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Abstract: Denote byG(ℓ,m), the Grassmannian ofℓ-dimensional subspaces of am-dimensional vector spaceFq
m over the finite field

Fq andΩα (ℓ,m), the Schubert subvarieties ofG(ℓ,m). A linear [n,k]q- code is ak-dimensional subspace of then-dimensional vector
spaceFn

q. In this paper, we consider the problem of determining generalized spectrum of linear codes associated to Schubert subvarieties
of Grassmannians. We make a small begining here by detremining the seond generalized spectrum (i.e. second weight distribution) of
Schubert codes associated to Schubert subvarieties ofG(ℓ,m) overF2 in case ofℓ= 2 andm= 5.
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1 Introduction

In [13], Victor Wei introduced the notion of weight hierarchy of a linear code, motivated by applications in type II
wire-tap channel in cryptography. Wei defined ther-th generalized Hamming weight of a linear code as the minimum
support weight of any of itsr-dimensional subcode. For a class of Algebraic-geometric codes the generalized Hamming
weights were investigated by a number of researchers such asTsfasmann-Vlăduţ [12], Nogin [8], Ghorpade-Lachaud [1],
Ghorpade-Tsfasman [2], Hirshfeld-Tsfasman-Vlăduţ [7], Ghorpade-Patil-Pillai [3].

Generalized Hamming weights proved to be of great applications in coding theory to study the structure of a code. It is
therefore natural toconsider an extension of the notion of generalized weights-the generalized spectra of linear codes.
The problem of determining the generalized spectra of a linear [n,k]q code is first studied by Kløve in [4] and [5]. In [4],
he gave a MacWilliams identity for the support weight distribution of linear codes called the generalized MacWilliams
identity. In [5], he determined the weight enumerator polynomial (also called support weight distribution function) for
irreducible cyclic codes.

In [3], the problem of determining generalized spectrum for another class of linear codes arising from higher
dimensional projective varieties namely Grassmannians varieties is studied.

In this paper, we investigate the problem of determining thegeneralized spectrum of code associated with Schubert
subvarieties of GrassmanniansG(2,5) overF2.

1.1 Outline of the paper

This paper is organized as follows. In section 2, we recall the basic definitions and properties of the linear code which
are useful for the rest of the work. In section 3, we define the projective system and give the correspondence between
codes and projective system. we briefly describe the codes associated with Grassmannians and Schubert subvarieties
of Grassmannians. Finally, in section 4, we determine the generator matrix for the code associated with every Scubert
subvariety ofG(2,5) overF2 and give the generalized spectrum of these codes.
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2 Linear Codes

2.1 Basic definitions

Let Fq denote the finite field withq elements,q= ph, p a prime and denote byFq
n then-dimensional vector space over

Fq. For anyx∈ Fq
n, thesupportof x, supp(x), is the set of nonzero entries inx= (x1,x2, · · · ,xn). Thesupport weight(or

Hamming norm) of x is defined by,
||x||= |supp(x)|.

More generally, ifD is a subspace ofFq
n, thesupportof D, Supp(D) is the set of positions where not all the vectors inD

are zero and thesupport weight(or Hamming norm) of D is defined by,

||D||= |supp(D)|.

A linear [n,k]q-codeis ak-dimensional subspace ofFn
q. The parametersn andk are referred to as thelengthanddimension

of the corresponding code. Theminimum distance d= d(C) of C is defined by

d = d(C) = min{||x|| : x∈C,x 6= 0}

More generally, given any positive integerr, therth higher weight dr = dr(C) is defined by

dr = dr(C) = min{||D|| : D is a subspace of C withdimD= r} .

