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Abstract: In this study, we give a necassary and sufficient condition for an arbitrary-speed regular space curve to lie on a sphere
centered at origin. Also, we obtain the position vector of any regular arbitrary-speed space curve lying on a sphere centered at origin
satisfies a third-order linear differential equation whosecoefficients is related to speed function, curvature and torsion. Then, a
collocation method based on Lucas polynomials is developedfor the approximate solutions of this differential equation. Moreover, by
means of the Lucas collacation method, we approximately obtain the parametric equation of the spherical curve by using this
differential equation. Furthermore, an example is given todemonstrate the efficiency of the method and the results are compared with
figures and tables.
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1 Introduction

In books on differential geometry, for a curve necessary condition to lie in a sphere has been given and the spherical

curves have been investigated many mathematicians. For example, in [1], Wong gave a necessary and sufficient condition

for a curve to lie in a sphere without having to assume that itstorsion is nowhere zero. Then, Breuer and Gottlieb showed

that the differential equation characterizing a sphericalcurve could be solved explicitly to express the radius of curvature

of the curve in terms of its torsion [2]. After then, Wong proved that the explicit characterization of spherical curves

obtained by Breuer and Gottlieb is, without any precondition on the curvature and torsion, a necessary and sufficient

condition for a curve to be a spherical curve [3].Özdamar and Hacısalihoğlu, gave the characterizations for the regular

curves each of lies on theSn−1 of n-dimensional Euclidean SpaceEn and they expressed these characterizations in the

higher curvatures of the curves [4]. Mehlum and Wimp gaved that the position vector of any 3-space curve lying on a

sphere satisfies a third-order linear differential equation whose coefficients involve a single arbitrary functionA(s) [5].

For the solution of linear integro-differential equations, a Taylor collocation method was given by Karamete and Sezer

[6]. Then, Taylor collocation method was given by Sezer et al. to find the approximate solutions of high-order systems of

linear differential equations with variable coefficients [7]. Also, Yüzbaşı and Sezer, presented an exponential matrix

method for the solutions of systems of high-order linear differential equations with variable coefficients [8].

Furthermore, in [9] Çetin et al. developed an approximation method based on Lucas polynomials for the solution of the

system of high-order linear differential equations with variable coefficients under the mixed conditions. Also in [10]

Çetin et al. a collocation method based on Lucas polynomials for solving high-order linear differential equations with

variable coefficients under the boundary conditions is presented by transforming the problem into a system of linear

algebraic equations with Lucas coefficients.
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In this paper, we developed a Lucas collocation method to findthe approximate solutions of third-order linear differential

equations with variable coefficients. Then, we obtain that the position vector of any arbitrary-speed regular space curve

lying on a sphere centered at0 in Euclidean 3-Space satisfies a third-order linear differential equation. Furthermore, by

means of this method we obtain a Lucas polynomial solution ofdifferential equations characterizing the position vector

of any regular arbitrary-speed space curve lying on a spherecentered at0 according to Frenet frame in Euclidean 3-space

E3. Then we give an example and compare the results to demonstrate the efficiency of the method.

2 Preliminaries

In this section, we give some basic concepts on differentialgeometry of space curves and spherical curves in Euclidean

3-Space.

A parametrized differentiable curve is a differentiable map α : I → R3 of an open intervalI = (a,b) of the real line R into

R3. A parametrized differentiable curveα : I → R3 is said to beregular if α ′(t) 6= 0 for all t ∈ I [11].

The velocity vector of a regular curveα(t) at t = t0 is the derivativedα
dt evaluated att = t0. The velocity vector field is

the vector valued functiondα
dt . The speed ofα(t) at t = t0 is the lenght of the velocity vector att = t0, |α ′(t0)| [12].

The unittangentvector, the unitbinormalvector and the unitprincipal normalvector of the regular curveα are given by

T(t) =
α ′(t)
‖α ′(t)‖

,B(t) =
α ′(t)∧α ′′(t)

‖α ′(t)∧α ′′(t)‖
,N(t) = B(t)∧T(t)

respectively [13] .

