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Abstract: In this paper, by considering the boundary value problem

x
′′
(t)+a(t)x(t − τ (t)) = f (t) , (0≤ t ≤ T)

x(t) = ϕ (t) (λ0 ≤ t ≤ 0) , x(T) = x(c) (0< c< T)

such thatτ(t) ≥ 0 is an arbitrary continous function on 0≤ t ≤ T, Fredholm-Volterra Integral Equation, which is equivalent to this
problem, was written considering the boundary value problem. Under certain conditions, the Fredholm-Volterra integral equation was
transformed into the Fredholm integral equation. The solution of this integral equation is approximated by the ”CAS Wavelet” method.
Thus, an approximate solution to the given boundary value problem was found.

Keywords: Fredholm-Volterra integral equations, differential equation with retarded argument, CAS wavelet method.

1 Introduction

Many problems is known from the theory of differential equations, in which solutions are sought in response to ordinary
differential equations. The rate of change of the process inthese problems is only related to the situation at the time of
change. Therefore, the unknown function itself and its derivatives in the differential equation are dependent on the value
of the independent variable [5-7]. But there are such physical problems that the rate of change of a process is related to its
past or future state, not the current state of the process. Such operations are called (or variational) differential equations
that deviate from the corresponding differential equations. It is called the variable differential equation, which isdelayed
by such differential equations, if the unknown function itself is related to the variablet − τ (t) , (τ(t)≥ 0).

x
′′
(t)+a(t)x(t − τ (t)) = f (t) , (0≤ t ≤ T)

x(t) = ϕ (t)(λ0 ≤ t ≤ 0) , x(T) = x(c)(0< c< T)

}
(1)

The differential equation given in (1) above is the delayed variable differential equation. Approximate solution of (1)
problem is found by CAS wavelet method.

Wavelet theory is a relatively new emerging field. The wavelet allows the various functions and operators to be displayed
correctly [8-9]. In addition, wavelets link between numerical algorithms. In this method, the problem studied is
transformed into a corresponding Fredholm-Volterra integral equation, then this integral equalization CAS wavelet
method is applied [2-4]. Here, the Fredholm operator belonging to the integral equation makes use of the feature that the
core is distorted.
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2 An equivalent integral equation

In the problem (1), if we takeλ (t) = t − τ(t) thent0 ∈ [0, t] is a point located at the left side ofT such that conditions
λ (t0) = 0 andλ (t) ≤ 0(0 ≤ t ≤ t0) are satisfied, where,λ0=min0≤t≤t0 λ (t) . We assume thatλ (t) is a nondecreasing
function in the interval[t, t0] and the equationλ (t)=σ has a differentiable continuous solutiont=γ(σ) for arbitrary
σ ∈ [0,λ (t) ] . It can be seen that ifx∗(t) is a solution of the boundary value problem (1) thenx∗(t) is also the solution of
the equation

x(t) = h̃(t)+
t
T

∫ T

0
(T − s)a(s)x(s− τ(s))ds−

∫ t

0
(t − s)a(s)x(s− τ(s))ds (2)

Here,

h̃(t) = ϕ (0)− (xT −ϕ (0))
t
T
− t

T

∫ T

0
(T − s) f (s)ds+

∫ t

0
(t − s) f (s)ds

Let σ = s− τ(s) Therefore Eq. (2) can be written as follows:

x(t) = h(t)+
t
T

∫ λ (t)

0
T − γ (σ)a(γ (σ))γ

′
(σ)x(σ)dσ

−
∫ λ (t)

0
(t − γ (σ))a(γ (σ))γ

′
(σ)x(σ)dσ (3)

where,

h(t) = h̃(t)+
t
T

∫ 0

λ0

(T − γ (σ))a(γ (σ))ϕ (σ)γ
′
(σ)dσ

−
∫ 0

λ0

(t − γ (σ))a(γ (σ))ϕ (σ)γ
′
(σ)dσ (4)

Let
K1 (σ) = (T − γ (σ))a(γ (σ))γ

′
(σ)

and
K (t,σ) =−(t − γ (σ))a(γ (σ))γ

′
(σ)

therefore we write

x(t) = h(t)+
t
T

∫ λ (T)

0
K1 (σ)x(σ)dσ −

∫ λ (t)