Note thatd1(C) = d(C). It also follows thatdi ≤ d j when i ≤ j and thatdk = |supp(C)|, wherek is dimension of code
C. Thus we have 1≤ d1 = d < d2 < · · · < dk−1 < dk = n. The first weightd1 is equal to the minimum distance and
the last weight is equal to the length of the code. An[n,k]q-code is said to benondegenerateif it is not contained in a
coordinate hyperplane ofFn

q. Two [n,k]q-codes are said to beequivalentif one can be obtained from another by permuting
coordinates and multying them by nonzero elements ofFq. It is clear that this gives a natural equivalence relation on
the set of[n,k]q-codes. The(usual) spectrum (or weight distribution)of a codeC ⊆ F

n
q is the sequence{A0,A1, · · · ,An}

defined by
Ai = Ai(C) = |{c∈C : ||c|| 6= 0}|.

More generally,therth higher weight spectrum (or rth support weight distribution) of a codeC is the sequence
{

Ar
0,A

r
1, · · · ,A

r
n

}

defined by
Ar

i = |{D ⊆C : dimD= r, ||D||= i}| (1)

This naturally allows us to definerth support weight distribution function (or rth weight enumerator)as

Ar(Z) = Ar
0+A1

r Z+ · · ·+An
r Zn (2)

Hence for each 0≤ r ≤ k, we have a weight enumerator. We can also define therth higher weightas

dr(C) = min{i : A r
i 6= 0} .

Note thatA0(Z) = 1. Also note that if ¯x∈ F
n
q, then

||x||= ||{x̄}||= ||
{

λ x̄ : λ ∈ Fq
}

||.

Lemma 1. If C is a code with dimension k overF2 then for Z= 1

Ar(1) =

[

k
r

]

2

(3)
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where

[

k
r

]

2

= (2k−1)(2k−2)···(2k−2r−1)
(2r−1)(2r−2)···(2r−2r−1)

, which is the number of subspaces of dimension r in a k dimensional space.

2.2 Dual codes

The standardinner productonFn
q is defined by< x,y>:= ∑n

i=1xiyi .

Definition 1. The Dual of a code C⊆ F
n
q is the code

C⊥ :=
{

x∈ F
n
q :< x,c>= 0 for all c∈ F

n
q

}

.

Let Br(Z) be therth support weight distribution function of the dual codeC⊥. In [4] Kløve gave the MacWilliams identity
for the generalized spectrum of codeC and its dualC⊥,

Theorem 1.[Generalized MacWilliams Identity] For all m≥ 0 we have

m

∑
r=0

[m]rB
r(Z) = q−mk[1+(qm−1)Z]n

{

m

∑
r=0

[m]rA
r
(

1−Z
1+(qm−1)Z

)

}

,

where[m]r = (qm−1)(qm−q)(qm−q2) · · · (qm−qr−1).

The number[m]r is known as the number of the ordered linear independent r-elements in the m-dimensional space. For
r = 1, we can write the MacWilliams identity for usual spectrum in the following theorem.

Theorem 2.

1+(q−1)B1(Z) = q−k(1+(q−1)Z)n
{

1+(q−1)A1
(

1−Z
1+(q−1)Z

)}

3 Projective systems

An alternative way to describe codes is via the language of projective systems introduced in [12]. Let Pk−1 be a projective
space of dimensionk−1 overFq. A [n,k]q-projective systemis a (multi)setX of n points in the projective spacePk−1 over
Fq. We callX nondegenerateif these n points are not contained in any hyperplane ofP

k−1. Two [n,k]q-projective systems
are said to be equivalent if one can be obtained from another by a projective transformation. For any positive integerr, the
rth higher weightof a projective systemX is defined by

dr = dr(X) = n−max
{

|X∩Π | : Π is a subspace ofPk−1 of codimension r
}

.

Thegeneralized spectrumof a projective systemX is defined by,

Ar
i = Ar

i (X) = |
{

Π ⊆ P
k−1 : |X∩Π |= n− i, codimΠ = r

}

|

for all i = 1,2, · · · ,n, r = 1,2, · · ·k−2. It can be proved thatAr
i = Ar

i (C) = Ar
i (X).

For any[n,k]q-linear codeC, one can construct corresponding[n,k]q-projective system in the following way: Consider
coordinate formsxi : C→ Fq such that

xi : (v1, · · · ,vn) 7→ vi .

