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Abstract: The stability analysis of infectious disease model in a dynamic population is studied.The recruitment rate into the susceptible
population is introduced since the population is dynamic thereby allowing a varying pouplation as a result of migrationand birth.The
model exhibited two equilibria: the disease free and endemic. The local stability of the model is asymptotically stablewhenR0 < 1 and
unstable whenR0 > 1. The global stability analysis of the disease free shows that the system is globally stable when the first derivative
of Lyapunov function is negative.
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1 Introduction

Infectious disease cause a rapid change in the population ofany community. They cause morbidity and mortality in the

population. Mathematical models play a significant role in studying the dynamical evolution and transmission of infectious

diseases. Hongbin Guo [5] studied the global stability of SIR epidemic model with varying sub population. Zhang [8] did

a study on the global stability of an SEI model with general contact rate. Guihua Li [4] studied global stability of a SEIR

epidemic model in which the latent and incidence state were infective. Yu Zhang [8] examined the global stability of

endemic equilibrium point of basic virus infection model with application to HBV infection. Xia Ma [6] studied the basic

reproductive numberR0 of a discrete SIR epidemic model and its global stability. A.A Momoh [1] did a study on stability

analysis of an infectious disease free equilibrium of Hepatitis B using MSEIR model to understand the transmission

dynamics and control of HBV. Chunqing Wu [2] studied the global asymptotic stability for the disease - free equilibrium

of a mathematical model for malaria transmission with two delays.

2 Model formulation

The population is divided into four (4) compartmental groups : The Susceptible population (S), the Exposed population

(E), the Infected population (I) and the Recovered population (R). We introduced a recruitment rateΛ into the population
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which is dynamic i.e migration and birth are possible. The model is

dS(t)
dt

= Λ − aS(t)I(t)− µS(t)+ cR(t) (1)

dE(t)
dt

= aS(t)I(t)− µE(t)− bE(t)−δE(t) (2)

dI(t)
dt

= δE(t)− bI(t)− eI(t)− µI(t) (3)

dR(t)
dt

= bI(t)+ bE(t)− cR(t)− µR(t), (4)

whereΛ= the recruitment rate at which the susceptible class is being populated,

a= the rate of infection,

b= the rate of recovery,

c= the rate at which recovered humans progress back to the susceptible class,

e= disease induced death rate,

µ= Natural death rate,

δ=rate at which the exposed class move into the infected compartment.

Equations 1-4 will be referred to as system 5-8

3 Methodology

The equilibrium points were first considered to evaluate thedisease free equilibrium point and the endemic point of the

disease. At equilibrium, we set
dS
dt

=
dE
dt

=
dI
dt

=
dR
dt

= 0

If the rate of change is Zero, that means the system is at equilibrium. Our work is to find out, at what points are the system

2 at equilibrium

dS
dt

= Λ − aSI− µS+ cR = 0, (5)

dE
dt

= aSI− (µ + b+ δ )E = 0, (6)

dI
dt

= δE − (b+ e+ µ)I = 0, (7)

dR
dt

= bI+ bE − (c+ µ)R = 0, (8)

solving these equations we have,

E = 0

the disease free equilibrium and the endemic point,

[S =
(µ + b+ δ )(b+ e+ µ)

aδ
(9)

Substituting these stationary points into the system of equations 5-8 to get values of S E I and R respectively. When

E = 0,
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Let P0 = (S0,E0, I0,R0) = (Λ
µ ,0,0,0) andP∗ = (S∗,E∗, I∗,R∗) be the values for S,E,I,R when

S =
(µ + b+ δ )(b+ e+ µ)

aδ

substituting S in equation (1), we have,

E =
(b+ e+ µ)I

δ
, (10)

R = b

(

δ +(b+ e+ µ)
δ (c+ µ)

)

I, (11)

I =
(c+ µ)(µ(µ + b+ δ )(b+ e+ µ)−aΛδ

abc((δ + b+ e+ µ)− (c+µ)(µ+ b+ δ )(b+ e+ µ)
, (12)

and the basic reproduction number of the model using the nextgeneration matrixG = FV−1 whereF is the matrix of the

newly created infection,V is the matrix of transferred infection is given asV−1 is the inverse of matrixV , so,

Fi =













aSI

0

0













, i = 1,2,3,

Vi =













(µ + b+ δ )E
(b+ e+ µ)I− δE

(c+ µ)R− bI− bE













, i = 1,2,3,

F =















∂ f1
∂E

∣

∣

∣

Po

∂ f1
∂ I

∣

∣

∣

Po

∂ f1
∂R

∣

∣

∣

Po

∂ f2
∂E

∣

∣

∣

Po

∂ f2
∂ I

∣

∣

∣

Po

∂ f2
∂R

∣

∣

∣

Po

∂ f3
∂E

∣

∣

∣

Po

∂ f3
∂ I

∣

∣

∣

Po

∂ f3
∂R

∣

∣

∣

Po















=













0 aΛ
µ 0

0 0 0

0 0 0













,

f1 = aSI, f2 = f3 = 0,

V =













(µ + b+ δ ) 0 0

−δ (b+ e+ µ) 0

−b −b (c+ µ)













,

G =













aΛδ (c+µ)
µ(µ+b+δ )(b+e+µ)

aΛ
µ(b+e+µ) 0

0 0 0

0 0 0













.