0
K (t,σ)x(σ)dσ (5)

or
x(t) = h(t)+

t
T

FT
λ x+ Vλ x (6)

where

FT
λ x=

∫ λ (T)

0
K1 (σ)x(σ)dσ

is the Fredholm operator,

Vλ x=−
∫ λ (t)

0
K (t,σ)x(σ)dσ

is the Volterra operator. Eq. (6) is a Fredholm–Volterra integral equation and it is equivalent to the problem (1)

2.1 Numerical Example: Special case of (1) problem

x
′′
(t)+ tx

(
t − 1

2

√
t
)
=−2t3+2t

5
2 + 5

2t2− 3
2t

3
2 −4, (0≤ t ≤ 1)

x(t) = 0,
(
− 1

16 ≤ t ≤ 0
)
, x(1) = x(1

2)

}
(7)
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Consider the boundary value problem. herea(t) = t , f (t) =−2t3+2t
5
2 + 5

2t2− 3
2t

3
2 −4 , τ (t) = 1

2

√
t ≥ 0 , (0≤ t ≤ 1)

andö(t)≡ 0 , t ∈ [− 1
16,0] are continuous functions. alsot0 =

1
4 in pointλ (t) = t − 1

2

√
t function takes the value of zero.

soλ (t0) = 0 andλ (t)≤ 0, (0≤ t ≤ 1
4) and minλ (t) =− 1

16 . now,

λ (t) = σ , σ ∈ [0,
1
2
]

in the equationt = γ(σ) find the solution. So,

t − 1
2

√
t −σ = 0

root of the equation[0,1]

t =
1
16

(1+
√

1+16σ)2
= γ(σ)

γ ′(σ) function [0,1
2] interval and can be differentiated.. Accordingly, the problem (7) is the special case of the integral

equation (5). If the equation in (7) is integral twice

x(t) =− t
∫ 1

0
2(1− s)

(
−2s3+2s

5
2 +

5
2

s2− 3
2

s
3
2 −4

)
ds

+ t
∫ 1/2

0
(1−2s)

(
−2s3+2s

5
2 +

5
2

s2− 3
2

s
3
2 −4

)
ds

+
∫ t

0
(t − s)

(
−2s3+2s

5
2 +

5
2

s2− 3
2

s
3
2 −4

)
ds

+ t
∫ 1

2

0
2[1− 1

16
(1+

√
1+16σ)2]

1
16

(1+
√

1+16σ)2 1+
√

1+16σ√
1+16σ

x(σ)dσ

− t
∫ 1

2−
√

2
4

0
[1− 1

8
(1+

√
1+16σ)2]

1
16

(1+
√

1+16σ)2 1+
√

1+16σ√
1+16σ

x(σ)dσ

−
∫ t−

√
t

2

0
[t − 1

16
(1+

√
1+16σ)2]

1
16

(1+
√

1+16σ)2 1+
√

1+16σ√
1+16σ

x(σ)dσ

and

x(t) =2,872933230t−2t2−0,1714285714t
7
2 +0,2083333333t4+0,1269841270t

9
2

−0,1t5+
t
8

∫ 1
2

0

[
3+4σ −16σ2+

3+28σ −80σ2
√

1+16σ

]
x(σ)dσ

+
t
8

∫ 1
2−

√
2

4

0

[
1+4ó−16σ2+

1+4σ −80σ2
√

1+16σ

]
x(σ)dσ

− 1
16

∫ t−
√

t
2

0

[
(4t −1)+ (16t−12)σ −16σ2+

(4t −1)+ (48t−20)σ −80σ2
√

1+16σ

]
x(σ)dσ
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obtained. Here,[1].

h(t) =2,872933230t−2t2−0,1714285714t
7
2 +0,2083333333t4+0,1269841270t

9
2 −0,1t5

K1 (σ) =
1
8
(3+4σ −16σ2+

3+28σ −80σ2
√

1+16σ
)

K2 (σ) =− 1
8
(1+4σ −16σ2+

1+4σ −80σ2
√

1+16σ
)

K (t,σ) =− 1
16

((4t −1)+ (16t−12)σ −16σ2+
(4t −1)+ (48t−20)σ −80σ2

√
1+16σ

).

