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Abstract: Soliton solutions as far as hyperbolic cosines to the matiKadomtsev—Petviashvili Il equation are displayed. The
behaviour of each line soliton in the far region can be chiargzed analytically. It is revealed that under certainditians, there may
appear an isolated bump in the interaction centre, whichuisimhigher in peak amplitude than the surrounding line @adit and the
more line solitons interact, the higher isolated bump wiinfi. These results may provide a clue to generation of exrem
high-amplitude waves, in a reservoir of small waves, bagedamlinear interactions between the involved waves.
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1 Introduction

Soliton is some kind of highly nonlinear wave-packet unligte ubiquitous in nature; it manifests itself in many
physical settings such as the shallow- and deep water waye, the light pulses in optical fibres [3, 4], the spatiatlan
spatiotemporal localized structures in nonlinear optioadia [5-8], the matter waves in Bose Einstein condensates
[9-12], and even the domain walls in supergravity [13]. Itsex by a delicate balance between the dispersion (or
diffraction) that tends to expand the wave-packet and tidimear effect that tends to localize it (in dissipative taxts,

it requires also an extra balance between gain and loss. [¥} strict sense, the soliton concept is a sophisticated
mathematical construct associated to the integrabilita afass of nonlinear differential equations [15] and tylhca
obtained by means of the inverse scattering transform [li&].soliton theory of integrable equations is a broad ang ver
active field of mathematical research [17, 18].

The main objective of this paper is to solve the modified KatdewrPetviashvili-ll equation using Darboux
transformation. This paper is organized as follow:

(1) Section 2 : Historical Background.
(2) Section 3 : Darboux transformation for modified KadomtBetviashvili-1l equation.
(3) Section 4: Comparison.

2 Historical background

This equation describes water wave$iry)-plane when the nonlinearity is higher than for the KP equmatit has been
introduced in various forms. One of its forms [19, 20] is;

A + Vo — BV + Bwk(d L)+ 3(3twy) = O (1)
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where(d 1) (x) = [ f(t)dt Lax pairs of modified KP equation [20] have the form;

Ut = Uy — 2 )

A, = — Ao — 120hx — BVicllix — 6(F vy Uk — BV2 L. 3)
For simplification assume;,= uy , So eq. 1) rewrites as;
AUy + Upox — BUx2Usx + Bl Uy + 3uyy = O (4)
and its Lax pair eqs2j, (3) rewrite as;

Wx = Py — Ul (5)

AP, = — Mfhoex — 120 Yo — Bl i — BU Uk — UL (6)

3 One soliton solution for the modified Kadomtsev-Petviashu-l1I (mKPII) equation

Consider the first DT with the form,

g W du
Y=oy o= =g )

andy , ynare two solutions of the Lax pair equations|1] satisfies eq.5);

U [1] = oy [1] — 2u L] 4k [1] (8)

Differentiatey [1] w.r.t (x) and(y) once separately;

W[l = gy — oy — oy 9)

Uk [l = Yy — 2uxPy — Ox P — O (20)
Substituting from eq.9), eq. (L0) in eq. @) we obtain;

B[ 1] = Py + (= 0y + 2ux [1] 0) Y + (4Ux + 20) Ux [1] Y+ (=0 — 2ux[1]) gy (11)
Differentiating eq. ) w.r.t (X) twice;
W [1] = Yo — Ol — 20xtP— OY (12)
Differentiate first Lax pair eq.5) w.r.t (X) once;
Yhoo = Yhy — 2Whocll — 2Uhlfic (13)
Substitute from eq.1(3) and eq. §) in (12);

Wi [1] = Py — Uy — 2Ux(Py — 2uxPy) — OxxlP) — 20x P — T (YPy — 2uxtfy)
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Rearrangingp coefficients yields;
W [1] = Yy — Oy + (— 2+ dUE—205 + 2Ux0 ) Py— Ox )
Comparing coefficients ap, in eq. (1) and eq. {4) gives;

(4Uy 4 20) Uy [1] = —2Uyx + 4Uy®—20% + 2UxT

So;
Uxx[0] + ©;
Ux[1] = Uy [0] — aXXTux[oT
as v = Uy, this equation reduces to;
vx[0] + o
=v[0]- ——
V=V~ S

(14)

(15)

(16)

These are mKP equation recurrent solutions. They are irofleniing sections tested for several seeds solutions.

3.1 Firstinitial (seed) solution

Assuming an initial wave;

ul0j=0
v[0]=0
Hence Lax pair equation§), (6) reduced to;
‘-I-’xx = l,Uy
44’t = — AP

Foré = x + y —t the solution of this system of equation is;
Yxyt) =Xyl

We then evaluate

alxt+y-t)
T ey 1]

Substitute from eq.21) in eq. (L5) and eq. 16);

glx+y-t)

ull]=-In(o) = 7|n(e(x+y7t)+1)
which is a new solution of the equatiof)) (and;
_ —O0x _ 1
vt = o ebsy-t4g

This is a new solution of the mKP-Il equatiof (llustrated in Fig.5.1 at different times.

