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1 Introduction and main results

We adopt fundamental results and the standard notations of the Neavanlinna theory of meromorphic functions as explained
in ([7], [11] and [20]). A meromorphic functionf means meromorphic in the whole complex plane. If no poles occur,
then f reduces to an entire function. Given a meromorphic functionf (z), recall thatα(z) 6≡ 0,∞ is a small function with
respect tof (z) if T(r,α) = S(r, f ), whereS(r, f ) is used to denote any quantity satisfyingS(r, f ) = o(T(r, f )) andr → ∞
outside of a possible exceptional set of finite logarithmic measure. The orderρ( f ) is defined by

ρ( f ) = limsup
r→∞

log+T(r, f )
logr

.

A polynomialp(z) is called a Borel exceptional polynomial off (z) whenever

λ ( f (z)− p(z)) = limsup
r→∞

log+ N

(

r,
1

f (z)− p(z)

)

logr
< ρ( f ),

whereλ ( f (z)− p(z)) is the exponent of convergence of zeros off (z)− p(z). In this paper, we assume thatc is a nonzero
complex constant,n is a positive integer and k is a nonnegative integer, unless otherwise specified.

Recently the topic of distribution of values of differential polynomials of different types in the complex planeC has
attracted many mathematicians, a number of papers have focused on the zeros off (z) and its derivatives can be found in
([10],[11] and [21]).

In 2017, K. Liu, T.B. Cao and X.L. Liu [17] investigated some classical results on the distribution of zeros for differential
polynomials and differential-difference polynomials andobtained the following results.
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Theorem 1. Let f(z) be a transcendental entire function of finite order. If n≥ 1, k≥ 0 and

N

(

r,
1
f

)

= S(r, f ),

then[ f (z)n f (z+ c)](k)−α(z) has infinitely many zeros, whereα(z) is a nonzero small function with respect to f(z).

Theorem 2. Let f(z) be a transcendental entire function of finite order, which isnot a periodic function with period c. If

n≥ 1, k≥ 0 and N

(

r,
1
f

)

= S(r, f ), then[ f (z)n∆c f ](k)−α(z) has infinitely many zeros.

Theorem 3. Let f(z) be a transcendental entire function of finite order.If n ≥
k
2
+ 1, k ≥ 0 and f has infinitely many

multiorder zeros, then[ f (z)n f (z+ c)](k)− p(z), has infinitely many zeros, where p(z) is a nonzero polynomial.

Theorem 4. Let f(z) be a transcendental entire function of finite order, which isnot a periodic function with period c. If

n≥
k
2
+1, k≥ 0 and f has infinitely many multiorder zeros, then[ f (z)n( f (z+ c)− f (z))](k) − p(z), has infinitely many

zeros.

Theorem 5. Let f(z) be a transcendental entire function of finite order, let p(z) be a nonzero polynomial, and let n≥ 1,
k≥ 0. If f has a Borel exceptional polynomial q(z), then[ f (z)n f (z+c)](k)− p(z) has infinitely many zeros except f(z) =
q(z)+Aq(z)eαz, n=1, and p(z) = [q(z)q(z+ c)](k), where eαc =−1 and A is a nonzero constant.

Theorem 6. Let f(z) be a transcendental entire function of finite order, which isnot a periodic function with period c
and let n≥ 1, k≥ 0. If f has a Borel exceptional polynomial q(z), then[ f (z)n( f (z+ c)− f (z))](k) − p(z) has infinitely
many zeros, except the cases f(z) = q(z)+heαz, n= 1, and p(z) = [q(z)(q(z+ c)−q(z))](k), where eαc = 1.

In this paper, above theorems are generalized for higher order differential-difference operators as follows.

Theorem 7. Let f(z) be a transcendental entire function of finite order, which isnot a periodic function with period c. If n

and m are positive integers with n≥ 1, k≥ 0 and N

(

r,
1
f

)

= S(r, f ), then[ f (z)n∆m
c f ](k)−α(z) has infinitely many zeros,

whereα(z) is a nonzero small function with respect to f(z).

Remark.If m= 1 in Theorem7, then Theorem7 reduces to Theorem2.

Theorem 8. Let f(z) be a transcendental entire function of finite order, which isnot a periodic function with period c. If

n and m are positive integers with n≥
k
2
+1, k≥ 0 and f has infinitely many multiorder zeros, then[ f (z)n∆m

c f ](k)− p(z),

has infinitely many zeros, where p(z) is a nonzero polynomial.