These forms can be considered as n points of the spaceC∗ of linear functions onC (the dual linear space). IfC is
nondegenerate, that is, all formsxi are nonzero as functions onC, then they definen points inP

k−1 = p(C∗), or a
projective system.
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A subcodeD ⊂C of dimensionr correspond to the set of elements ofC∗ vanishing onD, that is, to the subspaceD∗ ⊂C∗

of codimensionr and, therefore, to a subspace of codimensionr in P
k−1. The weight of a subcodeD equals to the

number of coordinate forms not vanishing on it, that is, the number of points ofX not lying on this subspace of
codimensionr. On the other hand, now we show how one can construct a linear code for a nondegenerate projective
system. Given a projective systemX = {P1,P2, · · · , pn} ⊂ P

k−1 = P(V), we lift it to a system{y1,y2, · · · ,yn} of vectors
in V. Any yi defines a mappingV∗ → Fq, and the set(y1,y2, · · · ,yn) defines the mappingV∗ → Fq

n, given by
(v1,v2, · · · ,vn) 7→ (y1(v),y2(v), · · · ,yn(v)) whose image is some linear code. Moreover it is an[n,k]q-code if the
projective system is nondegenerate.

The above correlation provides the proof for the following theorem (see [12]).

Theorem 3. There is a one-to-one correspondence between the set of the equivalence classes of nondegenerate
[n,k]q-projective systems and the set of the equivalence classes of nondegenerate linear[n,k]q-codes. This
correspondence preserves the parameters n,k and the higher weights d−1,d2, · · · ,dk.

The above correspondence in terms of generator matrix can beviewed as follows: LetG is a generator matrix for a
[n,k]q-linear codeC, and letg1,g2, · · · ,gn ∈ Fq

k be the columns ofG. Suppose that none of thegi ’s is the zero vector.
then eachgi determines a point[gi ] in the projective spacePk−1 = P

(

Fq
k
)

. If thesegi are pairwise independent, then
X := {[g1], [g2], · · · , [gn]} is a set ofn points inPk−1. This will be the corresponding projective system. Thus then columns
of G determines a projective system X. Vice versa, IfX is a projective system, then a generator matrix forC is thek×n
matrix whose columns are the representatives of points in projective systemX.

3.1 Codes from Grassmannians

The GrassmanniansG(ℓ,m) is the set ofℓ-dimensional subspaces of anm-dimensional vector spaceV overFq. We have
the well-known Plücker embedding of the Grassmannian intoa projective space (cf.[1]), and this embedding is known
to be nondegenerate. Considering theFq-rational points ofG(ℓ,m) as a projective system, we obtain aq-ary linear code,
called theGrassmann code, which we denote byC(ℓ,m). These codes were first studied by Ryan [10,11] in the binary
case and by Nogin [8] and Ghorpade and Lachaud [1] in theq-ary case. It is clear that the lengthn and the dimensionk of
C(ℓ,m) are given by,

n=

[

m
l

]

q

=
(qk−1)(qk−q) · · ·(qk−qr−1)

(qr −1)(qr −q) · · ·(qr −qr−1)
and k=

(

m
ℓ

)

(1)

The higher weights of (̧2,m) is given by the following elegant formula due to Hansen-Johnsen-Ranestad [6] and Ghorpade-
Patil-Pillai [3].

Theorem 4.For µ = max(ℓ,m− ℓ)+1,

dµ+1(C(2,m)) = qδ +qδ−1+ · · ·+qδ−µ+1. (2)

and
dk−µ+1(C(2,m)) = n− (1+q+ · · ·+qµ−1+q2. (3)

3.2 Codes from Schubert varieties

Ghorpade and Lachaud in [1] proposed the generalization of Grassmann codes as Schubert codes. The Schubert codes are
indexed by the elements of the set

