(_/
CMMA 3, No. 3, 44-58 (2018) BISKA 44

Communication in Mathematical Modeling and Applicatig

http://ntmsci.com/cmma

Lucas collocation method to determination spherical
curves in euclidean 3-space

Muhammed Cetin, Huseyin Kocayigit and Mehmet Sezer

Celal Bayar University, Faculty of Art and Science, Depamitof Mathematics, Manisa, Turkey

Received: 13 September 2018, Accepted: 26 December 2018
Published online: 31 December 2018.

Abstract: In this study, we give a necassary and sufficient conditionafo arbitrary-speed regular space curve to lie on a sphere
centered at origin. Also, we obtain the position vector of eegular arbitrary-speed space curve lying on a sphereeahtt origin
satisfies a third-order linear differential equation whesefficients is related to speed function, curvature andidor Then, a
collocation method based on Lucas polynomials is develdpethe approximate solutions of this differential equatiMoreover, by
means of the Lucas collacation method, we approximatelgiolthe parametric equation of the spherical curve by usiig t
differential equation. Furthermore, an example is givedemonstrate the efficiency of the method and the resultscanpared with
figures and tables.
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1 Introduction

In books on differential geometry, for a curve necessarydit@n to lie in a sphere has been given and the spherical
curves have been investigated many mathematicians. Fonseain [1], Wong gave a necessary and sufficient condition
for a curve to lie in a sphere without having to assume thaoitsion is nowhere zero. Then, Breuer and Gottlieb showed
that the differential equation characterizing a sphegaale could be solved explicitly to express the radius ofature

of the curve in terms of its torsion [2]. After then, Wong pealvthat the explicit characterization of spherical curves
obtained by Breuer and Gottlieb is, without any preconditim the curvature and torsion, a necessary and sufficient
condition for a curve to be a spherical curve [@gzdamar and Hasalihoglu, gave the characterizations for the regular
curves each of lies on th8 ! of n-dimensional Euclidean Spa& and they expressed these characterizations in the
higher curvatures of the curves [4]. Mehlum and Wimp gaved the position vector of any 3-space curve lying on a
sphere satisfies a third-order linear differential equetihose coefficients involve a single arbitrary functiy(s) [5].

For the solution of linear integro-differential equatipasTaylor collocation method was given by Karamete and Sezer
[6]. Then, Taylor collocation method was given by Sezer etoafind the approximate solutions of high-order systems of
linear differential equations with variable coefficien®.[Also, Yiizbag and Sezer, presented an exponential matrix
method for the solutions of systems of high-order linearfedéntial equations with variable coefficients [8].
Furthermore, in [9] Cetin et al. developed an approxinmatieethod based on Lucas polynomials for the solution of the
system of high-order linear differential equations withriable coefficients under the mixed conditions. Also in [10]
Cetin et al. a collocation method based on Lucas polynani@l solving high-order linear differential equations hwit
variable coefficients under the boundary conditions is gl by transforming the problem into a system of linear
algebraic equations with Lucas coefficients.

© 2018 BISKA Bilisim Technology * Corresponding author e-maihat.mcetin@hotmail.com


http://ntmsci.com/cmma 

(_/
s BISKA M. Cetin, H. Kocayigit and M. Sezer: Lucas collocation metho determination spherical curves...

In this paper, we developed a Lucas collocation method totfiacipproximate solutions of third-order linear diffefiaht
equations with variable coefficients. Then, we obtain thetgosition vector of any arbitrary-speed regular spaceecur
lying on a sphere centered @in Euclidean 3-Space satisfies a third-order linear difféa¢ equation. Furthermore, by
means of this method we obtain a Lucas polynomial solutiodiféérential equations characterizing the position vecto
of any regular arbitrary-speed space curve lying on a spterered ab according to Frenet frame in Euclidean 3-space
E3. Then we give an example and compare the results to demtansstesefficiency of the method.

2 Preliminaries
In this section, we give some basic concepts on differegtalmetry of space curves and spherical curves in Euclidean
3-Space.

