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Abstract: We consider two new subclassesS∑m
(τ,λ ,α) and S∑m

(τ,λ ,β ) of ∑m consisting of analytic and m-fold symmetric bi-
univalent functions in the open unit diskU . Furthermore, we establish bounds for the coefficients of functions in these subclasses and
several related classes are also considered. In addition tothese, connections to earlier known results are presented.
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1 Introduction

Let A denote the class of functions of the from

f (z) = z+
∞

∑
n=2

anzn (1)

which are analytic in the open unit diskU = {z : |z|< 1}, and LetSbe the subclass ofA consisting of from (1) which is
also univalent inU (for details, see [6]).

The Koebe one-quarter theorem[6] states that the image ofU under every functionf from S contains a disk of Radius
1/

4. Thus, every such univalent function has inversef−1 which satisfies

f−1 ( f (z)) = z(z∈U) , f−1 ( f (w)) = w,

(

|w|< r0( f ), r0 ≥
1
4

)

, (2)

where
f−1 (w) = w−a2w2+

(

2a2
2−a3

)

w3−
(

5a2
3−5a2a3+a4

)

w4+ ..... (3)

A Function f ∈ Ais said to be bi univalent inU if both f and f−1 are univalent inU . LetΣ denote the class of bi-univalent
functions defined in unit diskU . For a brief history and interesting examples in classΣ , see[17]. Examples of functions
in the classΣ are

z
1− z

,− log(1− z) ,
1
2

log

(

1+ z
1− z

)

, (4)

and so on. However, the familiar Koebe functions is not a member of Σ . Other common examples of functions in such as

z− z2

2
,

z
1− z2 , (5)
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are also not members ofΣ (see[17]). For each functionf ∈ S, function

h(z) = m
√

f (zm)(z∈U,m∈ N) (6)

is univalent and maps the unit diskU into a region with m-fold symmetry.A function is said to be m-fold symmetric
(see[11],[16]) if it has the following normalized form:

f (z) = z+
∞

∑
k=1

amk+1zmk+1 (z∈U,m∈ N) . (7)

We denote bySm the class of m-fold symmetric univalent functions inU , which are normalized by the series expansion
(7). In fact, the functions in the classSare one-fold symmetric. Analogous to the concept of m-fold symmetric univalent
functions, we here introduced the concept of m-fold symmetric bi-univalent functions. Each functionf ∈ Σ generates an
m-fold symmetric bi-univalent function for each integerm∈ N. The normalized form off is given as in (7) and the series
expansion forf−1 , which has been recently proven by Srivastava et al.[18], is given as follows:

g(w) =w−am+1wm+1+
[

(m+1)a2
m+1−a2m+1

]

w2m+1

−
[

1
2
(m+1)(3m+2)a3

m+1− (3m+2)am+1a2m+1+a3m+1

]

w3m+1+ ... (8)

where f−1 = g. We denote byΣm the class of m-fold symmetric bi-univalent functions inU . Some examples of m-fold
symmetric bi-univalent functions are given as follows:

(

zm

1− zm

)
1/m

, [− log(1− zm)]
1/m,





1
2

log

(

1+ zm

1− zm

)
1/m


 . (9)

Lewin [12] studied the class of bi-univalent functions, obtaining thebound 1.51 for modulus of the second coefficient
|a2|. Subsequently, Brannan and Clunie[3] conjectured that|a2| ≤

√
2 for f ∈ Σ . Later, Netanyahu[15] showed that

max|a2|= 4/
3if f (z) ∈ ∑. Brannan and Taha[4] introduced certain subclasses of b-iunivalent function class∑ similar to

the familiar subclasses.S∗ (β )andK∗ (β ) are of starlike and convex function orderβ (0≤ β < 1), respectively (see[15]).