If α is a regular curve in R3 with κ > 0, then the Frenet formulaes

T ′ = vκN

N′ =−vκT + vτB

B′ =−vτN

whereκ is the curvature of the curveα, τ is the torsion of the curveα andv= ‖α ′‖ is the speed function of the curveα,

respectively [13].

For a general parametert of a space curveα, the curvature and the torsion of the curve are given by

κ(t) =
‖α ′(t)∧α ′′(t)‖

‖α ′(t)‖3 ,τ(t) =
det(α ′(t),α ′′(t),α ′′′(t))

‖α ′(t)∧α ′′(t)‖2 .

where det(α ′(t),α ′′(t),α ′′′(t)) = 〈α ′(t)∧α ′′(t),α ′′′(t)〉 [13].

A Cleliesis a curve lying on a sphere centered at origin parametrized by

α(s) = (r sin(mt)cos(t), r sin(mt)sin(t), r cos(mt))

wherer is radius of the sphere [14].
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3 Differential equation characterizing spherical curves

In this section, we give a necassary and sufficient conditionfor an arbitrary-speed regular space curve to lie on a sphere

centered at origin. Then, we obtain that position vector of any arbitrary-speed regular space curve lying on a sphere

satisfies a third-order linear differential equation with variable coefficients.

Theorem 1.Let α be a Frenet frame curve of class C4 in R3 with τ 6= 0 everywhere. Thenα lies on a sphere if and only

if the following equation holds.

τ
κ
=

(
κ ′

τκ2

)′

[15].

Now, we obtain the necessary and sufficient condition for an arbitrary-speed regular space curveα to lie on a sphere

centered at0 in Euclidean 3-SpaceE3, parametrized bys. Denote by{T,N,B} ,κ ,τ andv the moving Frenet frame,

curvature, torsion and speed function along the curveα, respectively. Then, we can write

α(s) = λ1(s)T(s)+λ2(s)N(s)+λ3(s)B(s) (1)

Differentiating (1) with respect tosand by using the Serret-Frenet formulas for non-unit speed regular curve, we get

vT =
(

λ
′

1− vκλ2

)
T +

(
vκλ1+λ

′

2− vτλ3

)
N+

(
vτλ2+λ

′

3

)
B (2)

From (2) we can write

v= λ
′

1− vκλ2 (3)

0= vκλ1+λ
′

2− vτλ3 (4)

0= vτλ2+λ
′

3 (5)

The condition thatα lie on a sphere centered at the origin is

〈
α,α ′

〉
= 0. (6)

Substituting (1) in (6), we obtainλ1 = 0. and hence, from (3) and (4), we obtain

λ2 =
−1
κ

and λ3 =
κ ′

vκ2τ
(7)

Substituting (7) into the (5), we obtain the necessary and sufficient condition for any arbitrary-speed regular space curve

α to lie on a sphere centered at0 in Euclidean 3-SpaceE3, as follows

vτ
κ

−

(
κ ′

vτκ2

)′

= 0.

We can expressT,N andBin terms ofα ′,α ′′,α ′′′ andκ ,τ,v via the Serret-Frenet formulae as follows.

T =
1
v

α ′ (8)
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N =
1

v2κ
α ′′−

v′

v3κ
α ′ (9)

B=
1

v3κτ

{
α ′′′−

(
3v′

v
+

κ ′

κ

)
α ′′+

(
3(v′)2

v2 +
v′κ ′

vκ
+ v2κ2−

v′′

v

)
α ′

}
. (10)

Substituting (7), (8), (9) and (10) in (1), we get

p3(s)α ′′′(s)+ p2(s)α ′′(s)+ p1(s)α ′(s)+ p0(s)α(s) = 0 (11)

where

p3(s) = v2κκ ′
, p2(s) =−v4κ2τ2−3vv′κκ ′− v2(κ ′)2

p1(s) = v3v′κ2τ2− vv′′κκ ′+ v4κ3κ ′+3(v′)2κκ ′+ vv′(κ ′)2
, p0(s) =−v6κ4τ2

.

