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Abstract: Soliton solutions as far as hyperbolic cosines to the modified Kadomtsev–Petviashvili II equation are displayed. The
behaviour of each line soliton in the far region can be characterized analytically. It is revealed that under certain conditions, there may
appear an isolated bump in the interaction centre, which is much higher in peak amplitude than the surrounding line solitons, and the
more line solitons interact, the higher isolated bump will form. These results may provide a clue to generation of extreme
high-amplitude waves, in a reservoir of small waves, based on nonlinear interactions between the involved waves.
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1 Introduction

Soliton is some kind of highly nonlinear wave-packet unusual yet ubiquitous in nature; it manifests itself in many
physical settings such as the shallow- and deep water waves [1, 2], the light pulses in optical fibres [3, 4], the spatial and
spatiotemporal localized structures in nonlinear opticalmedia [5–8], the matter waves in Bose Einstein condensates
[9–12], and even the domain walls in supergravity [13]. It exists by a delicate balance between the dispersion (or
diffraction) that tends to expand the wave-packet and the nonlinear effect that tends to localize it (in dissipative contexts,
it requires also an extra balance between gain and loss [14]). In a strict sense, the soliton concept is a sophisticated
mathematical construct associated to the integrability ofa class of nonlinear differential equations [15] and typically
obtained by means of the inverse scattering transform [16].The soliton theory of integrable equations is a broad and very
active field of mathematical research [17, 18].

The main objective of this paper is to solve the modified Kadomtsev-Petviashvili-II equation using Darboux
transformation. This paper is organized as follow:

(1) Section 2 : Historical Background.
(2) Section 3 : Darboux transformation for modified Kadomtsev-Petviashvili-II equation.
(3) Section 4: Comparison.

2 Historical background

This equation describes water waves in(x,y)-plane when the nonlinearity is higher than for the KP equation. It has been
introduced in various forms. One of its forms [19, 20] is;

4vt + vxxx − 6v2vx + 6vx(∂−1
x vy)+ 3(∂−1

x vyy) = 0 (1)
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where(∂−1
x f )(x) =

∫ x
−∝ f (t)dt Lax pairs of modified KP equation [20] have the form;

ψxx = ψy −2vψx (2)

4ψt =−4ψxxx −12vψxx −6vxψx −6(∂−1
x vy)ψx −6v2ψx. (3)

For simplification assume;v = ux , So eq. (1) rewrites as;

4uxt + uxxxx − 6ux
2uxx + 6uxx uy + 3uyy = 0 (4)

and its Lax pair eqs. (2), (3) rewrite as;
ψxx = ψy −2uxψx (5)

4ψt =−4ψxxx −12uxψxx −6uxxψx −6uyψx −6ux
2ψx. (6)

3 One soliton solution for the modified Kadomtsev-Petviashvili-II (mKPII) equation

Consider the first DT with the form,

ψ [1] = ψx −σψ ,σ =
ψ ′

1

ψ1
, ψ

′

1 =
dψ1

dx
(7)

andψ ,ψ1are two solutions of the Lax pair equations.ψ [1] satisfies eq. (5);

ψxx [1] = ψy [1]−2ux[1]ψx[1] (8)

Differentiateψ [1] w.r.t (x) and(y) once separately;

ψy [1] = ψxy −σyψ −σψy (9)

ψx [1] = ψy −2uxψx −σxψ −σψx (10)

Substituting from eq. (9), eq. (10) in eq. (8) we obtain;

ψxx [1] = ψxy +(−σy +2ux [1]σx)ψ +(4ux +2σ)ux [1]ψx +(−σ −2ux [1])ψy (11)

Differentiating eq. (7) w.r.t (x) twice;

ψxx [1] = ψxxx −σxxψ −2σxψx −σψ xx (12)

Differentiate first Lax pair eq. (5) w.r.t (x) once;

ψxxx = ψxy −2uxxψx −2uxψxx (13)

Substitute from eq. (13) and eq. (5) in (12);

ψxx [1] = ψxy −2uxxψx −2ux(ψy −2uxψx)−σxxψ −2σxψx −σ(ψy −2uxψx)
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Rearrangingψ coefficients yields;

ψxx [1] = ψxy−σψy +
(

−2uxx +4ux
2
−2σ x +2uxσ

)

ψx−σxxψ (14)

Comparing coefficients ofψx in eq. (11) and eq. (14) gives;

(4ux +2σ)ux [1] =−2uxx +4ux
2
−2σ x +2uxσ

So;

ux [1] = ux [0]−
uxx[0]+σx

σ +2ux [0]
(15)

as v = ux , this equation reduces to;

v [1] = v [0]−
vx[0]+σx

σ +2v [0]
(16)

These are mKP equation recurrent solutions. They are in the following sections tested for several seeds solutions.

3.1 First initial (seed) solution

Assuming an initial wave;

u [0] = 0
v [0] = 0

(17)

Hence Lax pair equations (5), (6) reduced to;
ψxx = ψy (18)

4ψt =−4ψxxx (19)

For ξ = x + y − t the solution of this system of equation is;

ψ (x,y, t) = e(x+y−t)+1 (20)

We then evaluate

σ =
e(x+y−t)

e(x+y−t)+1
(21)

Substitute from eq. (21) in eq. (15) and eq. (16);

u[1] =−ln(σ) =−ln(
e(x+y−t)

e(x+y−t)+1
) (22)

which is a new solution of the equation (4). and;

v [1] =
−σ x

σ
=−

1

e(x+y−t)+1
(23)

This is a new solution of the mKP-II equation (1) illustrated in Fig.5.1 at different times.
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(a). v[1] for v0=0,u0=0, t=0. (b). v[1] for v0=0,u0=0, t=5.