The classesS∗∑(α) andK∑ (α) of bi-starlike functions of orderα and bi-convex functions of orderα, corresponding to
function classesS∗ (α) andK (α), were also introduced analogously. For each of function classesS∗∑ (α) andK∑ (α),
they found nonsharp estimates on the initial coefficients. In fact, the aforecited work of Srivastava et al.[17] essentially
revived the investigation of various subclasses of bi-univalent function class∑ in recent years. Recently, many authors
investigated bounds for various subclasses of bi-univalent functions (see,[1],[2],[7],[8],[13], [17],[19]). Not much is known
about the bounds on general coefficient|an| for n≥ 4. In the literature, there are only a few works to determine general
coefficient bounds|an| for the analytic bi-univalent functions (see[5],[9],[10]). The coefficient estimate problem for each
of |an| (n∈ N/{1,2} ;N = {1,2,3, ...}) is still an open problem.

The aim of the this paper is to introduce two new subclasses ofthe function class∑m and derive estimates on initial
coefficients|am+1| and|a2m+1| for functions in these new subclasses. We have to remember the following lemma here so
as to derive our basic results.

Lemma 1. [16]. If p∈ P, then

|pn| ≤ 2, (n∈ N = {1,2, ...}) and

∣

∣

∣

∣

p2−
p1

2

2

∣

∣

∣

∣

≤ 2− |p1|2
2

, (10)
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where the Carath̀eodary class P is the family of all functions p analytic in U for which

Re{p(z)}> 0, p(z) = 1+ p1z+ p2z2+ p3z3+ ...,(z∈U) .

2 Coefficient bounds for function classS∑m
(λ ,τ,α)

Definition 1. A function f∈ ∑m is said to be in the class S∑m(τ,λ ,α), (τ ∈ C/{0} , 0 < α ≤ 1, 0 ≤ λ < 1) if the
following conditions are satisfied:

∣

∣

∣

∣

arg

{

1+
1
τ

(

z f′ (z)+λz2 f ′′ (z)
λz f′ (z)+ (1−λ ) f (z)

−1

)}
∣

∣

∣

∣

<
απ
2

,z∈U (11)

∣

∣

∣

∣

arg

{

1+
1
τ

(

wg′ (w)+λw2g′′ (w)
λwg′ (w)+ (1−λ )g(w)

−1

)}∣

∣

∣

∣

<
απ
2

,w∈U (12)

where the function g= f−1.

Theorem 1.Let f given by(7) be in the class S∑m(τ,λ ,α), 0< α ≤ 1. Then,

|am+1| ≤
2α |τ|

√

2m(m+2m2λ −m2λ 2)ατ − (α −1)m2 (1+mλ )2
, (13)

|a2m+1| ≤
2(m+1)α2τ2

m2 (1+mλ )2
+

α |τ|
m(1+2mλ )

. (14)

Proof.Let f ∈ S∑m(τ,λ ,α). Then we can write

1+
1
τ

(

z f′ (z)+λz2 f ′′ (z)
λz f′ (z)+ (1−λ ) f (z)

−1

)

= [p(z)]α , (15)

1+
1
τ

(

wg′ (w)+λw2g′′ (w)
λwg′ (w)+ (1−λ )g(w)

−1

)

= [q(w)]α , (16)

whereg= f−1 andp,qin P have the following forms:

p(z) = 1+ pmzm+ p2mz2m+ ...,q(w) = 1+qmwm+q2mw2m+ .... (17)

Now , equating the coefficients (15) and (16) we get

1
τ

m(1+mλ )am+1 = α pm, (18)

1
τ

[

2m(1+2mλ )a2m+1−m(1+mλ )2a2
m+1

]

= ap2m+
a(a−1)

2
p2

m, (19)

−1
τ

m(1+mλ )am+1 = αqm, (20)

1
τ

[

2m(1+2mλ )
[

(m+1)a2
m+1−a2m+1

]

−m(1+mλ )2a2
m+1

]

= aq2m+
a(a−1)

2
q2

m. (21)

Form (18) and (20), we obtain
pm =−qm, (22)
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2
τ2 m2 (1+mλ )2a2

m+1 = α2(pm
2+qm

2) . (23)