This differential equation is third-order with respect to position vector ofα characterizing spherical curves according to

Frenet frame in Euclidean 3-SpaceE3.

4 Lucas collocation method for third-order linear differential equation with variable

coefficients

Sezer et al. gave a Taylor collocation method to find the approximate solutions of high-order systems of linear

differential equations with variable coefficients in [7]. Then Çetin et al. presented an approximation method based on

Lucas polynomials for the solution of the system of high-order linear differential equations with variable coefficients

under the mixed conditions [9]. Moreover, Çetin et al. gavea collocation method based on Lucas polynomials for solving

high-order linear differential equations with variable coefficients under the boundary conditions [10].

In this section we have developed Lucas collocation method to solve the third-order linear differential equations with

variable coefficients in the form

L[y(x)] =
3

∑
k=0

pk(x)y
(k)(x) = g(x), 0≤ a≤ x≤ b (12)

under the mixed conditions
2

∑
k=0

(
a jky(k)(a)+b jky(k)(b)

)
= c j , j = 0,1,2 (13)

wherey(0)(x) = y(x) is an unknown function,pk(x) andg(x) are known continuous functions defined on interval[a,b],

and coefficientsa jk, b jk andc j are real constants.

In addition, by improving the present method with the help ofresidual error function used in [16-19], we obtain the

corrected approximate solution of Eq.(12) expressed in the truncated Lucas series form

yN,M(x) = yN(x)+eN,M(x) (14)

where

y(x)∼= yN(x) =
N

∑
n=0

anLn(x) (15)
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is the Lucas polynomial solution and

eN,M(x) =
M

∑
n=0

a∗nLn(x), M > N (16)

is the solution of the error problem obtained with help of theresidual error function. Herean anda∗n, (n= 0,1,2, ...,N)

are unknown Lucas coefficients, andLn(x), (n= 0,1,2, ...,N) are Lucas polynomials defined by

L0(x) = 2;Ln(x) =
[[n/2]]
∑
k=0

n
n− k

(
n− k

k

)
xn−2k

, (n≥ 1)
[[

n
/

2
]]
=

{
n
/

2 , n even

(n−1)
/
2 , n odd

[20, 21].

In order to find solution of Eq.(12), with mixed conditions (13), we can use collocation points defined by

xi = a+
b−a

N
i, i = 0,1, ...,N, 0≤ a≤ x≤ b. (17)

The Lucas polynomialsLn(x) can be written in the matrix form as

L(x) = X(x)DT (18)

where

L(x) =
[

L0(x) L1(x) L2(x) · · · LN(x)
]
,X(x) =

[
1 x x2 · · · xN

]

and ifN is odd,

D=




2 0 0 0 0 · · · 0

0 1
1

(
1

0

)
0 0 0 · · · 0

2
1

(
1

1

)
0 2

2

(
2

0

)
0 0 · · · 0

0 3
2

(
2

1

)
0 3

3

(
3

0

)
0 · · · 0

4
2

(
2

2

)
0 4

3

(
3

1

)
0 4

4

(
4

0

)
· · · 0

...
...

...
...

...
...

...

n−1
(n−1)

/
2

(
(n−1)

/
2

(n−1)
/

2

)
0 n−1

(n+1)
/

2

(
(n+1)

/
2

(n−3)
/

2

)
0 n−1

(n+3)
/

2

(
(n+3)

/
2

(n−5)
/

2

)
0

0 n
(n+1)

/
2

(
(n+1)

/
2

(n−1)
/

2

)
0 n

(n+3)
/
2

(
(n+3)

/
2

(n−3)
/

2

)
0 · · · n

n

(
n

0

)




.
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If N is even,

D =




2 0 0 0 0 · · · 0

0 1
1

(
1

0

)
0 0 0 · · · 0

2
1

(
1

1

)
0 2

2

(
2

0

)
0 0 · · · 0

0 3
2

(
2

1

)
0 3

3

(
3

0

)
0 · · · 0

4
2

(
2

2

)
0 4

3

(
3

1

)
0 4

4

(
4

0

)
· · · 0

...
...

