explain it, let us coasttle KdV equation in the form [6];

Ut + Usx + BUUy = O. )

Asin eg. @), a is evaluated from the difference between the highest @ifféal order for nonlinear terms and the highest
degree in linear term, we find hece= 2 (uux anduyy difference in differential order). In this case the seriggansion
(8) reduces to;

u(x,t) = / Ui () @) 2 = up 2+ w4 u; (10)
j=0
This solutionu(x, t) will be substituted in eq.9) as well as all its derivatives. Differentiate ed0f w.r.t (X) once gives;

Uox Uo@  Uix UGk
Uy=— —2—%+———-+U 11

The term uuy is obtained multiplying eq.10) by (11) giving;

u u u u
Uk = (U0 >+ 1 o) (5 — 2+ == 2 U

Expanding the two brackets product;

Uoxo 2u02(,q( Updo  UnUo®y | UoUpx | UoUs  ,UoUa¢y  Unlh U@ Uplpy
¢ » @ ¢t » P ¢ N ¢

Upu Upu Upu Upu
| Ylox U2 ok | Ualix U l@(—i—uquz. (12)

@ @ ¢ @

(1) To get the ternuyy , differentiate eq.11) twice w.r.t )

qu =

Uooo _ oUootk  gUodix 18900 2000

U = Yo P _ 5 4Uo(ﬂ<3 U
@ @ ¢ ¢* @

+

+18 e e o

2 2 3
Upo@k U@ | U@ Ui | BUL@@Py | 2U1xk U1 gk
-3 -3 +4 — + + -6 +u 13
@ @ Yo @ g g g Tl (13)
(2) Differentiate eq.10) w.r.t (t) once
Uot Uo@ Uxx U@
U=— p00 A IRy 14
P I B ()
Substitute from eq.12), eq. (L3), and eq. 14) in eq. O);
Ut + Uyoex + SUlx = (Ut + Uowxx + Sk Un) + (un + Ugyxx + 4u1x<,@<2 —+ 3uq Uy + 3uzu1x> (p’l (15)

+ (Uot — U1t + Uoroex — 3o @k — 3U1xBox — U Pocx -+ 3UgUiax + 3Uizx Uy + 3UzUox — 3upUs k) @2
—2Up@ — BUowx B — BUox Box — 2Uo PBocx + 2U1x @ -+ 3ui1xUp + 3oxUy — 3U1 2@ — BUpUo G + 6U1(B<<Pxx> ¢ 3

“
+ (1800x@3 + 18000 P — 61 B + BloxUo — BurUo@y — B @y ) 9+ (~24u0C — BuoPx) ¢

Comparing both sides of this equation;
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(1) Coefficients of¢~>;
—24u0p3 — 12ug’ gy = 0;

Ug = —2¢°

Differentiating eq. {6) twice;
Uox = — 4P
U = —400” — AP

(2) Coefficients ofgp~*
18Uox @ + 18Ug Py — 6U1 G + Bligylio — 18Uglly ¢y = O

Substitute from eq.1(7) in the coefficients ofp~* (eq. 18) which reduce to the form;

—7203 G — 3603 Q, — 6U1 B + 4803 P+ 36125 = 0

Simplifying we obtain;
U = 2([30(.

(3) Coefficients ofp~3

(16)

(17)

(18)

(19)

—2Up@ — Bl B — BUox B — 2UpPhocx + BU1 B + BUaxUp + BUoxUy — 6U1 2% — 12UsUg@k + BUL k@, = 0. (20)

Differentiating eq. {9) once;
U1x = 2@

and the coefficients ofp2 (eq. (20)) reduce to the form;

4@ — 1200, + 1602 o + 243 = 0

Simplifying results in;
A0 | B

U, =
2T g 202 6o,

Uy is rewritten as follows;

The last term in eq.22) is set equal ta\,

1 30,2 1 1 30,2
)\:6(%7 Prox (R)—_£+_ %f&}

+ =
& 202 & 6@ 6 @& 202

where the last term in eg2) is the Schwarzian derivative addrewrites as:
¢@
6A = —+{@g;x
o Tlox

and eq. 22) is rewritten as;

2
Uyt A = — Do

20 42

(21)

(22)

(23)

(24)
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This equation can be written as;

10 (¢ B’
u+A= 5 dX((&)4(pX2 (25)
Let;
— 2
=y (26)
this equation rewrites as;
P _ o (27)
2% Y
Substitute from eq.27) in eq. 25);
_ 0 () _ (W2
uz+)\ax<w> (‘-/-’) (28)
Expand the differentiation;
ol — P3N PP
e = () -4z
Simplifying;
P
rr-(%)
? i
So, the first Lax pair is expressed as;
(Up+ M) = — . (29)

This first Lax pair is a Sturm - Liouville equation inpand . To get the second Lax pair equation we start from eq.