A parametrized differentiable curve is a differentiablegaa: | — R® of an open interval = (a, b) of the real line R into
R®. A parametrized differentiable curee: | — R3 is said to baegularif a’(t) # 0 for allt € | [11].

The velocity vector of a regular cunae(t) att =ty is the derivative‘fj—‘{ evaluated at = tg. The velocity vector field is
the vector valued functioBZ. The speed of () att = to is the lenght of the velocity vector &= to, |0’ (to)| [12].

The unittangentvector, the unibinormalvector and the unjrincipal normalvector of the regular curve are given by

a’(t) a’'(t)Ana’(t)

TO=Taror®Y = fem Ao

N(t) =B(t) AT(t)
respectively [13] .

If a is a regular curve in Rwith k > 0, then the Frenet formulaes

T’ =vkN
N’ = —vkT +VviB
B = —vIN

wherex is the curvature of the curwe, 7 is the torsion of the curve andv = ||a’|| is the speed function of the curee
respectively [13].

For a general parameteof a space curve, the curvature and the torsion of the curve are given by

@ OAa ] deta’t).a"().a" (1),
lOF la'®) o )]

K(t)
where deta’(t),a” (t),a”(t)) = (a’(t) Aa”(t),a” (1)) [13].
A Cleliesis a curve lying on a sphere centered at origin parametriged b

a(s) = (rsin(mt) cogt),r sin(mt) sin(t),r cogmt))

wherer is radius of the sphere [14].
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3 Differential equation characterizing spherical curves

In this section, we give a necassary and sufficient condftioan arbitrary-speed regular space curve to lie on a sphere
centered at origin. Then, we obtain that position vectormof arbitrary-speed regular space curve lying on a sphere
satisfies a third-order linear differential equation witlrigble coefficients.

Theorem 1.Leta be a Frenet frame curve of clasé¢ @ R3 with T # 0 everywhere. Thea lies on a sphere if and only
if the following equation holds.

T (K ’

()

Now, we obtain the necessary and sufficient condition for rhitrary-speed regular space curaeto lie on a sphere
centered a0 in Euclidean 3-Spacg&?, parametrized by. Denote by{T,N,B},k,T andv the moving Frenet frame,
curvature, torsion and speed function along the carveespectively. Then, we can write

[15].

a(s) = A(S)T(s) +A2(S)N(s) +A3(9)B(s) 1)

Differentiating (L) with respect tes and by using the Serret-Frenet formulas for non-unit spegdlar curve, we get

VT = (/\1 - VK)\Z) T+ (vm\l A, VT/\3) N+ (vn\z + Ag) B @)
From @) we can write
V=2A; —VKAz ®)
O0=VKA1+ Aé —VTA3 (4)
0=vrAx+ )\é ()

The condition thatr lie on a sphere centered at the origin is
(a,a’)=0. (6)

Substituting {) in (6), we obtainA; = 0. and hence, from3) and @), we obtain

K/

— 7
VK2T ()
Substituting 7) into the 6), we obtain the necessary and sufficient condition for abitrairy-speed regular space curve
a to lie on a sphere centered@in Euclidean 3-Spack?, as follows

!
VT K’
= 5] =0
K VTK

We can expres§, N andBin terms ofa’, a”, a’”’ andk, 1,v via the Serret-Frenet formulae as follows.

-1
Ao = 7 and /\3—

T= \—1/0’ (8)
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1 4 \/ !

N = Wa — WC{ (9
B:%{a’”—(y+£> a”+(3(vé)2+ﬂ+v2k2—v—”) a’}. (10)
VKT vV K V VK v
Substituting 1), (8), (9) and (L0) in (1), we get
ps(s)a” (s)+ pa(s)a”(s) + pi(s)a’(s) + po(s)a(s) =0 (11)

where
p3(S) = VPkK', pa(s) = —V* k1% — 3wWkK' —V?(k')?

p1(s) = V3V K212 — W'k k' +VAK3K' +3(V)2k K’ + W (K')2, po(s) = —VPk 412,

This differential equation is third-order with respect wsfiion vector ofa characterizing spherical curves according to
Frenet frame in Euclidean 3-Spage.