...
...

...
...

...

0 n−1
n/2

(
n
/

2

(n−2)
/
2

)
0 n−1

(n+2)/2

(
(n+2)

/
2

(n−4
/
2

)
0 · · · 0

n
n/2

(
n
/

2

n
/

2

)
0 n

(n+2)/2

(
(n+2)

/
2

(n−2)
/
2

)
0 n

(n+4)/2

(
(n+4)

/
2

(n−4)
/
2

)
· · · n

n

(
n

0

)




.

We can write the approximate solutionyN(x) given by (15) in the matrix form

yN(x) = L(x)A (19)

where

A =
[

a0 a1 a2 · · · aN

]T
.

From (18) and (19), we obtain the matrix relation

yN(x) = X(x)DTA. (20)

Also, the relation between the matrix X(x) and its derivatives X(k)(x) is

X(k)(x) = X(x)Bk (21)

where

B =




0 1 0 · · · 0

0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · N

0 0 0 · · · 0



.

By using relations (20) and (21), we obtain the following relation.

y(k)N (x) = X(x)BkDTA. (22)

By substituting (18) and (22) into Eq.(12), we obtain the matrix equation

3

∑
k=0

pk(x)X(x)BkDTA = g(x) (23)
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and by using collocation points (17) into Eq.(23), the system of matrix equations can be obtained as

3

∑
k=0

pk(xi)X(xi)BkDTA = g(xi)

or the compact form {
3

∑
k=0

PkXBkDT

}
A = G (24)

where

Pk =




pk(x0) 0 · · · 0

0 pk(x1) · · · 0
...

...
.. .

...

0 0 · · · pk(xN)



,X =




X(x0)

X(x1)
...

X(xN)



=




1 x0 x2
0 · · · xN

0

1 x1 x2
1 · · · xN

1
...

...
...

. . .
...

1 xN x2
N · · · xN

N



,G=




g(x0)

g(x1)
...

g(xN)



.

Thus, the fundamental matrix equation (24) corresponding to Eq.(12) can be written in the form

WA = G or [W;G] ,W =
3

∑
k=0

PkXBkDT (25)

Eq.(25) indicates a system of(N+ 1) linear algebraic equations with unknown Lucas coefficientsan (n= 0,1, ...,N).

Now, by means of Eq.(22), we obtain the matrix forms for the conditions (13) as follows

2

∑
k=0

[
a jkX(a)+b jkX(b)

]
BkDTA = [c j ] , ( j = 0,1,2)

or briefly,

U jA = [c j ] or [U j ;c j ] ,( j = 0,1,2) (26)

where

U j =
2

∑
k=0

[
a jkX(a)+b jkX(b)

]
BkDT =

[
u j0 u j1 u j2 · · · u

jN

]
, ( j = 0,1,2).

Consequently, by replacing the row matrices (26) by last rows of the matrix (25), we have

[
W̃;G̃

]
=




w00 w01 · · · w0N ; g(x0)

w10 w11 · · · w1N ; g(x1)
...

...
...

... ;
...

w(N−3)0 w(N−3)1 · · · w(N−3)N ; g(xN−3)

u00 u00 · · · u0N ; c0

u10 u11 · · · u1N ; c1

u20 u21 · · · u2N ; c2




,

which is a linear algebraic system. If rankW̃ =rank
[
W̃;G̃

]
= N + 1, then we can writeA=

(
W̃
)−1

G̃. Hence, the

unknown Lucas coefficients matrix A=
[

a0 a1 a2 · · · aN

]T
is determined and by substituting the coefficients

a0,a1,a2, ...,an into Eq.(15), the Lucas polynomial solution of the differential equation is obtained.

Now, we give an error estimation for the Lucas polynomial solution (15) with the residual error function [16-19].

