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Abstract: Denote byG(¢,m), the Grassmannian éfdimensional subspaces ofradimensional vector spad&™ over the finite field
Fq andQq (¢, m), the Schubert subvarieties Gf(¢,m). A linear [n,K|q- code is e&k-dimensional subspace of tiedimensional vector
spacéFg. In this paper, we consider the problem of determining gaized spectrum of linear codes associated to Schuberasahies
of Grassmannians. We make a small begining here by detregnihé seond generalized spectrum (i.e. second weighitdittm) of

Schubert codes associated to Schubert subvarieti®élofm) overF; in case off =2 andm=5.
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1 Introduction

In [13], Victor Wei introduced the notion of weight hierarchy of iadar code, motivated by applications in type Il
wire-tap channel in cryptography. Wei defined thth generalized Hamming weight of a linear code as the minimu
support weight of any of its-dimensional subcode. For a class of Algebraic-geometides the generalized Hamming
weights were investigated by a number of researchers suEsfasmann-Viadu]2], Nogin [8], Ghorpade-Lachaud],
Ghorpade-Tsfasmag], Hirshfeld-Tsfasman-Viadufq, Ghorpade-Patil-Pillai].

Generalized Hamming weights proved to be of great apptinatin coding theory to study the structure of a code. It is
therefore natural toconsider an extension of the notioreokgalized weights-the generalized spectra of linearsode
The problem of determining the generalized spectra of atfifrek|q code is first studied by Klgve ifi] and [5]. In [4],

he gave a MacWilliams identity for the support weight dt=ttion of linear codes called the generalized MacWilliams
identity. In [5], he determined the weight enumerator polynomial (alsedadupport weight distribution function) for
irreducible cyclic codes.

In [3], the problem of determining generalized spectrum for heotclass of linear codes arising from higher
dimensional projective varieties namely Grassmanniaristies is studied.

In this paper, we investigate the problem of determiningdbkaeralized spectrum of code associated with Schubert
subvarieties of GrassmanniaB&2,5) overFs.

1.1 Ouitline of the paper

This paper is organized as follows. In section 2, we recallihsic definitions and properties of the linear code which

are useful for the rest of the work. In section 3, we define ttogeptive system and give the correspondence between
codes and projective system. we briefly describe the codesciated with Grassmannians and Schubert subvarieties
of Grassmannians. Finally, in section 4, we determine threeggor matrix for the code associated with every Scubert

subvariety 0fG(2,5) overF, and give the generalized spectrum of these codes.
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2 Linear Codes

2.1 Basic definitions

Let Fq denote the finite field witly elementsg = p", p a prime and denote by," the n-dimensional vector space over
Fq. For anyx € Fg", thesupportof x, sup(x), is the set of nonzero entriesxn= (X1, X2, -+ ,Xa). Thesupport weightor
Hamming normhof x is defined by,

[IX]| = [suppX)|-

More generally, ifD is a subspace dy", thesupportof D, SupgD) is the set of positions where not all the vector®in
are zero and theupport weigh{or Hamming normof D is defined by,

|ID|| = [supeD)|-

A linear [n,K|q-codeis ak-dimensional subspace Bf. The parametersandk are referred to as tHengthanddimension
of the corresponding code. Th&nimum distance & d(C) of C is defined by

d=d(C) =min{||x|| : x€ C,x# 0}
More generally, given any positive integerttherth higher weight d = d; (C) is defined by
dr = di(C) =min{||D|| : D is a subspace of C withimD=r}.

Note thatd;(C) = d(C). It also follows thatd; < d; wheni < j and thatdy = |supgC)|, wherek is dimension of code
C. Thus we have K d; =d < dy < --- < dk_1 < d¢ = n. The first weightd; is equal to the minimum distance and
the last weight is equal to the length of the code. [Ark]q-code is said to baondegeneraté it is not contained in a
coordinate hyperplane @. Two [n,k]q-codes are said to leguivalenif one can be obtained from another by permuting
coordinates and multying them by nonzero elementBofit is clear that this gives a natural equivalence relation o
the set ofin, k]q-codes. Theusual) spectrum (or weight distributionf a codeC C [y is the sequenc@Ao, Ag, -+, An}
defined by

A =A(C)={ceC:|[c|| # O},

More generallytherth higher weight spectrum (or rth support weight distrilout) of a codeC is the sequence

{AG,AL, -+ AL} defined by
A =|{DCC:dimD=r,|[D|| =i} ()

This naturally allows us to defimh support weight distribution function (or rth weight enerator)as
A(Z)=A)+AZ 4+ ANZ" )
Hence for each & r < k, we have a weight enumerator. We can also definetthikigher weighias
dr(C) =min{i: A] #0}.
Note thatA%(Z) = 1. Also note that if € Fj, then

X = [[{x} = [1{AX: A € Fq} .