Also from (19), (21) and (23) we have

1
τ

[

a2
m+12m

[

(1+2mλ )(m+1)− (1+mλ )2
]]

= α (p2m+q2m)+
α (α −1)

2

(

pm
2+qm

2) , (24)

a2
m+1 =

α2τ2 (p2m+q2m)

2m(m+2m2λ −m2λ 2)ατ − (α −1)m2 (1+mλ )2
. (25)

Applying Lemma 1 for coefficientsp2m andq2m, we obtain

|am+1| ≤
2α |τ|

√

2m(m+2m2λ −m2λ 2)ατ − (α −1)m2 (1+mλ )2
. (26)

Next, in order to find the bound on|a2m+1| , by subtracting (21) from (19), we obtain

1
τ
[

2m(1+2mλ )
(

2a2m+1− (m+1)a2
m+1

)]

= α (p2m−q2m)+
α (α −1)

2

(

pm
2−qm

2) . (27)

Then, in view of (22) and (23) and applying Lemma 1 for coefficientspm, p2m andqm, q2m we have

|a2m+1| ≤
2(m+1)α2τ2

m2 (1+mλ )2
+

α |τ|
m(1+2mλ )

. (28)

3 Coefficient bounds for function classS∑m
(λ ,τ,β )

Definition 2. A function f∈ ∑m given by(7) is said to be in class S∑m(λ ,τ,β ), (τ ∈ C/{0} , 0< β ≤ 1, 0≤ λ < 1) if
the following conditions are satisfied:

Re

(

1+
1
τ

(

z f′ (z)+λz2 f ′′ (z)
λz f′ (z)+ (1−λ ) f (z)

−1

))

> β ,z∈U, (29)

Re

(

1+
1
τ

(

wg′ (w)+λw2g′′ (w)
λwg′ (w)+ (1−λ )g(w)

−1

))

> β ,w∈U, (30)

where the function g= f−1.

Theorem 2.Let given by(7) be in class textbfS∑m(λ ,τ,β ), 0≤ β < 1. Then,

|am+1| ≤
√

2|τ| (1−β )
m(m+2m2λ −m2λ 2)

, (31)

|a2m+1| ≤
2(m+1)τ2 (1−β )2

m2 (1+mλ )2
+

|τ| (1−β )
m(1+2mλ )

. (32)

Proof.Let f ∈ S∑m(λ ,τ,β ). Then we can write

1+
1
τ

(

z f
′
(z)+λz2 f

′′
(z)

λz f′ (z)+ (1−λ ) f (z)
−1

)

= β +(1−β )p(z) , (33)
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1+
1
τ

(

wg
′
(w)+λw2g

′′
(w)

λwg′ (w)+ (1−λ )g(w)
−1

)

= β +(1−β )q(w) , (34)

wherep,q∈ P andg= f−1. It follows from (33) , (34) that

1
τ

m(1+mλ )am+1 = (1−β )pm, (35)

1
τ

[

2m(1+2mλ )a2m+1−m(1+mλ )2a2
m+1

]

= (1−β )p2m, (36)

−1
τ

m(1+mλ )am+1 = (1−β )qm, (37)

1
τ

[

2m(1+2mλ )
[

(m+1)a2
m+1−a2m+1

]

−m(1+mλ )2a2
m+1

]

= (1−β )q2m. (38)

From (35) and (37), we obtain
pm =−qm, (39)

2
τ2 m2 (1+mλ )2a2

m+1 = (1−β )2
(

pm
2+qm

2) . (40)

Adding (36) and (38), we have

1
τ

[

2m(1+2mλ )(m+1)−2m(1+mλ )2
]

a2
m+1 = (1−β )(p2m+q2m) . (41)

Therefore, we obtain

a2
m+1 =

τ (1−β )(p2m+q2m)

2m(m+2m2λ −m2λ 2)
. (42)

Applying Lemma 1 for the coefficientsp2m andq2m, we obtain

|am+1| ≤
√

2|τ| (1−β )
m(m+2m2λ −m2λ 2)