Moreover, we improve the solution (15) by means of the residual error function. Firstly, we can define the residual
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function of the method as

RN(x) = L [yN(x)]−g(x). (27)

Here,yN(x) is the Lucas polynomial solution given by (15) of the problem (12) and (13). Hence,yN(x) satisfies the

problem {
L [yN(x)] = ∑3

k=0 pk(x)y
(k)
N (x) = g(x) +RN(x)

∑2
k=0

(
a jky(k)N (a)+b jky(k)N (b)

)
= c j , j = 0,1,2.

Also, the error functioneN(x) can be defined as

eN(x) = y(x)− yN(x) (28)

wherey(x) is the exact solution of the problem (12) and (13). From Eqs.(12), (13), (27) and (28), we gain the error

differential equation

L [eN(x)] = L [y(x)]−L [yN(x)] =−RN(x)

with the homogeneous mixed conditions

2

∑
k=0

(
a jke(k)N (a)+b jke(k)N (b)

)
= 0, j = 0,1,2

or openly, the error problem {
∑3

k=0 pk(x)e
(k)
N (x) =−RN(x)

∑2
k=0

(
a jke(k)N (a)+b jke(k)N (b)

)
= 0, j = 0,1,2.

(29)

Here, note that the nonhomegeneous mixed conditions

2

∑
k=0

(
a jky(k)(a)+b jky(k)(b)

)
= c j , j = 0,1,2

and
2

∑
k=0

(
a jky(k)N (a)+b jky(k)N (b)

)
= c j , j = 0,1,2

are reduced to homogeneous mixed conditions

2

∑
k=0

(
a jke(k)N (a)+b jke(k)N (b)

)
= 0, j = 0,1,2.

The error problem (29) can be solved by using the prosedure given above. Thus, we obtain the approximationeN,M(x) to

eN(x) as follows

eN,M(x) =
M

∑
n=0

a∗nLn(x), M > N.

Consequently, the corrected Lucas polynomial solutionyN,M(x) = yN(x) + eN,M(x) is obtained by means of the

polynomialsyN(x) andeN,M(x) . Also, we construct the error functioneN(x) = y(x)− yN(x), the estimated error function

eN,M(x) and the corrected error functionEN,M(x) = eN(x)−eN,M(x) = y(x)− yN,M(x).
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5 Illustration

In this section, we give an example and we compare the results. Here,αi(s) andαi,N(s) represent the coordinate functions

of position vector of the curveα(s) and approximate solutions of the differential equations, respectively. All numerical

computations are calculated by using a computer programme written in Maple.

Example 1.We consider theClelies curvein E3 α : [0,2π ]→ E3 parametrized by

α(t) =
(

sin
( t

2

)
cos(s),sin

( t
2

)
sin(s),cos

( t
2

))
.

This curve is regular but non-unit speed curve which lie on unit-sphere. Speed function, curvature and torsion of the curve

α are as follows.

v(t) =
∥∥α ′(t)

∥∥= 1
2

√
−4cos2

( t
2

)
+5 (30)

κ(t) =

√
48cos4

(
t
2

)
−156cos2

(
t
2

)
+125

(
−4cos2

(
t
2

)
+5
) 3

2

(31)

τ(t) =
12
(
2cos2

(
t
2

)
−5
)
sin
(

t
2

)

48cos4
(

t
2

)
−156cos2

(
t
2

)
+125

. (32)

By substituting (30), (31) and (32) in (11), we obtain differential equation charecterizing the spherical Clelies curveα is

as follow.

p3(t)α ′′′(t)+ p2(t)α ′′(t)+ p1(t)α ′(t)+ p0(t)α(t) = 0 (33)

where

p3(t) =
6cos

(
t
2

)
sin
(

t
2

)(
4cos4

(
t
2

)
−16cos2

(
t
2

)
+15

)

64cos6
(

t
2

)
−240cos4

(
t
2

)
+300cos2

(
t
2

)
−125

p2(t) =
9sin2

(
t
2

)(
4cos4

(
t
2

)
−12cos2

(
t
2

)
+5
)