3 Properties of CAS wavelets

a andb are two parameters,

ψa,b(t) = |a|− 1
2 ψ

(
t −b

a

)
, a,b∈ R , a 6= 0

equality is wavelet function. herea andb parametersa= a−k
0 , b= nb0a−k

0 , a0 > 1 , b0 > 0 n andk positive integers, we
have the following family of discrete wavelets;

ψk,n (t) = |a0|
k
2 ψ(ak

0t −nb0)

Whereψk,n (t) ∈ L2(R). In particular, whena0 = 2, b0 = 1 thenψk,n (t) forms an orthonormal basis [6].

CASm(t) = cos(2mπt)+ sin(2mπt)

ψnm(t) =

{
2

k
2CASm

(
2kt −n

)
, n

2k ≤ t < n+1
2k

0 , other cases

wheren= 0,1,2, . . . ,2k−1, k can assume any nonnegative integer,m is any integer [10].

3.1 Function approximation

u(t) ∈ L2[0,1)

u(t) =
∞

∑
n=1

∑
m∈Z

cnmψnm(t)

where,
cnm=< u(t) , ψnm(t)> (8)

In which denotes the inner product. If the infinite series in eq.(8) is truncated, then eq.(8) can be written as

u(t)∼=
2k

∑
n=1

M

∑
m=−M

cnmψnm(t) =CTΨ (t)

whereM ∈ Z , C and ø(t) are 2k(2M+1)×1 matrices given by

C= [c1(−M) , c1(−M+1) , c1(−M+2) , . . . ,c2(−M), . . . ,c2k(−M), . . . ,c2k(M)]
T
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C= [c1, c2, . . . ,c2k]
T

Ψ (t) = [ψ1(−M) , ψ1(−M+1) , ψ1(−M+2) , . . . ,ψ2(−M), . . . ,ψ2k(−M), . . . ,ψ2k(M)]
T .

3.2 Solution of the Fredholm integral equations

y(x) = f (x)+
∫ T

0
K(x, t)y(t)dt (9)

Eq.(9) is a fredholm integral equations.
y(x) =CTΨ(x)

f (x) = dTΨ (x)

and
K (x, t) =Ψ(x)TKΨ (x)

whereC andΨ(x) are known functions,K(x, t) is kernel function,K is 2k(2M + 1)× 2k(2M + 1) matrices where the
elements ofK calculated as follows ,

K =
∫ 1

0

∫ 1

0
Ψni(x)Ψl j (t)K(x, t)dtdx

wheren= 1, . . . ,2k , i =−M, . . . ,M , l = 1, . . . ,2k, j =−M, . . . ,M

then

CTΨ (x) = dTΨ (x)+λ
∫ 1

0
Ψ (x)TKΨ (x)Ψ (x)TCdt

Ψ (x)TC=Ψ (x)Td+λΨ (x)TKC (10)

eq.(10) is a linear systems interms ofC and the answer is

C= (I −K)−1d

whereI is identity matrix.

3.3 Solution of the Volterra integral equations

x(t) = f (t)+
∫ t

0
K(t,s)x(s)ds (11)

Eq.(11) is a volterra integral equattions.

K∗ (t,s) =

{
K (t,s) , 0≤ t ≤ T , 0≤ s≤ T

0 , 0≤ t ≤ T , t ≤ s≤ T

the property

x(t) = f (t)+
∫ T

0
K∗(t,s)x(s)ds

Fredholm integral equation is obtained [2].
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3.4 Solution of the (1) integral equations

x
′′
(t)+ tx

(
t − 1

2

√
t
)
=−2t3+2t

5
2 + 5

2t2− 3
2t

3
2 −4 ,(0≤ t ≤ 1)

x(t) = 0 ,
(
− 1

16 ≤ t ≤ 0
)
, x(1) = x(1

2)

Fredholm - Volterra integral equation equivalent to the (7) problem

x(t) = 2,872933230t−2t2−0,1714285714t
7
2 +0,2083333333t4+0,1269841270t

9
2

−0,1t5+
t
8

∫ 1
2

0

[
3+4σ −16σ2+

3+28σ −80σ2
√

1+16σ

]
x(σ)dσ

+
t
8

∫ 1
2−

√
2

4

0

[
1+4σ −16σ2+

1+4σ −80σ2
√

1+16σ

]
x(σ)dσ

− 1
16

∫ t−
√

t
2

0

[
(4t −1)+ (16t−12)σ −16σ2+

(4t −1)+ (48t−20)σ −80σ2
√

1+16σ

]
x(σ)dσ

where,
f (x) = 2,872933230x−2x2−0,1714285714x

7
2 +0,2083333333x4+0,1269841270x

9
2 −0,1x5

K1 (x) =
1
8
(3+4x−16x2+

3+28x−80x2
√

1+16x
)