Lemma 1.1f C is a code with dimension k ov&p then for Z=1

A1) = ["L 3)
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Where[ﬂ = ((gigg::gg:gj)) , which is the number of subspaces of dimensionr in a k diraerakspace.
2

2.2 Dual codes

The standarihner producton ]Fg is defined by< x,y >:= 31 ; Xiyi.

Definition 1. The Dual of a code C Fg is the code

1. .
C:={xeFg:<xc>=0forallce Fg}.

Let B (Z) be therth support weight distribution function of the dual cagte. In [4] Klgve gave the MacWilliams identity
for the generalized spectrum of codend its duaC+,

Theorem 1.[Generalized MacWilliams Identity] For all ix O we have

i[m]rswa — g L+ (d"- 1>Zl”{ i[m]f’“ () } |

where[m; = (@™ —1)(g™ - a)(q"—¢?)--- (@™ — g 1).

The numbefm); is known as the number of the ordered linear independemmehts in the m-dimensional space. For
r =1, we can write the MacWilliams identity for usual spectrunittie following theorem.

Theorem 2.

1+(q-1)BYZ) =q ¥ (1+ (- 1)2)”{1+ (@-DA' (ﬁ) }

3 Projective systems

An alternative way to describe codes is via the languageajéptive systems introduced ig]. Let P! be a projective
space of dimensiok— 1 overFq. A [n,K]q-projective systeris a (multi)setX of n points in the projective spad®—1 over
Fq. We callX nondegeneratiéthese n points are not contained in any hyperplarigot. Two [n, Klq-projective systems
are said to be equivalent if one can be obtained from anothaipbojective transformation. For any positive integeghe
rth higher weightof a projective systenX is defined by

o =di(X)=n-— max{ IXN 11| : Mis asubspace @< of codimension} .
Thegeneralized spectrumf a projective systerX is defined by,
A= A(X) = |{n C P XA MT| =n—i, codimT = r}|
foralli=1,2,---,n,r=1,2,---k— 2. It can be proved tha{ = A (C) = A (X).
For any[n,K|q-linear codeC, one can construct correspondifmgk]q-projective system in the following way: Consider

coordinate forms; : C — [Fg such that
Xi 1 (V1,+,Vn) = Vi

These forms can be considered as n points of the spaa# linear functions orC (the dual linear space). IE is
nondegenerate, that is, all forrxs are nonzero as functions d@ then they definen points in PX-1 = p(C*), or a
projective system.
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A subcodeD c C of dimensiorr correspond to the set of elements3jfvanishing orD, that is, to the subspa&® C C*

of codimensiorr and, therefore, to a subspace of codimension PX~1. The weight of a subcodB equals to the
number of coordinate forms not vanishing on it, that is, thenber of points ofX not lying on this subspace of
codimensiorr. On the other hand, now we show how one can construct a lires for a nondegenerate projective
system. Given a projective systeXn= {Py,P,,---, pn} C PX"1 =P(V), we lift it to a system{ys,y»,---,yn} Of vectors

in V. Any y; defines a mappiny* — Fq, and the set(y1,y»,---,yn) defines the mappiny* — Fq", given by
(V1,V2,++ ,Vn) = (Y1(V),¥2(V),--- ,Yn(v)) whose image is some linear code. Moreover it is [arkjq-code if the
projective system is nondegenerate.

The above correlation provides the proof for the followihgdrem (se€ll?)).

Theorem 3. There is a one-to-one correspondence between the set ofqthigaéence classes of nondegenerate
[n,K|q-projective systems and the set of the equivalence clas$esondegenerate linearn,k|q-codes. This
correspondence preserves the parameteksamd the higher weightsd 1,dy, - - - , dk.

The above correspondence in terms of generator matrix canelbed as follows: LeG is a generator matrix for a
[n,K]g-linear codeC, and letg:, g2, ---,0n € Fqk be the columns o6. Suppose that none of thg's is the zero vector.
then eacty; determines a poinfg;] in the projective spacg<1 =P (Fqk). If theseg; are pairwise independent, then
X :={[01],[92],- - , [an]} is a set oh points inP*~1. This will be the corresponding projective system. Thugtkelumns
of G determines a projective system X. Vice versaX lis a projective system, then a generator matrixdas thek x n
matrix whose columns are the representatives of pointsdjeptive systenX.