4 Lucas collocation method for third-order linear differential equation with variable
coefficients

Sezer et al. gave a Taylor collocation method to find the apprate solutions of high-order systems of linear
differential equations with variable coefficients in [7]hdn Cetin et al. presented an approximation method based on
Lucas polynomials for the solution of the system of highesrtinear differential equations with variable coefficient
under the mixed conditions [9]. Moreover, Cetin et al. gawllocation method based on Lucas polynomials for solving
high-order linear differential equations with variableefficients under the boundary conditions [10].

In this section we have developed Lucas collocation metbagbtve the third-order linear differential equations with
variable coefficients in the form

Lyx)] = Y py¥(x) =g(x), 0<a<x<b (12)
k=0
under the mixed conditions )
S (ay®(@)+bry® (b)) =cj, j=0.1,2 (13)
K=0

wherey©) (x) = y(x) is an unknown functionp,(x) andg(x) are known continuous functions defined on inteffeab],
and coefficientsjx, bjx andc;j are real constants.

In addition, by improving the present method with the helpredidual error function used in [16-19], we obtain the
corrected approximate solution of Etf expressed in the truncated Lucas series form

YaM(X) = YN (X) +enm(X) (14)

where

N
y(X¥) = yn(x) = Zoanl-n(x) (15)
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is the Lucas polynomial solution and

M
Q) = 3 Blalx. M>N (16)

is the solution of the error problem obtained with help of tesidual error function. Hera, anda;;, (n=0,1,2,...,N)
are unknown Lucas coefficients, abg(x), (n=0,1,2,...,N) are Lucas polynomials defined by

/2] K
o=z = 50 (e - { VA e

[20, 21].

In order to find solution of Eq1(2), with mixed conditions13), we can use collocation points defined by

b—a. .
x@:aJrTal, i=0,1,...N, 0<a<x<h. a7
The Lucas polynomialksy(x) can be written in the matrix form as

L(x) = X(x)DT (18)

where

and ifN is odd,

(© 2018 BISKA Bilisim Technology


 ntmsci.com/cmma 

(_/
19 BISKA M. Cetin, H. Kocayigit and M. Sezer: Lucas collocation metho determination spherical curves...

If Nis even,

0 n./2 . (H+2)/2
0 Wfl((n2)/2> 0 —r<n+2§2<(n4/2> 0 0
n (/2 0 N (n+2)/2 0 N (n+4)/2 afn
| "2\ n/2 (272 \ (n-2)/2 M2\ (n-4)/2)  "\o) |

We can write the approximate solutigi(x) given by (L5) in the matrix form

yn(x) = LA (19)
where -
A=|aga a--ay| -
From (18) and (L9), we obtain the matrix relation
YN(X) = X(X)DTA. (20)

Also, the relation between the matrix) and its derivatives ¥)(x) is

X® (x) = X (x)B¥ (21)
where
010---0
002---0
000---N
000---0

By using relationsZ0) and 1), we obtain the following relation.
Y (x) = X (x) BXDTA. (22)

By substituting 18) and 2) into Eq.({L2), we obtain the matrix equation

3
Y Pk(X)X(x)BDTA = g(x) (23)
=)

(© 2018 BISKA Bilisim Technology
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and by using collocation point4 7) into Eq.@3), the system of matrix equations can be obtained as

ki Pc(X)X (%) B*DTA = g(x)

or the compact form

3
PXBKDT tA=G (24)
o ee]
where
(%) O 0 X (%) 1% %X 9(%0)
0 p(x1 0 X (X1 1x X2 - x\ g(x1
. o) O RO B ELE S ) I
0 0 - Pe(XN) X (xn) 1 Xy X3 - XN a(xn)
Thus, the fundamental matrix equatid@¥) corresponding to EqL@) can be written in the form
3
WA =G or [W;G],W= Y RXB"D' (25)
K=0