64cos6
(

t
2

)
−240cos4

(
t
2

)
+300cos2

(
t
2

)
−125

p1(t) =
3
2

sin
(

t
2

)
cos
(

t
2

)(
4cos4

(
t
2

)
−40cos2

(
t
2

)
+75

)

64cos6
(

t
2

)
−240cos4

(
t
2

)
+300cos2

(
t
2

)
−125

p0(t) =−
9
4

4cos6
(

t
2

)
−24cos4

(
t
2

)
+45cos2

(
t
2

)
−25

64cos6
(

t
2

)
−240cos4

(
t
2

)
+300cos2

(
t
2

)
−125

.

We considerα(t) = (α1(t),α2(t),α3(t)), then Eq.(33) satisfies forα1(t), α2(t) andα3(t) as follows

p3(t)α ′′′
1 (t)+ p2(t)α ′′

1 (t)+ p1(t)α ′
1(t)+ p0(t)α1(t) = 0 (34)

p3(t)α ′′′
2 (t)+ p2(t)α ′′

2 (t)+ p1(t)α ′
2(t)+ p0(t)α2(t) = 0 (35)

p3(t)α ′′′
3 (t)+ p2(t)α ′′

3 (t)+ p1(t)α ′
3(t)+ p0(t)α3(t) = 0. (36)

We suppose that the parametric equation of the curveα is unknown. We have only speed function, curvature and torsion

of the curveα. Then we can find the parametric equation of the curveα approximately by means of Lucas collacation

method and considering the Eq.(33).
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We consider the initial conditions forα1(t), α2(t) andα3(t)as follows

α1(0) = 0, α
′

1(0) = 0,5 α
′ ′

1 (0) = 0

α2(0) = 0, α
′

2(0) = 0, α
′ ′

2 (0) = 1

α3(0) = 1, α
′

3(0) = 0, α
′ ′

3 (0) =−0,25.

The approximate solutionsα1,4(t)¸ α2,4(t) andα3,4(t) by the truncated Lucas series forN = 4 is

αi,4(t) =
4

∑
n=0

ai,nLn(t) , (i = 1,2,3).

Now, let us compute the coefficientsai,n , (n= 0,1,2,3,4) of the approximate solutions. The set of collocation pointsfor

a= 0, b= 2π andN = 4 is calculated as

{
t0 = 0, t1 =

π
2
, t2 = π , t3 =

3π
2
, t4 = 2π

}
.

From Eq.(24), the fundamental matrix equation for each Eq.(34), Eq.(35) and Eq.(36) is

{
3

∑
k=0

PkTBkDT

}
A = G.

By using the prosedure given above, we obtain the Lucas poynomial solutions forN = 4 as

α1,4(t) = 0.4999999996t−0.1033282131t3+(0.1145284738e−1)t4

α2,4(t) =−(0.26e−9)+0.5t2−0.2389089492t3+(0.2231474722e−1)t4

α3,4(t) = 0.9999999995+(0.2e−10)t−0.125t2+(0.402468024e−2)t3+(0.1160878758e−2)t4

In order to compute the Lucas polynomial solution, let us consider the error problem

p3(t)e′′′1,4(t)+ p2(t)e′′1,4(t)+ p1(t)e′1,4(t)+ p0(t)e1,4(t) =−R1,4

p3(t)e′′′2,4(t)+ p2(t)e′′2,4(t)+ p1(t)e′2,4(t)+ p0(t)e2,4(t) =−R2,4

p3(t)e′′′3,4(t)+ p2(t)e′′3,4(t)+ p1(t)e′3,4(t)+ p0(t)e3,4(t) =−R3,4

where
R1,4(t) = p3(t)α ′′′

1,4(t)+ p2(t)α ′′
1,4(t)+ p1(t)α ′

1,4(t)+ p0(t)α1,4(t)

R2,4(t) = p3(t)α ′′′
2,4(t)+ p2(t)α ′′

2,4(t)+ p1(t)α ′
2,4(t)+ p0(t)α2,4(t)