. (43)

Next, in order to find the bound on|a2m+1|, by subtracintig (38) from (36), we obtain

1
τ
[

4m(1+2mλ )a2m+1−2m(1+2mλ )(m+1)a2
m+1

]

= (1−β )(p2m−q2m) . (44)

Then , in view of (39) and (40), applying Lemma 1 for coefficientspm, p2m andqm, q2m we have

|a2m+1| ≤
2(m+1)τ2 (1−β )2

m2 (1+mλ )2
+

|τ|(1−β )
m(1+2mλ )

. (45)

This completes the proof of Theorem 2.
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4 Coefficient bounds for function classS∑m
(λ ,τ,β )

Definition 3. [3] Let pn (β ) with n≥ 2 and0≤ β < 1 denote the class of univalent analytic function p, normalized with
p(0) = 1 and satisfying

∫ 2π

0

∣

∣

∣

∣

Rep(z)−β
1−β

∣

∣

∣

∣

dθ ≤ kπ ,

where z= reiθ . For β = 0, we denote, pn = pn(0) hence the class pn represents the class of functions p(z), analytic in U,
normalized with p(0) = 1 and having the representation

p(z) =
∫ 2π

0

1− zeit

1+ zeit du(t) ,

where u isα real valued function with bounded variation which satisfies

∫ 2π

0
du(t) = 2π and

∫ 2π

0
|du(t)| ≤ n, n≥ 2.

Note that p= p2 is the well known class of Caratheodory function (the normalized functions with positive real part in the
open unit disk U).

Definition 4. For 0≤ λ ≤ 1 and0≤ β ≤ 1 , a function f∈ ∑m given by(1) is said to be in the class S∑m(λ ,τ,β ), if the
following two conditions are satisfied:

1+
1
τ

(

z f′ (z)+λz2 f ′′ (z)
λz f′′ (z)+ (1−λ ) f (z)

−1

)

∈ pn (β ) , (46)

1+
1
τ

(

wg′ (w)+λw2g′′ (w)
λwg′ (w)+ (1−λ )g(w)

−1

)

∈ pn (β ) , (47)

where,τ ∈ C/{0} the function g= f−1 is given by(3) , and z,w ∈ U. In order to derive Theorem 3, we shall need the
following lemma:

Lemma 2. [20]. Let the functionφ (z) = 1+h1z+h2z2+ ... ; z∈U such thatφ ∈ pn (β ) then,|hk| ≤ n(1−β ); k ≥ 1.

Theorem 3.I f f ∈ S∑m(λ ,τ,β ), then

|am+1| ≤ min

{
√

n|τ| (1−β )
m(m+2m2λ −m2λ 2)

,
n|τ| (1−β )
m(1+mλ )

}

, (48)

|a2m+1| ≤
(m+1)n|τ| (1−β )

2m(m+2m2λ −m2λ 2)
. (49)

Proof.Since f ∈ S∑m(λ ,τ,β ) , from the definition relations (46) and (47) it follows that

1
τ

m(1+mλ )am+1 = pm, (50)

1
τ

[

2m(1+2mλ )a2m+1−m(1+mλ )2a2
m+1

]

= p2m, (51)

−1
τ

m(1+mλ )am+1 = qm, (52)
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1
τ

[

2m(1+2mλ )
[

(m+1)a2
m+1−a2m+1

]

−m(1+mλ )2a2
m+1

]

= q2m. (53)

From (50) and (52), it follows that

am+1 =
τ pm

m(1+mλ )
=

−τqm

m(1+mλ )
, (54)

and (51), (53) yields

a2
m+1 =

τ (p2m+q2m)

2m(m+2m2λ −m2λ 2)
. (55)

Applying Lemma 2 for coefficientsp2m andq2m, we obtain

|am+1| ≤ min

{
√

n|τ| (1−β )
m(m+2m2λ −m2λ 2)

,
n|τ| (1−β )
m(1+mλ )

}

. (56)

Next, in order to find the bound on|a2m+1| , by subtracting (51) from (53), we obtain

1
τ
[

2m(1+2mλ )
(

2a2m+1− (m+1)a2
m+1

)]

= p2m−q2m. (57)

Then, in view of (54) and (55) and applying Lemma 2 for coefficientspm, p2m andqm, q2m we have

|a2m+1| ≤
(m+1)n|τ| (1−β )

2m(m+2m2λ −m2λ 2)
. (58)

This completes the proof of Theorem 3.