Eq.(25) indicates a system diN + 1) linear algebraic equations with unknown Lucas coefficieqtgn=0,1,...,N).
Now, by means of Eq22), we obtain the matrix forms for the conditioris3j as follows

2
kZo [aX (@) +biX (b)| BDTA=[c]], (j=0,1,2)

or briefly,

UjA =[cj] or [Uj;ci],(j=0,1,2) (26)
where
2

Uj = ;[aij(a)erij(b)} B\D' = [Ujo Uj1 Uj2 --- ujN:| ) (J =0, 172)-
K=

Consequently, by replacing the row matric2§)(by last rows of the matrix25), we have

Woo  Wo1 won 5 9(%0)
Wio W11 win 5 9(x1)
[W; G} = | WiN-3)0 WiN-3)1 "+ WN-3)N 3 ION-3) | °
Uoo Uoo Un | ©Co
uio Uiz un 3 C
Uz0 uz21 Un 3 C

- - N1
which is a linear algebraic system. If raM<:rank{W; G} = N+ 1, then we can writeA= (W) G. Hence, the

T
unknown Lucas coefficients matrix A |aga; a --- an is determined and by substituting the coefficients

ap,a1,ay,...,an into Eq.(@5), the Lucas polynomial solution of the differential eqoatis obtained.

Now, we give an error estimation for the Lucas polynomiautoh (15) with the residual error function [16-19].
Moreover, we improve the solutiorlf) by means of the residual error function. Firstly, we canrdethe residual
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function of the method as
Ru(X) = LIyN(X)] — 9(x). (27)

Here,yn(x) is the Lucas polynomial solution given b5 of the problem {2) and (3). Hence,yn(X) satisfies the
problem
LIy ()] = 350 POOYN () = () +Ru(X)
{ Yo (ajkyl(\ll( (@) + by (b)) =¢j, j=012

Also, the error functiomy (x) can be defined as

en(X) = y(x) —yn(x) (28)

wherey(x) is the exact solution of the problem2) and (3). From Egs.(2), (13), (27) and 8), we gain the error
differential equation

Lien()] = LIy()] = Lyn ()] = —Ru(x)
with the homogeneous mixed conditions

2
> (ane'(@ +byey (b)) = 0.1 ~0.1.2

k=
or openly, the error problem
S0 P(0ey (%) = —Ru(X)
2 () (N NP (29)
570 (apeld (@) + byl (b)) =0, j=0.12

Here, note that the nonhomegeneous mixed conditions

2

S (apy®(@)+bry® (b)) =cj, j =0,1,2
k=0

and
2

S (api (@) + by () = ¢, ] =0.1,2
k=0

are reduced to homogeneous mixed conditions

2
> (anel' (@ +bye'(5)) =0 ] =0.1.2

k=

The error problem29) can be solved by using the prosedure given above. Thus, taedhe approximatiosy v (x) to

en(x) as follows
M

enMm(X) = Zoa;;Ln(x), M > N.

n=
Consequently, the corrected Lucas polynomial solutygmu(x) = yn(X) + exm(X) is obtained by means of the
polynomialsyn (x) anden,m(X). Also, we construct the error functiay (x) = y(X) — yn(X), the estimated error function
en,m(X) and the corrected error functidi m (X) = en(X) — en,m(X) = Y(X) — Ynm(X).
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5 lllustration

In this section, we give an example and we compare the resldte,a;(s) anda; n(S) represent the coordinate functions
of position vector of the curve (s) and approximate solutions of the differential equatioespectively. All numerical
computations are calculated by using a computer programmittemin Maple.

Example 1We consider th€lelies curven E2 a : 0,21 — E parametrized by

at) = (sin (%) cogs),sin (%) sin(s),cos(%)) .