R3,4(t) = p3(t)α ′′′
3,4(t)+ p2(t)α ′′

3,4(t)+ p1(t)α ′
3,4(t)+ p0(t)α3,4(t)





(37)

By solving the error problem (37) for M = 5 with the method, the estimated Lucas error function approximation

e1,4,5(t), e2,4,5(t) ande3,4,5(t) to e1,4(t), e2,4(t) ande3,4(t) is obtained as

e1,4,5(t) = (0.222044604925031e−15)t−0.335907477291688t3+0.147313123124575t4

−(0.145247893504105e−1)t5
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e2,4,5(t) =−(0.138777878078145e−15)+(0.111022302462516e−15)t

−(0.555111512312578e−16)t2−0.238494735315633t3

+0.107194173804204t4− (0.106643253034255e−1)t5

e3,4,5(t) =−(0.173472347597681e−17)+(0.346944695195361e−17)t

−(0.534226555720575e−2)t3+(0.236392416157558e−2)t4

−(0.227723431226885e−3)t5

Thus, we can calculate the corrected Lucas polynomial solutions

α1,4,5(t) = 0.499999999600000t−0.439235690391688t3+0.158765970504575t4

−(0.145247893504105e−1)t5

α2,4,5(t) =−(0.260000138777878e−9)+0.5t2−0.477403684515633t3

+0.129508921024204t4+(0.111022302462516e−15)t

−(0.106643253034255e−1)t5

α3,4,5(t) = 0.999999999500000+(0.200000034694470e−10)t−0.125t2

+(0.352480291957558e−2)t4− (0.227723431226885e−3)t5

−(0.131758531720575e−2)t3

Similarly, we can calculate the corrected Lucas polynomialsolutions forαi(s) , (i = 1,2,3) by using present method for

different values ofM.

ForN = 4 andM = 8

α1,4,8(t) = 0.499999999599978t+0.306532559723370t3−0.444149870356995t4

−(0.186620060767598e−13)− (0.532907051820075e−14)t2

+(0.174641358983243)t5− (0.286040945209451e−1)t6

+(0.194021418478947e−2)t7− (0.356421367872731e−4)t8

α2,4,8(t) =−(0.259996639461156e−9)+0.499999999999996t2+0.224416858744376t3

−0.248981167081697t4+(0.128196064874686e−13)t

+(0.213309695850870e−1)t5+(0.147212321823962e−1)t6

−(0.335863274832651e−2)t7+(0.204842806713442e−3)t8

α3,4,8(t) = 0.999999999500000+(0.199999702454266e−10)t−0.125t2

+(0.787720390942864e−4)t3+(0.254392355708362e−2)t4

+(0.192991422948481e−4)t5− (0.256915769161762e−4)t6

+(0.629632428667440e−6)t7+(0.407675668361376e−7)t8

ForN = 4 andM = 13

α1,4,13(t) = 0.499999999599173t−0.260125216685152t3− (0.161578050696862e−1)t4

−(0.375578231641654e−11)− (0.454118933077138e−11)t2

+(0.464218823180868e−1)t5− (0.997436281466191e−2)t6

+(0.303085602484618e−2)t7− (0.156638931981066e−2)t8

+(0.411485747537591e−3)t9− (0.539918403345653e−4)t10

+(0.352490067494012e−5)t11− (0.911934775912629e−7)t12

−(0.101566509306906e−9)t13
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α2,4,13(t) =−(0.257271019489540e−9)+0.500000000001660t2− (0.646796711174480e−2)t3