3.1 Codes from Grassmannians

The GrassmanniarB(¢, m) is the set o-dimensional subspaces of ardimensional vector spadéoverFq. We have
the well-known Pliicker embedding of the Grassmannian anpoojective space (cfl]), and this embedding is known
to be nondegenerate. Considering faerational points ofG (¢,m) as a projective system, we obtaimg-ary linear code,
called theGrassmann codevhich we denote b (¢,m). These codes were first studied by Ryan, 1] in the binary
case and by Nogir8] and Ghorpade and Lachaut] jn the g-ary case. It is clear that the lengttand the dimensiok of

C(£,m) are given by, n: [m] (1)) (g ke (m> W
q

l @ -1 —-q---(@—-ag? 4

The higher weights of (2n) is given by the following elegant formula due to Hansen-3emaRanesta®] and Ghorpade-
Patil-Pillai [3].

Theorem 4.For g = max({,m—/¢) +1,
d[J+l(C(2, m)) — q5 + q5*l+ e q67u+1- (2)

and
A ps1(C2,m) =n—(1+g+-+g* t+ ©)

3.2 Codes from Schubert varieties

Ghorpade and Lachaud ify][proposed the generalization of Grassmann codes as Sc¢leodes. The Schubert codes are
indexed by the elements of the set

1(6,m):={a=(a1,02,--,00)€Z:1<a1<---<0p<m}.
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Given anya < |(¢,m), the correspondin@chubert codés denoted byC,(¢,m), and it is the code obtained from the
projective system defined by the Schubert var@tyin G (¢,m) with a nondegenerate embedding induced by the Plucker
embedding. We defin@, as

Qe ={WeG{¢,m):dmWnAg)>i fori=1,2--- ¢},

whereA; denotes the span of the firptvectors in a fixed basis of, for 1 < j < m. Ghorpade and Tsfasman il
determined the length, and dimensiofk, of Cy4 (¢, m). It was conjectured by Ghorpade ifj[that

d(Cq (¢, m)) = g (4)
L(6+1)

whered, := 5{ 1 (ai —i) = a1+ 0o+ +ar — =5~

The complete weight hierarchy and second support weigtrilzlision of codes associated with all Schubert subvageti
of G(2,4) is known due to Patil g]). In Next section, we give the second support weight distion of all the codes
associated with Schubert subvarieties of Grassman@éh$) overF.

4 Codes associated with Schubert varieties i6(2,5) over [,

Letl(2,5) be an indexing set defined by,
1(2,5):={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5) }
Now by definition given anyr € I (¢, m), the Schubert variety is defined by,
Qu:={PeG(,m:pg=0 V B#a}.
We consider Schubert varieties for eactabove and the codes associated with them.
(I) Code associated with the Schubert variety foror = (2,4):

By definition,
Qp4y={P € G(2,5) : p15= Paa= P25 = P3a = P3s = Pas = 0}.

Dimension OfQ(Z.A) = 04 = 8, wheredpy, =2+4— 3= 3. Now

P € G(2,5) = P = (P12, P13, P14, P15, P23, P24, P25, P34, P35, Pas) € G(2,5) — P°.

So,
P € Qup4y = P = (P12, P13, P14, 0, P23, P24,0,0,0,0) .

The projective system consistsl®f-rational points ofQ, 4. The number of rational points d@,, 4is given by,

n= z q6B — 21+273+ 21+373+ 21+473+ 22+373+ 22+473 =1+ 2+4+4+8: 109.
B<a

These points are listed below:
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—(1,0,0,0,0,0,0,0,0,0) Ps=(0,1,0,0,1,0,0,0,0,0) Ps=(1,0,1,0,0,1,0,0,0,0)

Pz —(0,1,0,0,0,0,0,0,0,0) Py=(0,1,1,0,0,0,0,0,0,0) Pys=(1,0,0,0,1,1,0,0,0,0)
P, = (0,0,1,0,0,0,0,0,0,0) Pio=(0,1,1,0,1,1,0,0,0,0) Py7=(1.0,0,0,0,1,0,0,0,0)
P, = (0,0,0,0,1,0,0,0,0,0) Py =(1,1,1,0,0,0,0,0,0,0) Pig=(1,0,0,0,1,0,0,0,0,0)

P5 (0,0,0,0,0,1,0,0,0,0) Pro=(1,1,1,0,1,1,0,0,0,0) Po=(1,0,1,0,0,0,0,0,0,0)
Ps = (0,0,0,0,1,1,0,0,0,0) Pi3=(1,1,0,0,1,0,0,0,0,0)

P = (0,0,1,0,0,1,0,0,0,0) Pr4=(1,1,0,0,0,0,0,0,0,0)

dm(C)=#{B:B<(2,4)} =#{(1,2),(1,3),(1,4),(2,3),(2,4)} = 5lengtiC) = Number ofF, — rational points= 19.