Remark.If m= 1 in Theorem8, then Theorem8 reduces to Theorem4.

Theorem 9. Let f(z) be a transcendental entire function of finite order, which isnot a periodic function with period c and
If n and m are positive integers with n≥ 1, k≥ 0. If f has a Borel exceptional polynomial q(z), then[ f (z)n∆m

c f ](k)− p(z)
has infinitely many zeros, except the cases f(z) = q(z) + h(z)eαz, n = 1, and p(z) = [q(z)(q(z+ c)− q(z))](k), where
eαc = 1, α is a nonzero constant and h(z) is a nonzero entire function withρ(h)< ρ( f ).

Remark.If m= 1 in Theorem9, then Theorem9, reduces to Theorem6.
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2 Some lemmas

We need the following Lemmas to prove our results.

Lemma 1. Let f be a transcendental meromorphic function of finite order. Then

m

(

r,
f (z+ c)

f (z)

)

= S(r, f ).

Lemma 2. [6] Let f(z) be a transcendental meromorphic function of finite order. Then

T(r, f (z+ c)) = T(r, f )+S(r, f ).

Lemma 3. [20] Let f(z) be a transcendental meromorphic function and let n be a positive integer. Then

T(r, f (n))≤ T(r, f )+nN(r, f )+S(r, f ).

Lemma 4. Let f(z) be a transcendental meromorphic function of finite order with N(r, f )+N

(

r,
1
f

)

=S(r, f ) and F(z) =

f (z)n∆m
c f , where n and m are positive integer. Then

(n+1)T(r, f )+S(r, f )≤ T(r,F).

Proof.From the first fundamental theorem, Lemma1 and the assumption, we obtain

(n+1)T(r, f (z)) = T(r, f (z)n+1) = T

(

r,
f (z)F(z)

∆m
c f

)

≤ T(r,F(z))+T

(

r,
f (z)
∆m

c f

)

+S(r, f )≤ T(r,F(z))+S(r, f ).

Lemma 5. [2] Let g(z) be a transcendental meromorphic function of orderσ( f )< 1,h> 0. Then there exists anε-set E
such that

g
′
(z+ c)

g(z+ c)
→ 0

and
g(z+ c)

g(z)
→ 1

as z→ ∞ in C\E, uniformly in c for |c| ≤ h. Further, E can be chosen so that, for large z/∈ E, the function g has no zeros
or poles in|ζ − z| ≤ h.

Lemma 6. [21], Lemma1 Let f be a nonconstant meromorphic function and letα(z) be a small function of f such that
α(z) 6= 0,∞. Then

T(r, f ) ≤ N(r, f )+N

(

r,
1
f

)

+N

(

r,
1

f (k)−α

)

−N















r,
1

(

f (k)

α

)′















+S(r, f ).

Lemma 7. [20], Theorem1.62 Let fj (z) be a meromorphic functions and let fk(z), k= 1,2,...,n− 1, be not constant
satisfying the relation

n

∑
j=1

f j = 1
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with n≥ 3. If fn(z) 6≡ 0 and

n

∑
j=1

N

(

r,
1
f j

)

+(n−1)
n

∑
j=1

N(r, f j )< (λ +o(1))T(r, fk),

whereλ < 1, k= 1,2, ...,n−1, then fn(z) ≡ 1.

Lemma 8. [20], Theorem1.51 Let fj (z), j=1,2,...,n, n≥ 2, be meromorphic functions and let gj(z) j=1,2,...,n, be entire
functions satisfying:

(1)
n

∑
j=1

f j(z)e
g j (z) ≡ 0,

(2) g j(z)−gk(z) is not constant for1≤ j < k≤ n,

(3) for 1≤ j ≤ n, 1≤ h< k ≤ n,T(r, f j ) = o(T(r,egh−gk))(r → ∞, r /∈ E), where E⊂ (1,∞) is of finite linear measure
or finite logarithmic measure.

Then fj(z) ≡ 0, j = 1,2, ...,n.

Lemma 9. [6], Theorem9.2 Let A0(z), ...,An(z) be entire functions for which there exists an integer l, 0≤ l ≤ n, such
that

ρ(Al(z)) > max
0≤l≤n, j 6=l

ρ(A j(z)).

If f (z) is a meromorphic solution of

An(z)y(z+ cn)+ ...+A1(z)y(z+ c1)+A0(z)y(z) = 0,

then
ρ( f )≥ ρ(Al (z))+1.