−(0.940898075448491e−1)t4− (0.803453640963370e−12)t

+(0.534514547759334e−6)t12− (0.132234193418015e−7)t13

−(0.978240920331576e−2)t5+(0.148807268548122e−1)t6

−(0.359982011372225e−2)t7+(0.102181351910415e−2)t8

−(0.360440584949504e−3)t9+(0.769153381880423e−4)t10

−(0.890477068009215e−5)t11

α3,4,13(t) = 0.999999999499971+(0.201201043977291e−10)t−0.125000000000007t2

+(0.412274200171665e−5)t3+(0.259806624082214e−2)t4

+(0.553872304938226e−5)t5− (0.253558352879775e−4)t6

+(0.170714609813919e−5)t7− (0.462427797626050e−6)t8

+(0.128169082819624e−6)t9− (0.204317393646569e−7)t10

+(0.207431984062146e−8)t11− (0.125009847463864e−9)t12

+(0.337713469364518e−11)t13

When the values ofαi,N,M(t) , (i = 1,2,3) for N = 4, M = 5,8,13 are written in

αN,M(t) = (α1,N,M(t),α2,N,M(t),α3,N,M(t))

the parametric equation of the curveαN,M(t)∼= α(t) is found. Now we compare the corrected absolute error functions in

Tables 1-3.

Table 1: Corrected absolute error functions(|E1,N,M(t)|) for N = 4 andM = 5,8,13.

ti Corrected absolute error functions|E1,N,M(t)| =
|α1(t)−α1,N,M(t)|∣∣E1,4,5(ti)

∣∣ |E1,4,8(ti)| |E1,4,13(ti)|
0 0 011866e-13 0.3756e-11
π
/

3 0.058173632 0.276326840 0.003215525
2π
/

3 0.085536668 0.703709963 0.006995609
π 0.027889603 0.276845034 0.001717034
4π
/

3 0.392355438 0.457343549 0.005477075
5π
/

3 1.485985927 0.382910418 0.003910408
2π 0.602818793 0.673770187 0.000128008

Table 2: Corrected absolute error functions(|E2,N,M(t)|) for N = 4 andM = 5,8,13.

ti Corrected absolute error functions|E2,N,M(t)| =
|α2(t)−α2,N,M(t)|∣∣E2,4,5(ti)

∣∣ |E2,4,8(ti)| |E2,4,13(ti)|
0 0.2600e-9 0.2600e-9 0.2573e-9
π
/

3 0.290627483 0.115529399 0.001906142
2π
/

3 0.880523887 0.298494761 0.004139286
π 0.515855720 0.120235950 0.001009328
4π
/

3 0.553938273 0.187144292 0.003254205
5π
/

3 0.982494585 0.141416172 0.002353825
2π 1.267127566 1.162168851 0.000950739
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Table 3: Corrected absolute error functions(|E3,N,M(t)|) for N = 4 andM = 5,8,13.

ti Corrected absolute error functions|E3,N,M(t)| =
|α3(t)−α3,N,M(t)|∣∣E3,4,5(ti)

∣∣ |E3,4,8(ti)| |E3,4,13(ti)|
0 0.5000e-9 0.5000e-9 0.5000e-9
π
/

3 0.000664249 0.000037843 0.000001268
2π
/

3 0.001771263 0.000096440 0.000002810
π 0.000893956 0.000037970 0.000000754
4π
/

3 0.001401566 0.000062277 0.000002133
5π
/

3 0.003040652 0.000050771 0.000001526
2π 0.001924771 0.000213768 0.000002288

Fig. 1: Graphics of curveα and curvesα4,5, α4,8 veα4,13.

6 Conclusions

In this study, we have developed a Lucas collocation method to find the approximate solutions of third-order linear

differential equations with variable coefficients. Then, we have gave a necassary and sufficient condition for an

arbitrary-speed regular space curve to lie on a sphere centered at origin. Then, we have obtained that position vector of

any arbitrary-speed regular space curve lying on a sphere satisfies a third-order linear differential equation with variable

coefficients inE3. And then, by means of this method we have gave approximate solutions of these differential equation

characterizing spherical curves. We have gave an example toshow efficiency of this method.
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In Tables 1-3, we obtained corrected absolute error functions for various values ofN and M. It is seen from these

comparisions that the corrected absolute errors are very close to zero when the values ofN andM is selected big. Also,

we have seen from the Figure 1 that the Lucas collocation method used for approximate solutions is very effective.

This method can be developed for the differential equationswhich is obtained in differential geometry another special

curves.
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