Thus the generator matrix f@ is of order 5x 19 which is given by,

1000000000112 111111
0100000111111100000
0010001011121 0010001
0001010101011001010
0000111001010011100

We have the following theorem on second higher spectrunhfzsd codes.
Theorem5.A2,=6; A2,=90, A2,=57, A2;=2 A?=0, (otherwise)

we have also verified these calculations with the followiognfula,

31x 30

- 2_5 _ —
R

() Code associated with the Schubert variety fora = (2,5):
By definition,
5)={P €G(2,5): p3a= p3s = psas =0} .
Dimension ofQ (2,5) = &5 =4, Where625 =2+5-3=4.
Thus,

P € Q35 = P = (P12, P13, P14, P15, P23, P24, P25,0,0,0).

The projective system d®, 5) consists off,-rational points o2, 5. The number of these rational points are given by,

n— Zq 21+2 3+21+3 3+21+4 3+22+3 3+22+43 1+2+4+4+8 109.

B<a

These points are listed in the following matrix in columns.

1000000000000O00O0000O00O00117211111721111222111121211
01000000000000011122111122111112121000000000000
0010000000001 211001101111110000100001010000
000100000001011010110110011010101000010001
0000100011100001000111120101100010010100010
0000010101101 01000001110100000110101100100
0000001121011 00100001012120001000111110001000
Note that this is the generator matrix for code associatéid @j; 5). Its dimension is 7 and length is 43. Thus, we have

the following theorem on second higher spectra of thesexode

Theorem 6.

A3, =28, A3g=126 A3,=672; A%,=315 A3, =1344; A3;=182 A?=0;(otherwise)

© 2019 BISKA Bilisim Technology
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we have also verified these calculations with the followiogrfula,

7] 127x 126
= — 2667
Al
Thatis AZ,+ Ag+ Ado+ Ad,+ A3, + Adg =2667

28+ 126+ 6724 315+ 13444 182=2667
2667=2667.

(1) Code associated with the Schubert variety fora = (3,4):
By definition,
={P€G(25): pss = pas = 0}.

Dimension ofQ (3.4) =My =4, Wherec334 =3+4—-3=4.Thus,
P € Q34 = P = (P12, P13, P14,0, P23, P24, 0, P34,0,0).

The projective system d®3 4) consists off,-rational points o2 4. The number of these rational points are given by,

n= z q% = 35.

B<a

These points are listed in the following matrix in columns.

i1000000000O0O00O0OO0O0O0OO0OO0OO0O1I1I1I17112111112111211
0100000000000111111711111211110000000
001000000011101010111111000011120001
0001000111000100011100112110101101010
0000101101011200000110101112001011100
0o0o0001120112101001121101011011001100000

Note that this is the generator matrix for code associatéil (s 4. Its dimension is 6 and length is 35. Hence, we have
the following theorem.

Theorem 7.
A2,=105; AZ,=280, A3;=210; A3,=56, A?=0; (otherwise)

we have also verified these calculations with the followioignfula,
63 x 62

n 6
i;)Aiz B Hz: 3x2 %t
Thatis A2+ As+ A3+ A%y = 651
105+ 280+ 210+ 56 = 651
651= 651

(IV) Code associated with the Schubert variety fora = (3,5):
By definition,
5)={P€G(2,5): pss=0}.

Dimension ofQ(3 4) = &35 = 4, Where(53573+5 3=5. Thus,

P € Q35 = P = (P12, P13, P14, P15, P23, P24, P25, P34, P35,0) .

© 2019 BISKA Bilisim Technology
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The projective system d® 3 5) consists offf,-rational points or23 5. The number of these rational points are given by,

n= z q% =91

B<a

Note that the generator matrix for code associated RiHy, is of order 9< 91. Its dimension is 9 and length is 91. Hence,
we have the following theorem for these codes.

Theorem 8.
A2 =28; AZ,=630, AZ,=1792; A2,=7539 A3;=16128; A2,=17318 A?=0; (otherwise)
we have also verified these calculations with the followiogrfula,

511x 510
= =434
Z)A1 { ]2 S 3x2 3495
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