The dominant eigenvalue of G is the basic reproduction number denoted byR0, i.e |G−λ I|= 0 where I is the identity

matrix. So,

R0 =
aΛδ

µ(µ + b+ δ )(b+ e+ µ)
(13)
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3.1 Local stability analysis of the Disease free equilibrium

Theorem 1. The disease-free equilibrium of system (5-8) is locally asymptotic stable if R0 < 1 otherwise unstable.

Proof. The Jacobian matrix of system (5-8) atP0

J =

















aI− µ 0 −as c

aI −(µ + b+ δ ) as 0

0 δ −(b+ e+ µ) 0

0 b b −(c+ µ)

















,

at

p0 = (S0
,E0

, I0
,R0) = (

Λ
µ
,0,0,0).

Therefore, the characteristic equation is given by

∣

∣J(P0)−λ I
∣

∣= 0(10)

and solving this gives,

(λ1+ µ) = 0, (λ2+(c+ µ)) = 0

and

λ 2+(2b+ e+2µ+ δ )λ +(µ + b+ δ )(b+ e+ µ)(1−R0) = 0. (14)

If R0 < 1, then by Descarte’s rule of signs, there is no sign change , hence, there are no positive roots of equation (14).

Furthermore, ifλ is replaced by−λ in equation (14).

λ 2− (2b+ e+2µ+ δ )λ +(µ + b+ δ )(b+ e+ µ)(1−R0) = 0 (15)

If R0 < 1, then equation (15) has two signs change, hence there are exactly two negative roots of equation (14) Therefore,

P0 is locally asymptotically stable ifR0 < 1. The result follows immediately thatP0 is unstable ifR0 > 1.

3.2 Global stability of disease-free equilibrium

In testing for the global stability of the disease free equilibrium of the model, We make use of Lyapunov function which

says

L(E, I) = (µ + b+ δ )I+ δE. (16)

If the first derivative of Lyapunov function is negative thenthe system (5-8) is globally stable thus, Differentiating equation

(16) along the solutions of equations (2) and (3) at the disease free point

L
′
= (µ + b+ δ )I

′
+ δE

′
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we have,

(µ + b+ δ )(δE − (b+ e+ µ)I)+ δ (aSI− (µ + b+ δ )E) = (µ + b+ δ )δE− (µ + b+ δ )(b+ e+ µ)I+ δaSI

− (µ + b+ δ )δE

= δaSI− (µ + b+ δ )(b+ e+ µ)I

= (δaS− (µ + b+ δ )(b+ e+ µ))I

= (µ + b+ δ )(b+ e+ µ)
(

δaS
(µ + b+ δ )(b+ e+ µ)

−1

)

I.

At the disease free,

S = S0 =
Λ
µ

= (µ + b+ δ )(b+ e+ µ)
(

δaΛ
µ(µ + b+ δ )(b+ e+ µ)

−1

)

I

solving this at the disease free point, we have,

S = S0 =
Λ
µ

= (µ + b+ δ )(b+ e+ µ)
(

δaΛ
µ(µ + b+ δ )(b+ e+ µ)

−1

)

I,

Therefore,L′ = (µ +b+δ )(b+e+µ)(R0−1)I , L′
< 0 wheneverR0 < 1 andI > 0, furthermore,L′ = 0 wheneverR0 = 1

and orI ≥ 0, L′ ≤ 0 if R0 ≤ 1 andI ≥ 0, which shows the system (5-8) is globally stable.

4 Analysis and conclusion

Using the data of 1995 Ebola outbreak in Kikwit Zaire cited inZach Yarus [9] we have , the results of numerical

simulations of the dynamical behaviour of system 2 as presented by using Maple 18 and with the parameter values from

Zach Yarus (2012).

The Variation of total population when R0 > 1

To know how the total population will look like if the reproduction numberR0 > 1, in the figure 1 below, the infected

population increased as the susceptible individuals decreased and the exposed decreased. It implies that, efforts must be

intensified to control the most sensitive parameters which are the transmission rate of the disease and the recruitment rate

into the susceptible population since it is a dynamic population so that the reproduction number can be brought below 1,

so that the disease can die out. Figure 2 is when the reproduction numberR0 < 1 which means the effect of the disease

has greatly reduced in the long run because the reproductionnumber has been brought below 1 which means the disease

will die out in the long run and the total population will be free of the disease.
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Fig. 1: Variation of the total population against time forR0 greater then 1.

Fig. 2: Variation of the total population against timee whenR(0)< 1.
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