I(ℓ,m) := {α = (α1,α2, · · · ,αℓ) ∈ Z : 1≤ α1 < · · ·< αℓ ≤ m} .
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Given anyα ∈ I(ℓ,m), the correspondingSchubert codeis denoted byCα(ℓ,m), and it is the code obtained from the
projective system defined by the Schubert varietyΩα in G(ℓ,m) with a nondegenerate embedding induced by the Plücker
embedding. We defineΩα as

Ωα = {W ∈ G(ℓ,m) : dim(W∩Aαi )≥ i for i = 1,2, · · · , ℓ} ,

whereA j denotes the span of the firstj vectors in a fixed basis ofV, for 1 ≤ j ≤ m. Ghorpade and Tsfasman in [2],
determined the lengthnα and dimensionkα of Cα(ℓ,m). It was conjectured by Ghorpade in [1], that

d(Cα(ℓ,m)) = qδα (4)

whereδα := ∑ℓ
i=1(αi − i) = α1+α2+ · · ·+αℓ−

ℓ(ℓ+1)
2 .

The complete weight hierarchy and second support weight distribution of codes associated with all Schubert subvarieties
of G(2,4) is known due to Patil ([9]). In Next section, we give the second support weight distribution of all the codes
associated with Schubert subvarieties of GrassmanniansG(2,5) overF2.

4 Codes associated with Schubert varieties inG(2,5) over F2

Let I(2,5) be an indexing set defined by,

I(2,5) := {(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)}

Now by definition given anyα ∈ I(ℓ,m), the Schubert variety is defined by,

Ωα :=
{

P∈ G(ℓ,m) : pβ = 0 ∀ β 6= α
}

.

We consider Schubert varieties for eachα above and the codes associated with them.

(I) Code associated with the Schubert variety forα = (2,4):

By definition,
Ω(2,4) = {P∈ G(2,5) : p15 = p24= p25 = p34 = p35= p45 = 0} .

Dimension ofΩ(2,4) = δ24 = 8, whereδ24 = 2+4−3= 3. Now

P∈ G(2,5)⇒ P= (p12, p13, p14, p15, p23, p24, p25, p34, p35, p45) ∈ G(2,5) →֒ P
9.

So,
P∈ Ω(2,4) ⇒ P= (p12, p13, p14,0, p23, p24,0,0,0,0) .

The projective system consists ofF2-rational points ofΩ(2,4). The number of rational points onΩ(2,4)is given by,

n= ∑
β≤α

qδβ = 21+2−3+21+3−3+21+4−3+22+3−3+22+4−3 = 1+2+4+4+8= 19.

These points are listed below:

© 2019 BISKA Bilisim Technology
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P1 = (1,0,0,0,0,0,0,0,0,0) P8 = (0,1,0,0,1,0,0,0,0,0) P15 = (1,0,1,0,0,1,0,0,0,0)
P2 = (0,1,0,0,0,0,0,0,0,0) P9 = (0,1,1,0,0,0,0,0,0,0) P16 = (1,0,0,0,1,1,0,0,0,0)
P3 = (0,0,1,0,0,0,0,0,0,0) P10= (0,1,1,0,1,1,0,0,0,0) P17 = (1,0,0,0,0,1,0,0,0,0)
P4 = (0,0,0,0,1,0,0,0,0,0) P11= (1,1,1,0,0,0,0,0,0,0) P18 = (1,0,0,0,1,0,0,0,0,0)
P5 = (0,0,0,0,0,1,0,0,0,0) P12= (1,1,1,0,1,1,0,0,0,0) P19 = (1,0,1,0,0,0,0,0,0,0)
P6 = (0,0,0,0,1,1,0,0,0,0) P13= (1,1,0,0,1,0,0,0,0,0)
P7 = (0,0,1,0,0,1,0,0,0,0) P14= (1,1,0,0,0,0,0,0,0,0)

dim(C) = #{β : β ≤ (2,4)}= #{(1,2),(1,3),(1,4),(2,3),(2,4)}= 5length(C) = Number ofF2− rational points= 19.

Thus the generator matrix forC is of order 5×19 which is given by,

1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0 0 0 1
0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0
0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 0

We have the following theorem on second higher spectrum for these codes.