Lemma 10. [5], Theorem1.2 Let P0(z), ...,Pn(z) be polynomials such that Pn(z)P0(z) 6≡ 0 satisfying the relation

deg(Pn(z)+ ...+P0(z)) = max{degPj(z) : j = 0, ...,n} ≥ 1.

Then every finite order meromorphic solution f(z)(6≡ 0) of

Pn(z) f (z+ cn)+ ...+P1(z) f (z+ c1)+P0(z) f (z) = 0

satisfies the inequalityρ( f )≥ 1.

Proof. (Proof of theorem 7) Let F(z) = f (z)n∆m
c f , that isF(z) = f (z)n∆m−1

c (∆c f ). Since by hypothesis

N(r, f )+N

(

r,
1
f

)

= S(r, f ).

We conclude that

N(r,F)+N

(

r,
1
F

)

≤ N

(

r,
1

f (z)n∆m
c f

)

≤ N

(

r,
1

f (z)n

)

+N

(

r,
1

∆m
c f

)

≤ T(r,∆m
c f )+S(r, f )

≤ m(r,∆m
c f )+N(r,∆m

c f )+S(r, f )≤ m

(

r,
∆m

c f
f

)

+m(r, f )+S(r, f )≤ T(r, f )+S(r, f ). (1)
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We have

T(r,F) = T(r, f (z)n∆m
c f )≤ T(r, f (z)n)+T(r,∆m

c f )+S(r, f )≤ nT(r, f )+m(r,∆m
c f )+N(r,∆m

c f )+S(r, f )

≤ nT(r, f )+m

(

r,
∆m

c f
f

)

+m(r, f )+S(r, f )≤ nT(r, f )+m(r, f )+S(r, f )

≤ nT(r, f )+T(r, f )+S(r, f )≤ (n+1)T(r, f )+S(r, f ).

From the above inequality and Lemma4, we get

(n+1)T(r, f )+S(r, f ) = T(r,F).

Using, this with Lemma6 and (1)

(n+1)T(r, f )+S(r, f )≤ N(r,F)+N

(

r,
1
F

)

+N

(

r,
1

F(k)−α

)

+S(r,F)

≤ N(r,F)+N

(

r,
1
F

)

+N

(

r,
1

F(k)−α

)

+S(r,F)

≤ T(r, f )+N

(

r,
1

F (k)−α

)

+S(r, f )

nT(r, f )≤ N

(

r,
1

F (k)−α

)

+S(r, f ).

Sincen≥ 1 we conclude that[ f (z)n∆m
c f ](k)−α(z) has infinitely many zeros.

Proof. (Proof of theorem 8) Let
F(z) = f (z)n∆m

c f .

Assume thatF (k)(z)− p(z) has finitely many zeros. From Hadamard factorization theorem, we have

F(k)(z)− p(z) = h(z)eq(z), (2)

whereh(z) is a nonzero polynomial andq(z) is a nonconstant polynomial, otherwise ifq(z)=A, whereA is a constant, then
F (k)(z)− p(z) = h(z)eA. This implies thatF(z) = f (z)n∆m

c f is also a polynomial, which contradictsf (z) is transcendental
entire function. Differentiating (2), we get

F(k+1)(z)− p′(z) = [h′(z)+h(z)q′(z)]eq(z). (3)

Combining (2) with (3) and eliminatingeq(z), we obtain

F(k+1)(z)

F (k)(z)
=

h′(z)+h(z)q′(z)
h(z)

+

[

p′(z)−
h′(z)+h(z)q′(z)

h(z)
p(z)

]

1

F (k)(z)
. (4)

We note that poles of
F (k+1)(z)

F (k)(z)
on the left hand side of (4) must be simple. Iff has infinitely many multiorder zeros and

n≥
k
2
+1,
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then we can findz0 which is a zero off and not a zero ofh(z) andp′(z)−
h′(z)+h(z)q′(z)

h(z)
p(z). Thus, the poles of right

hand side of (4) must be multiorder, a contradiction.

Proof.( Proof of theorem 9) Assume thatρ( f ) = s, wheres is a positive integer. Then the transcendental entire function
f (z) can be represented as

f (z) = q(z)+h(z)eαzs
(5)

whereα is a nonzero constant andh(z) is a nonzero entire function with

λ (h)≤ ρ(h)< ρ( f ) = s.

It follows from (5) that
f (z+ c) = q(z+ c)+h(z+ c)eα(z+c)s = q(z+ c)+h1(z)e

αzs
,

where
h1(z) = h(z+ c)eα(C1

szs−1c+C2
s zs−2c2+...+Cs−1

s zcs−1+cs
). (6)

Thus
f (z+ c)− f (z) = q(z+ c)−q(z)+ (h1(z)−h(z))eαzs

= q1(z)+h2(z)e
αzs

.