17)

(18)

(19)

(20)

(21)

(22)

(23)
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(b). v[1] for vp=0,w=0, t=5.

(c). v[1] for vo=0,1=0, t=10.

Fig. 1: Solution of the mKP-II equationlj with initial seed solution v[0]=0, u[0]=0.

3.2 Second seed solution

Assuming an initial wave;

u[0] = 0.5x
v[0] =0.5 (24)
Lax pair equationsy), (6) reduced to;
Yx = ‘,Uy — Yk (25)
3
At = — Ao — Blfroc— 5 U (26)
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Solve two equations together;

W (xy,t) = "5 ~1)x+0.25(A% 1)y~ 15 (2A3-3A+1)t | o05A+1)x+0.25(A%~1)y+ f5(2A°-3A - 1)t 27)
So;
1
a:o.s;\tanh(o.s;\x_E(z;@_s)\)t) - 05 (28)

Substituting from eq.28) in eq. (L5) and eq. {6) we obtain;

u[l] = 0.5x—In(—0.51 tanh(O.S/\er 1_16 (2A3-3)) t) +0.5) (29)

A2(1—tanh(—0.5Ax+ & (243 - 32)1)%)

v[1]=05-0.25 .
—0.5Atanh(—0.5Ax + & (23— 3A)t) +0.5

(30)

This is a Darboux solution of the mKP-II equatiot) depicted in Fig.5.2 at different times. We notice that trevev
moves slowly to negative values xf

3.3 Third seed solution

Assuming an initial seed wave;

uf0] =x
v =1 (31)
Lax pair equationss), (6) reduced to;
Y = ‘-/-’y — 24k (32)
Solving these equations together, we get;
P (x,y,t) = €A~ (A2-1)y=(A*=3A+05)t | oA+ D (A2-1)y+(A3-3A+05)t (34)
. _ v,
Evaluatingo = ﬁ ,
o= /\tanh<)\x ()\3§)\>t> -1 (35)
Substitute from eq.35) in eq. (L5) and eq. 16);
ufl] =x—In (1)\tant()\x+ <A3g/\)t)> (36)
A2(1—tanH-Ax+ (A3 - 2A)0)°
v = 1 A tanEAXE (A7 3A) 1) (37)

~ —Atanh(-Ax+ (A3—3A)t) +1

This is a new solution of the mKP-II equatiot) (depicted in Fig 5.3 at different times. We notice in this figthat the
wave pic moves quicker on the negativaxis that in the previous case with seed waj=0.5, u[0]=0.5x.
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(b). v[1] for vp=0.5, p =05x,A = 0.25, t=20.

(BN Lo

1k Ak~

047

3 30—
3 ~ | -2 =30
s 22 4p 30 200 100

(c). v[1] for vp=0.5, b =0.5%, A = 0.25, t=30.
Fig. 2: Solution of the mKP-II equationd]) for v[1] for vg=0.5, uy =0.5x, A = 0.25.

3.4 Comparison

Wazwaz [19] did solve eqlj using Hirota-bilinear method. He assumed a solution irfdine;

e(k1x+k§y—(k§+ak§+ﬁkl)t)

vxyt) = 1 + elkoxtigy—(id+aki+Bki)t) (38)
Settingk; = —1,a , B = 0 in this equation yields;
e(—x+y+t) -1
V(X7 y7t) = 1+e(_x+y+t) = 1+e(x—y—t) (39)

A plot of the solution eq.38) in Fig. 5.4 together with our solution in e®3) shows a similarity of form.
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(a). v[1] for vp=1, up=x, A = 0.25, t=0. (b). v[1] for vo=1, ug=x, A = 0.25, t=10.

T"-n-r‘ ap 1o 0 -'In-_"u-.'u--l-.-

a0 A
X

(c). v[1] for vo=1, up=x, A = 0.25, t=20.
Fig. 3: Solution of the mKP-II equationlj with initial solution v[0]=1, u[0]=x, A = 0.25.

4 Conclusion

In conclusion, we presented soliton solutions to the KRjUation, using Darboux transformation. We showed thaigthes
resonant soliton solutions could exhibit rich intriguinddraction patterns on a finite background, some of which may
change drastically with the evolution time, some may ndigvéng like a spatiotemporal bullet propagating along teder
direction. Despite all this, both the amplitudes and prapiag directions of these resonant line solitons occuririrtpe
interaction centre and in the asymptotic far region can biécharacterized analytically. We unveiled further thatlen
certain conditions, there may appear an isolated bump imteeaction centre, which is much higher in peak amplitude
than the surrounding line solitons, and the more line saditmteract, the higher isolated bump will form. The results
reported in this work may provide a clue to forming extrenghhamplitude waves (e.g., rogue waves), in a reservoir of
small waves, based on nonlinear wave interactions.
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Fig. 4: Comparison of solution of mKP-1l equation by using Hirotéirear method with our result equatio@3) using
DT.
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