This curve is regular but non-unit speed curve which lie ditrspphere. Speed function, curvature and torsion of theecur
a are as follows.

v(t) = ||a’(t)]| = ; —4cog (2) +5 (30)
Y _ t

N \/4800§(2) 156cod (32)+125 -
(—4cog (%) +5)2

o) = 12(2cog (%) —5)sin(}) (32)

48cod (5) —156c08 (5) +125

By substituting 80), (31) and (32) in (11), we obtain differential equation charecterizing the sja Clelies curven is
as follow.

pa(t)a™ (t) + p2(t)a” (t) + pu(t)a’(t) + po(t)a(t) =0 (33)
where
oo 6cos(5)sin(%) (4cod (5) — 16cog (%) +15)
p3(>764co§(t§) 240co$ (%) +300co8 (5) — 125
oo 9sir? (§) (4cod (5) — 12cog (%) +5)
Pa(t) = 64co$ () —240coé (%) +300cod () — 125
. 3 sin(5)cos(3) (4cod (5) —40cod (5) +75)
pl()7§64co§(%) 240co8 (%) +300co8 (%) — 125
9 4cof(5)—24cod (%) +45c0é (%) —25
Po(t) = —

t
9 3)
464co$ (5) —240co8 (%) +300co8 (§) —125
a

We considenr (t) = (a1(t), az(t), as(t)), then Eq.B3) satisfies fom (t), a,(t) andas(t) as follows

pa(t)ay’ (t) -+ pz(t)ay (t) + pa(t)ai(t) + po(t)as(t) =0 (34)

Pa(t)az’ (t) + p2(t)az (t) + p(t)az(t) + po(t) az(t)

0 (35)

pa(t)az’ (t) + p2(t)az (t) + pa(t)az(t) + po(t)as(t) = 0. (36)

We suppose that the parametric equation of the carissunknown. We have only speed function, curvature anddaorsi
of the curvea. Then we can find the parametric equation of the cunapproximately by means of Lucas collacation
method and considering the Eg83j.
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We consider the initial conditions far (t), a»(t) andas(t)as follows
01(0) =0, a;(0) = 0.5 a1 (0) = 0
02(0) =0, 0,(0) =0, o (0) =1

a3(0) =1, a3(0) =0, a3 (0) = 0,25

The approximate solutiorg 4(t), a2 4(t) andas 4(t) by the truncated Lucas series fdr= 4 is

Qi a(t) = ia;,nLn(t) , (i=1,2,3).

Now, let us compute the coefficierds, , (n=0,1,2,3,4) of the approximate solutions. The set of collocation pdiots
a=0,b=2mandN =4 is calculated as

m 3
{to:O, t1:§, to =, t3=?, t4:2rr}.

From Eq.R4), the fundamental matrix equation for each Bd)( Eq.35) and Eq.86) is

3
{ Z)PKTBKDT}A =G.
k=

By using the prosedure given above, we obtain the Lucas poiaigolutions foN = 4 as
01.4(t) = 0.4999999996— 0.103328213f%+ (0.1145284738— 1)t*

024(t) = —(0.26e— 9) + 0.5t2— 0.238908949¢ + (0.2231474728 — 1)t*
a34(t) = 0.9999999995 (0.2e— 10)t — 0.125% + (0.40246802& — 2)t°+ (0.1160878758 — 2)t*

In order to compute the Lucas polynomial solution, let ussider the error problem

P3(t)€]’4(t) + P2(t)€] 4(t) + Pa(t)€) 4(t) + Po(t)era(t) = —Ruia
Pa(t)€54(t) + palt %7 (t) + Pr(t)€h4(t) + Po(t)e24(t) = —Ro4
P3(t)€54(t) + P2(t)€5 4(t) + Pa(t)€s 4(t) + Po(t)€34(t) = —Rs4

where
Rua(t) = ps(t)ay’s(t) + pa(t)ay 4(t) + pa(t) g 4(t) + po(t) aza(t)
Roa(t) = ps(t) azs(t) + Pa(t)az 4(t) + pa(t) oz 4(t) + Po(t) a24(t) (37)
Rs4(t) = pa(t) g (t) + pa(t) ag 4(t) + pa(t)ag 4(t) + po(t) oz 4(t)