We have

∆m
c f = ∆m−1

c ( f (z+ c)− f (z)) = ∆m−1
c [q(z+ c)−q(z)+ (h1(z)−h(z))eαzs

] = ∆m−1
c [q1(z)+h2(z)e

αzs
], (7)

whereq1(z) = q(z+c)−q(z) andh2(z) = h1(z)−h(z). Suppose that[ f (z)n∆m
c f ](k)− p(z) has finitely many zeros. Thus,

from the Hadamard factorization theorem, we obtain

[ f (z)n∆m
c f ](k)− p(z) =C(z)eγzs

.

This implies
[ f (z)n∆m−1

c ( f (z+ c)− f (z))](k)− p(z) =C(z)eγzs
, (8)

whereC(z) is an entire function with finitely many zeros of orderρ(C)< sandγ is a nonzero constant.

Case 1. Letk= 0 andn= 1 in (8), we get

[ f (z)∆m−1
c ( f (z+ c)− f (z))]− p(z) =C(z)eγzs

. (9)

Substitutingf (z) = q(z)+h(z)eαzs
in (9) we get

[q(z)+h(z)eαzs
][∆m−1

c (q(z+ c)+h(z+ c)eα(z+c)s−q(z)−h(z)eαzs
)]− p(z) =C(z)eγzs

.

We get

h(z)[∆m−1
c (h1(z)−h(z))]e2αzs

+[h(z)(∆m−1
c (q(z+ c)−q(z)))+q(z)(∆m−1

c (h1(z)−h(z)))]eαzs

= p(z)−q(z)[∆m−1
c (q(z+ c)−q(z))]+C(z)eγzs

. (10)

Subcase 1.1. Ifp(z)−q(z)[∆m−1
c (q(z+ c)−q(z))]≡ 0. If h1(z) = h(z), thenα = γ, follows from the equation presented

above. It follows from (10) and Lemma9 thats= 1. Thereforeh(z) = h(z+ c)eαc. By using Lemma5 we conclude that
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h(z) is a constant andeαc = 1. Thus,f (z) = q(z)+heαz, whereeαc = 1.

If h1(z) 6≡ h(z), then γ = 2α. From Lemma 8, we obtain
[h(z)(∆m−1

c (q(z+ c)− q(z))) + q(z)(∆m−1
c (h(z+ c)eα(C1

szs−1c+ ...+Cs−1
s zcs−1+ cs)− h(z)))]eαzs

= 0. By Lemma9,
we gets= 1. therefore,

[h(z)(∆m−1
c (q(z+ c)−q(z)))+q(z)(∆m−1

c (h(z+ c)eαc−h(z)))] = 0. (11)

Sinceρ(h) < 1 in Lemma10, we see that eitherq(z) must be constant oreαc = 1 if q(z) is not a constant. If q(z) is a
constant from Lemma5 thenh(z) reduces a constant. Hence,f (z) is a periodic function with periodc, a contradiction.

If eαc = 1 andq(z) is not a constant, in view of (10), we geth(z)[∆m−1
c (h(z+c)−h(z))] =C(z). Combining this with the

inequalityρ(h) < 1 and the fact thath(z) is an entire function, we obtainρ(h(z+ c)− h(z))< 1. ThereforeC(z) must
have infinitely many zeros and we arrive at the contradiction.

Subcase 1.2. Ifp(z)−q(z)[∆m−1
c (q(z+ c)−q(z))] 6≡ 0, then

[h(z)(∆m−1
c (h1(z)−h(z)))−C(z)]e2αzs

+[h(z)(∆m−1
c (q(z+ c)−q(z)))+q(z)(∆m−1

c (h1(z)−h(z)))]eαzs

= p(z)−q(z)[∆m−1
c (q(z+ c)−q(z))]. (12)

Let

f1(z) =
[h(z)(∆m−1

c (h1(z)−h(z)))−C(z)]

p(z)−q(z)[∆m−1
c (q(z+ c)−q(z))]

e2αzs

and

f2(z) =
[h(z)(∆m−1

c (q(z+ c)−q(z)))+q(z)(∆m−1
c (h1(z)−h(z)))]

p(z)−q(z)[∆m−1
c (q(z+ c)−q(z))]

eαzs
.