(232 =1 (% - %"xj + %). Rewriting this equation, we get;

1 g 3<0xx2+g)

==(=— . 30
Separate the terng;;
oot 28 (31)
@ = —Boxx 20, (12
Differentiate eq. 81) w.r.t (x) once;
3 3¢,°
Ot = — Qoooc + 2F 2o ) g (32)
3 24

As this equation contains nonlinear terms, we linearizenttlerough the associated functign = 2 . Differentiating
both sides leads to;
Be = 2y
Box = 24y (33)
Box = 2% + 2P

From first Lax pair eq.29) @ rewrites as;

Poo = 204% — 2(Uy + A ) Y

Differentiate it once w.r.tX);
Boo = Mk x — PP (Uy + A ) — 202upy (34)
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Replacing foryyy term with eq. 29) and substituting in eq3@) yields;
Boox = — Bk (Uy + A ) — 27Uy (35)
Substitute from eq.35), eq. B3) in eq. 32);

120 — (U + )P 12(pyy)®
@2 Wy

204 = 8k (Uy + A ) + 24 %Upc + + 122 Pk

Simplifying we obtain;
Y = =20, Uz + Yo+ 4A Yy, (36)

this is the second Lax pair witly, being a solution of the KdV; eq9] as long as\ is independent of time. As a result,

equations29), (36) represent the Lax pair for KdV, with a spectral paramater %.

4 Applications of Darboux transformationsto non-linear evolution equations

We here solve two nonlinear evolution equations; KdV and®8mesq using Darboux transformation.

4.1 Solution of KdV equation using Darboux transformation

The Korteweg-de Vries (KdV) equation is a nonlinear paifflerential equation modeling many physical phenomena
such as waves on shallow water surfaces, gas dynamics,mgdreetic, plasma physics, and blood flow in arteries. This
equation writes as;

Ut + Buuy + Uyyx = 0 (37)
Their Lax pair system of equations;
Yoo =—(U+A) Y (38)
Y = — Ao — BUYPK — uxy (39)
whereg = (/2.
4.1.1 One soliton solution
From first DT;
Wi =g op,o=2, (40)
Y1

This satisfies the first Lax pair equation;
W [1] = —(u[1] + ) @[]

Replacing fony[1] we obtain;
U [1] = —(U[L]+A )Yy + 0 (U[I] +A) . (41)

Differentiate eq.40) w.r.t (x) twice;

Wk [1] = Phoox — Oxx P — 20x Wy — O Wik (42)
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Differentiate the first Lax pair in eq38) w.r.t (x) once;
Poox = — (U+A) P — Uy (43)
Substitute from43), (38) in (42);
P [1] = — (U+ A +20x) P+ (—Ux— Oxx+0U+ TA) Y (44)
Compare eq.41) with eq. @4), coefficients ofy;
u[1] = u[0] +20x, (45)

whereu[0] is a seed solution. Consider a seed solution;

ul0j=0 (46)
In this case Lax pair system reduces to;
Y= —AY (47)
= — AP (48)
Solve these equationd?), (48) together, we get;
Y1 (xt) = exp (0.5 (kyx— k13t)) +exp (—0.5 (kix — kl3t)) (49)

whereA = —'%2 . Substituting from eq.46), eq. @9) in eq. @45) gives:

2

(k12e°'5(k1 x—ki’t) 4 1, 2705(ke x7k13t)) ky 5k x—ka®t) _ j @05(ka x—ka)
uft]=-05 05(k x—ka®) | 605k x—ka’t) +05¢( 05k x—ki*t) | g-05(ky x—ko’t) )
Regrouping exponential terms give;
u[l] = ki;sech2 (0.5 (kix— ki%t)) (50)

This is an exact solution for the KdV equation. Fig. 1 shows #olution for various times and parameker As time
increases fromh = 1 tot = 10 the wave moves keeping its amplitude. Increasing thenpeter kfrom 0.5 to 2 largely
increases the amplitude as it appears in Fig.1.c and d.

4.1.2 Comparison with previous work

We do in Fig. 2 compare our results using Darboux transfaonatith the tanh-coth method [8] results. They are found
similar.