(c). v[1] for v0=0,u0=0, t=10.

Fig. 1: Solution of the mKP-II equation (1) with initial seed solution v[0]=0, u[0]=0.

3.2 Second seed solution

Assuming an initial wave;

u [0] = 0.5x
v [0] = 0.5

(24)

Lax pair equations (5), (6) reduced to;
ψxx = ψy −ψx (25)

4ψt =−4ψxxx −6ψxx −
3
2

ψx (26)
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Solve two equations together;

ψ (x,y, t) = e0.5(λ−1)x+0.25(λ 2
−1)y− 1

16(2λ3
−3λ+1)t + e−0.5(λ+1)x+0.25(λ 2

−1)y+ 1
16(2λ3

−3λ−1)t (27)

So;

σ = 0.5 λ tanh

(

0.5λ x−
1
16

(

2λ 3
−3λ

)

t

)

−0.5 (28)

Substituting from eq. (28) in eq. (15) and eq. (16) we obtain;

u [1] = 0.5x− ln(−0.5λ tanh

(

−0.5λ x+
1
16

(

2λ 3
−3λ

)

t

)

+0.5) (29)

v [1] = 0.5−0.25
λ 2(1− tanh(−0.5λ x+ 1

16

(

2λ 3
−3λ

)

t)
2
)

−0.5λ tanh
(

−0.5λ x+ 1
16 (2λ 3

−3λ )t
)

+0.5
(30)

This is a Darboux solution of the mKP-II equation (1) depicted in Fig.5.2 at different times. We notice that the wave
moves slowly to negative values ofx.

3.3 Third seed solution

Assuming an initial seed wave;

u [0] = x
v [0] = 1

(31)

Lax pair equations (5), (6) reduced to;
ψxx = ψy −2ψx (32)

4ψt =−4ψxxx −12ψxx −6ψx (33)

Solving these equations together, we get;

ψ1 (x,y, t) = e(λ−1)x+(λ 2
−1)y−(λ 3

−
3
2λ+0.5)t + e−(λ+1)x+(λ 2

−1)y+(λ 3
−

3
2λ+0.5)t (34)

Evaluatingσ =
ψ ′

1
ψ1

σ = λ tanh

(

λ x−

(

λ 3
−

3
2

λ
)

t

)

−1 (35)

Substitute from eq. (35) in eq. (15) and eq. (16);

u [1] = x− ln

(

1−λ tanh(−λ x+

(

λ 3
−

3
2

λ
)

t)

)

(36)

v [1] = 1−
λ 2(1− tanh(−λ x+

(

λ 3
−

3
2λ

)

t)
2
)

−λ tanh
(

−λ x+
(

λ 3
−

3
2λ

)

t
)

+1
(37)

This is a new solution of the mKP-II equation (1) depicted in Fig 5.3 at different times. We notice in this figure that the
wave pic moves quicker on the negativex axis that in the previous case with seed wavev[0]=0.5, u[0]=0.5x.
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(a). v[1] for v0=0.5, u0 =0.5x,λ = 0.25, t=0. (b). v[1] for v0=0.5, u0 =0.5x ,λ = 0.25, t=20.

(c). v[1] for v0=0.5, u0 =0.5x, λ = 0.25, t=30.

Fig. 2: Solution of the mKP-II equations (1) for v[1] for v0=0.5, u0 =0.5x, λ = 0.25.

3.4 Comparison

Wazwaz [19] did solve eq. (1) using Hirota-bilinear method. He assumed a solution in theform;

v(x,y, t) =
e(k1x+k2

1y−(k3
1+αk2

1+β k1)t)

1+ e(k1x+k2
1y−(k3

1+αk2
1+β k1)t)

(38)

Settingk1 =−1,α ,β = 0 in this equation yields;

v(x,y, t) =−
e(−x+y+t)

1+ e(−x+y+t)
=

−1

1+ e(x−y−t)
(39)

A plot of the solution eq. (38) in Fig. 5.4 together with our solution in eq. (23) shows a similarity of form.
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(a). v[1] for v0=1, u0=x, λ = 0.25, t=0. (b). v[1] for v0=1, u0=x, λ = 0.25, t=10.

(c). v[1] for v0=1, u0=x, λ = 0.25, t=20.

Fig. 3: Solution of the mKP-II equation (1) with initial solution v[0]=1, u[0]=x, λ = 0.25.

4 Conclusion

In conclusion, we presented soliton solutions to the KP-II equation, using Darboux transformation. We showed that these
resonant soliton solutions could exhibit rich intriguing interaction patterns on a finite background, some of which may
change drastically with the evolution time, some may not, behaving like a spatiotemporal bullet propagating along a certain
direction. Despite all this, both the amplitudes and propagation directions of these resonant line solitons occurringin the
interaction centre and in the asymptotic far region can be well characterized analytically. We unveiled further that under
certain conditions, there may appear an isolated bump in theinteraction centre, which is much higher in peak amplitude
than the surrounding line solitons, and the more line solitons interact, the higher isolated bump will form. The results
reported in this work may provide a clue to forming extreme high-amplitude waves (e.g., rogue waves), in a reservoir of
small waves, based on nonlinear wave interactions.
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Fig. 4: Comparison of solution of mKP-II equation by using Hirota-bilinear method with our result equation (23) using
DT.
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