Theorem 5.A2
12 = 6; A2

14= 90, A2
16= 57; A2

18= 2, A2
i = 0, (otherwise.)

we have also verified these calculations with the following formula,

n

∑
i=0

A2
i =

[

5
2

]

2
=

31×30
3×2

= 155.

(II) Code associated with the Schubert variety forα = (2,5):
By definition,

Ω(2,5) = {P∈ G(2,5) : p34 = p35= p45 = 0} .

Dimension ofΩ(2,5) = δ25 = 4, whereδ25 = 2+5−3= 4.
Thus,

P∈ Ω(2,5) ⇒ P= (p12, p13, p14, p15, p23, p24, p25,0,0,0) .

The projective system ofΩ(2,5) consists ofF2-rational points onΩ(2,5). The number of these rational points are given by,

n= ∑
β≤α

qδβ = 21+2−3+21+3−3+21+4−3+22+3−3+22+4−3 = 1+2+4+4+8= 19.

These points are listed in the following matrix in columns.

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0

Note that this is the generator matrix for code associated with Ω(2,5). Its dimension is 7 and length is 43. Thus, we have
the following theorem on second higher spectra of these codes.

Theorem 6.

A2
24= 28; A2

28 = 126, A2
30 = 672; A2

32 = 315, A2
34 = 1344; A2

36 = 182, A2
i = 0;(otherwise.)
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we have also verified these calculations with the following formula,

n

∑
i=0

A2
i =

[

7
2

]

2
=

127×126
3×2

= 2667.

That is, A2
24+A2

28+A2
30+A2

32+A2
34+A2

36=2667

28+126+672+315+1344+182=2667

2667=2667.

(III) Code associated with the Schubert variety forα = (3,4):
By definition,

Ω(3,4) = {P∈ G(2,5) : p35 = p45 = 0} .

Dimension ofΩ(3,4) = δ34 = 4, whereδ34 = 3+4−3= 4. Thus,

P∈ Ω(3,4) ⇒ P= (p12, p13, p14,0, p23, p24,0, p34,0,0) .

The projective system ofΩ(3,4) consists ofF2-rational points onΩ(3,4). The number of these rational points are given by,

n= ∑
β≤α

qδβ = 35.

These points are listed in the following matrix in columns.

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1
0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 1 1 1 0 1 0 1 1 0 1 0 1 0
0 0 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0
0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0

Note that this is the generator matrix for code associated with Ω(3,4). Its dimension is 6 and length is 35. Hence, we have
the following theorem.

Theorem 7.

A2
24 = 105; A2

26 = 280, A2
28 = 210; A2

30 = 56, A2
i = 0; (otherwise.)

we have also verified these calculations with the following formula,

n

∑
i=0

A2
i =

[

6
2

]

2
=

63×62
3×2

= 651.

That is, A2
24+A2

26+A2
28+A2

30 = 651

105+280+210+56= 651

651= 651.

(IV) Code associated with the Schubert variety forα = (3,5):
By definition,

Ω(3,5) = {P∈ G(2,5) : p45= 0} .

Dimension ofΩ(3,4) = δ35 = 4, whereδ35 = 3+5−3= 5. Thus,

P∈ Ω(3,5) ⇒ P= (p12, p13, p14, p15, p23, p24, p25, p34, p35,0) .
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The projective system ofΩ(3,5) consists ofF2-rational points onΩ(3,5). The number of these rational points are given by,

n= ∑
β≤α

qδβ = 91.

Note that the generator matrix for code associated withΩ(3,5) is of order 9×91. Its dimension is 9 and length is 91. Hence,
we have the following theorem for these codes.

Theorem 8.

A2
48 = 28; A2

56 = 630, A2
60 = 1792; A2

64= 7539, A2
68= 16128; A2

72 = 17318, A2
i = 0; (otherwise.)

we have also verified these calculations with the following formula,

n

∑
i=0

A2
i =

[

9
2

]

2
=

511×510
3×2

= 43435.
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