By solving the error problem3() for M = 5 with the method, the estimated Lucas error function agpration
e145(t), e245(t) andes 4 5(t) to ey 4(t), e24(t) andes 4(t) is obtained as

e145(t) = (0.222044604925034- 15)t — 0.335907477291688+ 0.147313123124515
—(0.1452478935041G5- 1)t°

(© 2018 BISKA Bilisim Technology
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e245(t) = —(0.138777878078145- 15) + (0.1110223024625%6- 15)t
—(0.55511151231257%8- 16)t2— 0.238494735315633
+0.107194173804204— (0.106643253034255- 1)t5

e345(t) = —(0.17347234759768%- 17) + (0.346944695195364— 17)t
—(0.5342265557205%- 2)t3+ (0.236392416157558- 2)t*
—(0.227723431226885- 3)t5

Thus, we can calculate the corrected Lucas polynomialisoisit

a1.45(t) = 0.4999999996000Q0- 0.439235690391688 - 0.15876597050457%
—(0.1452478935041@5- 1)t°

a245(t) = —(0.2600001387778%8- 9) + 0.5t2— 0.477403684515633
40.1295089210242@4+ (0.1110223024625%6- 15)t
—(0.1066432530342%5- 1)t°

a3.45(t) = 0.999999999500009 (0.2000000346944 %0~ 10)t — 0.125?
+(0.3524802919575%8- 2)t* — (0.227723431226885- 3)t°
—(0.1317585317205%- 2)t°

Similarly, we can calculate the corrected Lucas polynosiditions forai(s), (i = 1,2,3) by using present method for
different values oM.

ForN =4 andM =8

a1.45(t) = 0.499999999599978- 0.306532559723310— 0.44414987035699%

—(0.1866200607675%8- 13) — (0.5329070518200%5- 14)t?
1(0.174641358983248 — (0.2860409452094%1 1)t°

(

+(0.194021418478947- 2)t” — (0.356421367872731— 4)t8

a245(t) = —(0.259996639461156- 9) + 0.499999999999996+ 0.224416858744318
—0.248981167081697+ (0.128196064874686- 13)t
+(0.2133096958508 %0~ 1)t5+ (0.147212321823962- 1)t°
—(0.33586327483265 2)t + (0.204842806713442- 3)t8

348(t) = 0.999999999500000 (0.199999702454266- 10)t — 0.1252

+(0.78772039094286% 4)t3 +(0.254392355708362- 2)t*
+(0.192991422948481 4)t5— (0.256915769161762 4)t°

(

1(0.629632428667440- 6)t" 4 (0.4076756683613%6- 7)t®
ForN =4 andM = 13

a1.413(t) = 0.4999999995991 13- 0.260125216685153— (0.161578050696862- 1)t
—(0.3755782316416%4 11) (0.454118933077138- 11)t2
0.464218823180868- 1)t°— (0.997436281466131 2)t6
0.3030856024846%8- 2)t” — (0.156638931981066- 2)t

+ )t
)

0.4114857475375%- 3)t°— (0.5399184033456%8- 4)t1°
)
)

+
+
+(0.3524900674940%2- 5)t'1 - (0.911934775912629- 7)t1?