K2 (x) =−1
8
(1+4x−16x2+

1+4x−80x2
√

1+16x
)

K (x, t) = (4x−1)+ (16x−12)t−16t2+
(4x−1)+ (48x−20)t−80t2

√
1+16t

approximate solution
y(x) =CTΨ (x)

f (x) = dTΨ (x)

and
d = [−0,163928 0,296835−0,132907−0,276517 0,728253 0,219904]T

t
8

∫ 1
2

0

[
3+4σ −16σ2+

3+28σ −80σ2
√

1+16σ

]
x(σ)dσ

for the first integral equation,

K =
∫ 1

0

∫ 1

0
Ψni(x)Ψl j (t)K(x, t)dtdx

K1 =




0 −0,29232 0 0−0,29232 0
0 −1,0156 0 0 −1,0156 0
0 0,38861 0 0 0,38861 0
0 −0,23447 0 0−0,23447 0
0 −2,7792 0 0 −2,7792 0
0 0,24657 0 0 0,24657 0




and
C= (I −K)−1d

C= [−0,22642 7,9712×10−2 −4,9826×10−2 −0,32665 0,13408 0,27262]T

c© 2019 BISKA Bilisim Technology
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y1 (x) = 1. 0972sin(12. 566x)−0.46708cos(12. 566x)+0.30235

t
8

∫ 1
2−

√
2

4

0

[
1+4σ −16σ2+

1+4σ −80σ2
√

1+16σ

]
x(σ)dσ

and then

K2 =




0 0,35460 0 0 0,35460 0
0 1,4844 0 0 1,4844 0
0 −0,45695 0 0−0,45695 0
0 0,28969 0 0 0,28969 0
0 3,6247 0 0 3,6247 0
0 −0,30332 0 0−0,30332 0




C= (I −K)−1d = [−0.25239−7. 3478×10−2 −1. 8917×10−2 −0.34879−0.1760.29557]T

y2 (x) = 1. 2414sin(12. 566x)−0.45895cos(12. 566x)−0.35282

1
16

∫ t−
√

t
2

0

[
(4t −1)+ (16t−12)σ −16σ2+

(4t −1)+ (48t−20)σ −80σ2
√

1+16σ

]
x(σ)dσ

K=




−4,9563×10−3 −3,7302×10−2 5,4378×10−3 −4,3944×10−3 −6,7278×10−2 4,516×10−3

0,19287 0,85938 −0,24556 0,15865 2,0237 −0,16585

4,9563×10−3 3,7302×10−2 −5,4378×10−3 4,3944×10−3 6,7278×10−2 −4,516×10−3

−4,9563×10−3 −3,7302×10−2 5,4378×10−3 −4,3944×10−3 −6,7278×10−2 4,516×10−3

0,16173 0,625 −0,21139 0,13104 1,6010 −0,13747

4,9563×10−3 3,7302×10−2 −5,4378×10−3 4,3944×10−3 6,7278×10−2 −4,516×10−3




C= [−0.11499−0.92852−0.18185−0.22757−0.19045 0.17098]T

y3 (x) = 0.46908sin(12. 566x)−0.49983cos(12. 566x)−1. 5825

therefore

y(x) =1.2414sin(12.56x)−0.45895cos(12.56x)−0.26234+0.46908sin(12.56x)

−0.49983cos(12.56x)−1.5825+1.0972sin(12.56x)

−0.46708cos(12.56x)+0.30235,

y(x) =2.8077sin(12. 56x)−1.4259cos(12.56x)−1.5425

y(x) is the approximate solution.

4 Conclusion

The problem of delayed variable boundary value has already been solved by different methods. This problem was first
transformed into the Fredholm-Volterra integral equation. Then the CAS wavelet methodwas applied and the approximate
solution was found. So alternatif solution is found.
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