5 Conclusions

If we setλ = 0 andτ = 1 in Theorems 1 and 2, then the classesS∑m(τ,λ ,α) andS∑m(τ,λ ,β ) reduce to the classesS
α
∑m

andSβ
∑m

respectively. Thus we obtain the following corollaries.

Corollary 1. [2] . Let f given by(7) be in the class S
α
∑m

(0< α ≤ 1). Then ,

|am+1| ≤
2α

m
√

α +1
and |a2m+1| ≤

α
m
+

2(m+1)a2

m2 . (59)

Corollary 2. [2] . Let f given by(7) be in the class Sβ∑m
(0≤ β < 1). Then,

|am+1| ≤
√

2(1−β )
m

and |a2m+1| ≤
2(m+1)(1−β )2

m2 +
1−β

m
. (60)

Classes S
α
∑m

and Sβ
∑m

are, respectively, defined as follows.

Definition 5. [2] . A function f∈ S∑m given by(7) is said to be in class S
α
∑m

if the following conditions are satisfied:

∣

∣

∣

∣

arg

(

z f′ (z)
f (z)

)∣

∣

∣

∣

<
απ
2

, f ∈ ∑,(0< α ≤ 1,z∈U) , (61)

∣

∣

∣

∣

arg

(

wg′ (w)
g(w)

)∣

∣

∣

∣

<
απ
2

,g∈ ∑,(0< α ≤ 1,w∈U) , (62)
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where the function g= f−1.

Definition 6. [2] . A function f∈ S∑m given by(7) is said to be in class Sβ∑m
if the following conditions are satisfied:

Re

(

z f′ (z)
f (z)

)

> β , f ∈ ∑ , (0≤ β < 1, z∈U) , (63)

Re

(

wg′ (w)
g(w)

)

> β ,g∈ ∑ , (0≤ β < 1, w∈U) , (64)

where the function g= f−1.

For one-fold symmetric bi-univalent functions andλ = 0, Theorems 2 and 3 reduce to Corollaries 6 and 7, respectively,
which were proven earlier by Murugusundaramoorty et. al.[14].

Corollary 3. [14] . Let f given by(7) b in class S∗∑(α) (0< α ≤ 1). Then,

|a2| ≤
2α√
α +1

and |a3| ≤ 4α2+α. (65)

Corollary 4. [14] . Let f given by(7) be in the class S∗∑(β ) (0≤ α < 1). Then,

|a2| ≤
√

2(1−β ) and |a3| ≤ 4(1−β )2+(1−β ) . (66)

If we setλ = 0 , λ = 1 andτ = 1 in Theorem 1, then the classes S∑m(τ,λ ,β ) reduce to the class Sβ
∑m

. Thus, we obtain
the following corollaries.

Corollary 5. [20] . I f 1+ 1
τ

[

z f′(z)
f (z) −1

]

∈ pn (β ) and1+ 1
τ

[

wg′(w)
g(w) −1

]

∈ pn (β ) then,

|a2| ≤ min
{

√

n|λ |(1−β ), n|τ| (1−β )
}

and a3 ≤ n|τ| (1−β ).

Corollary 6. [20] . I f 1+ 1
τ

[

z f′′(z)
f ′(z)

]

∈ pn (β ) and1+ 1
τ

[

wg′′(w)
g′(w)

]

∈ pn (β ) then,

|a2| ≤ min

{
√

n|τ|(1−β )
2

,
n|τ| (1−β )

2

}

and |a3| ≤
n|τ|(1−β )

2
.
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