4.2 Boussinesq equation
4.2.1 Historical background

Boussinesq approximation for water waves takes into addhenvertical structure of the horizontal and vertical flow
velocity. This results in non-linear partial differentiefjuations, called Boussinesq-type equations, which jprate
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(d). u[1] foru[0] = 0,k; = 2,t = 10.
Fig. 1: Soliton solutioru[1] = k”

22 sech? (0.5 (kix — kq®t) ) for KdV equation with seed solutiouf0] = 0.

frequency dispersion as opposite to the shallow water emnstwhich are not frequency-dispersive. In coastal
engineering, Boussinesg-type equations are frequendgt irs computer models for the simulation of water waves in
shallow seas and harbors. While the Boussinesq approximaiapplicable to fairly long waves - that is, when the

wavelength is large compared to the water depth - the Stolqgension is more appropriate for short waves when the
wavelength is of the same order as the water depth, or shBrdassinesq equation writes as follows;

3eUt + (BUUx + Up), =0 ,€ =+£1
Its Lax pair [9] write as;

(51)
3
WW:AW_EU‘-/-’X—WW (52)
Y = B+ Buy (53)
wherewy = % (Bux+u), B< =&, Y is an eigen function weightingandw series expansion.
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(b). u(x,t) = ¥sech? (0.5/W(x—Wt)), w=
1t=0.2.
Fig. 2: Comparison betweem(x,t) at w=1, u[0] = 0, t = 0.2 using D.T method and Tanh-Coth method.

4.2.2 One soliton solution

Starting from eq.40);

W)= oy, o= (54)
Y1

The function ofy [1] satisfy the equatiorb), ok [1] = A W[1] — Su[1]¢x [1] —w[1] @[1] (59). Differentiatey [1] w.r.t

X.

Uk[1] = o — OxY — T
Substitute from eq.55) in eq. 64);

(55)
3u(l
o1 = M~ A0 — 02 (Yo~ 03— o) — WL (U~ 0)
W [1] = —3”7[1]% + ( At 3"; 1] —W[l]) Ut (—/\ ot 30*; 4wy 0) W (56)
Differentiate (55) w.r.k twice,
Wix [1] = Phox — Oxx P — 205 — T Py
Then;
Whoox [1] = Yhoook — o) — 305xx — 30xPhex — T Phoxx (57)
Differentiate first Lax pair eq.52) w.r.t (X);
3uy 3
oo = (A — %_W)QUX - EULIJXX — Wyl (58)
(© 2018 BISKA Bilisim Technology
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Substitute from eq.58) in eq. 67);

Uox[1] = ()\—%— 3am+£?)wx+<i;30x>wm+( — Opx— OA +OoW) Y (59)

compare the coefficients of edp9) with eq. 67); Coefficients ofiy;
u[l] = u[0]+20x (60)

which this solution is a new solution for the Boussinesq ¢éigud51).

4.2.3 Solitary wave solution of the Boussinesq equationirnidax pair

Consider the seed solution in the form;

ul0j=0 (61)

So the Lax pair equations (52, 53) will be;
Pox =AY (62)
U = Uk (63)

Solve these equation€2), (63) together, we get;

2

g1 (x.t) =exp (0.5VA(~1+1v3) x+)\—( 2-21V3) ) +exp (—05VA(-1+1v3) x+)\—< 2+21V3)1) (64)

/
aso = % hence,
1

o= \/_\/_tn(\/_\/_( x+\/_t) 05VA (65)
substitute from5), (61) in (60);
2
ufl] = _73}\% (1+tan(§\3/)\_(—x+ \3/)\_t) ) (66)

This recurrent solution of Boussinesq equatibt (s plotted in Fig.3 for various times arid In Fig. (3-a, 3-b) the sharp
vertical waveu(x,t) downward response to a vertical force is depicted. The anuaiof the response decay with time
from 0 to 5 sec and the wave amplitude distribute [10-14]. Atn@p’s amplitudes increase by increasing as shown in Fig.
(3-c, 3-d).

5 Conclusion
In this paper, we derive KdV and Boussinesq Lax pair. We thersalve two integrable systems KdV and Boussinesq
equations using Darboux transformation and plotted theltse®or different seeds solutions.
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(c).u[1]forul0]=0,A =1t=0. (d).u[1] foru[0]=0,A =1 t=5.

Fig. 3: Soliton solution for Boussinesq equation for seed solutii@= 0.
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