—(0.1015665093069G6- 9)t13

AAA,_\/_\/_\
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) = —(0.257271019489549- 9) + 0.500000000001668— (0.6467967111744890- 2)t3
—(0.9408980754484%1- 1)t* — (0.8034536409633 70~ 12)t

+(0.534514547759334 6)t12— (0.132234193418015- 7)t13
—(0.9782409203315%6- 2)t°+ (0.148807268548122- 1)t°

—(0.359982011372225- 2)t "+ (0.1021813519104 5 2)t8

—( )+

—( it

a2.4.13(t

0.3604405849495@4- 3)t°+ (0.769153381880428- 4)t10
0.8904770680092%5- 5)t1

3.413(t) = 0.999999999499971 (o 2012010439772%-- 10)t — 0.125000000000007
+(0.412274200171665- 5)t3+ (0.2598066240822%4 2)t*
+(0.553872304938226- 5)t° — (0.2535583528797 & 4)t°
+(0.170714609813919- 5)t” — (0.462427797626050- 6)t8
4(0.128169082819624 6)t° — (0.204317393646569- 7)t*°
+(0.207431984062146- 8)t'1— (0.12500984746386# 9)t12
4(0.3377134693645%8- 11)t*°

When the values o ym(t), (i=1,2,3) for N =4,M = 5,8,13 are written in
anm(t) = (ainm(t),aznm(t), asnm(t))

the parametric equation of the curag m(t) = a(t) is found. Now we compare the corrected absolute error fanstin
Tables 1-3.

Table 1: Corrected absolute error functiofi&; nwm(t)|) for N =4 andM =5,8,13.

t; Corrected absolute error functiongEinm(t)] =
ai(t) —ainm(t)]
Evras(t)] |Ev.as(ti)| |E1.4.13(ti)]
0 0 011866e-13 0.3756e-11
m/3 | 0.058173632 0.276326840 0.003215525

2mr/3 | 0.085536668 0.703709963 0.006995609
m 0.027889603 0.276845034 0.001717034
47‘[/3 0.392355438 0.457343549 0.005477075
5m/3 | 1.485985927 0.382910418 0.003910408
21 0.602818793 0.673770187 0.000128008

Table 2: Corrected absolute error functiofi&z nm (t)

)forN=4andM =5,8,13.

ti Corrected absolute error functiongEonm(t)] =
az(t) —aanm(t)
Eza5(t)] |E248(ti)] |E24.13(t)]
0 0.2600e-9 0.2600e-9 0.2573e-9
7'[/3 0.290627483 0.115529399 0.001906142
27'[/3 0.880523887 0.298494761 0.004139286
T 0.515855720 0.120235950 0.001009328
47‘[/3 0.553938273 0.187144292 0.003254205
57‘[/3 0.982494585 0.141416172 0.002353825
21 1.267127566 1.162168851 0.000950739
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Table 3: Corrected absolute error functioi&s nwm(t)|) for N =4 andM =5,8,13.

t; Corrected absolute error functiongEsnm(t)] =
as(t) — asnm(t)|
Ezas(ti)] |E348(ti)] |E3413(t)]
0 0.5000e-9 0.5000e-9 0.5000e-9
n/3 | 0.000664249 0.000037843 0.000001268
2m/3 | 0.001771263 0.000096440 0.000002810
M 0.000893956 0.000037970 0.000000754
4m/3 | 0.001401566 0.000062277 0.000002133
5m/3 | 0.003040652 0.000050771 0.000001526
2m 0.001924771 0.000213768 0.000002288
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Fig. 1: Graphics of curver and curvesiss, 04 g Ve 0413.

6 Conclusions

In this study, we have developed a Lucas collocation metbofihtl the approximate solutions of third-order linear
differential equations with variable coefficients. Thene Wwave gave a necassary and sufficient condition for an
arbitrary-speed regular space curve to lie on a spherereeh&t origin. Then, we have obtained that position vector of
any arbitrary-speed regular space curve lying on a sphésfiss a third-order linear differential equation with iedole
coefficients inE2. And then, by means of this method we have gave approximhiémts of these differential equation
characterizing spherical curves. We have gave an exampleie efficiency of this method.
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In Tables 1-3, we obtained corrected absolute error funstior various values o and M. It is seen from these
comparisions that the corrected absolute errors are vesgdb zero when the valuesfandM is selected big. Also,
we have seen from the Figure 1 that the Lucas collocation odaiked for approximate solutions is very effective.

This method can be developed for the differential equatihish is obtained in differential geometry another special
curves.
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