Thus, f1(z)+ f2(z) = 1. It follows from the second main theorem that

T(r, f1)≤N(r, f1)+N

(

r,
1
f1

)

+N

(

r,
1

f1−1

)

+S(r, f1)≤ N

(

r,
1
f1

)

+N

(

r,
1
f2

)

+S(r, f1)≤ O(rs−1+ε)+S(r, f1),

which is contradiction withρ( f1) = s. Thus,[ f (z)n∆m
c f ](k)− p(z) has infinitely many zeros.

Case 2. Ifk≥ 1, then it follows from (7) and (8) that

[(q(z)+h(z)eαzs
)n(∆m−1

c (q1(z)+h2(z)e
αzs

))](k)−C(z)eγzs
= p(z).

This yields

[q(z)n∆m−1
c (q1(z))+∆m−1

c (D1(z)e
αzs

+ ...+D j(z)e
jαzs

+ ...+Dn(z)e
nαzs

+h(z)h2(z)e
(n+1)αzs

)](k)−C(z)eγzs
= p(z), (13)

where
D j(z) =C j

nq(z)n− jq(z+ c)h(z) j +C j−1
n q(z)n− j+1h1(z)h(z)

j−1
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andρ(D j(z)) < s, j = 1, ...,n. For any integer k, from (13), we obtain

F1(z)e
αzs

+ ...+Fj(z)e
jαzs

+ ...+Fn(z)e
nαzs

+Fn+1(z)e
(n+1)αzs

−C(z)eγzs
= p(z)− [q(z)n∆m−1

c (q1(z))]
(k), (14)

whereFj(z) are differential polynomials ofh(z),h1(z),q(z) andq(z+ c), and their powers of derivatives and in addition,
ρ(Fj(z))< s, j = 1, ...,n+1. In what follows we consider two cases.

Subcase 2.1. Ifp(z)− [q(z)n∆m−1
c (q1(z))](k) ≡ 0 in Lemma8, then allFj(z) ≡ 0, j = 1,2, ...n, andFn+1(z)−C(z) ≡ 0.

We state thatn= 1; otherwise, letn≥ 2. If k= 1 in F1(z)≡ 0, then we get

D
′

1(z)+αszs−1D1(z) = 0,

which gives the nontrivial solutionD(z) of the first-order differential equation presented above satisfying the equality
ρ(D(z)) = s in contradiction with the conditionρ(D(z))< s. Thus,D1(z)≡ 0.
Fork= 2, let

g(z) = D
′

1(z)+αszs−1D1(z) = 0.

Thus we haveg
′
(z) + αszs−1g(z) = 0, which also implies thatρ(g(z)) = s in contradiction with the condition

ρ(g(z)) = ρ(D(z))< s. By using this method for any positive integerk, we conclude thatD1(z)≡ 0, that is,

C1
nq(z)n−1q(z+ c)h(z)+q(z)nh(z+ c)eα(C1

szs−1c+...+Cs−1
s zcs−1+cs) ≡ 0.

From Lemma9, we gets= 1, which implies that

C1
nq(z)n−1q(z+ c)h(z)+q(z)nh(z+ c)eαc ≡ 0. (15)

In view of Lemma10, sinceρ(h(z))< 1, the degree ofC1
nq(z)n−1q(z+ c)+q(z)neαc must be smaller than the degree of

q(z)n. Hence, we arrive at the equality
eαc =−C1

n (16)

provided thatq(z) is not a constant. By using the same arguments as above, we also getD2(z)≡ 0, that is

C2
nq(z)n−2q(z+ c)h(z)2+C1

nq(z)n−1h(z+ c)eαch(z)≡ 0.

As above, ifq(z) is not a constant, then we find
C1

neαc =−C2
n. (17)

It follows from (16) and (17) thatn= 0; a contradiction. Thus, we haven= 1. By using (13) and Lemmas8 and7, we
obtainD1(z)≡ 0. Hence (15) is equivalent to (11). Therefore, we get

f (z) = q(z)+heαz,

whereeαc = 1.

Subcase 2.2. Ifp(z)− [q(z)n∆m−1
c (q1(z))](k) 6≡ 0, then we combineρ(Fj(z))< sandρ(C(z))< swith (14) and Lemma7

we obtain
[Fn+1(z)−C(z)]e(n+1)αzs

= p(z)− [q(z)n∆m−1
c (q1(z))]

(k)

or
Fj(z)e

jαzs
= p(z)− [q(z)n∆m−1

c (q1(z))]
(k)

which is impossible. Thus,[ f (z)n∆m
c f ](k)− p(z) has infinitely many zeros.
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