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Abstract: In this investigation, we portray the effect of inclined magnetic field on peristaltic flow of a Jeffrey fluid in presence of
heat and mass transfer in an inclined symmetric or asymmetric channel. The Joule heating, Soret, Dufour and slip effectsare taken
into a consideration. The governing equations are converted from moving to fixed frame of reference and the resulting equations have
then been simplified utilizing the assumptions of long wavelength and low but finite Reynolds number approximation. Semianalytical
solutions have been obtained for the pressure gradient, temperature distribution, concentration distribution, longitudinal velocity and
pressure rise by using the multi-steps differential transform method (Ms-DTM), a reliable and sturdy technique that improve accuracy
and overcome drawbacks raised in using the standard differential transform method (DTM). This model is applicable to water transport
from ground to upper branches of tall trees, petroleum industry, food industries and vegetable glycerin. In fact, the multi-step DTM is
applicable to nonlinear models such as Non-Newtonian peristaltic fluid models which is more complicated and have a higher degree of
non-linearity, in a direct way without using linearization, perturbation or restrictive assumptions.
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1 Introduction

In the past few decades, substantial interest in studying the peristaltic flow in channels/tubes, because of it’s a wide
application and vital roles in geophysical, environmental, physiological and industrial processes. Slight such prominent
processes contain spermatozoa transport in the ducts afferents of male reproductive tract, water transport from ground to
upper branches of tall trees, blood pumps in heart lung machine, urine transport from kidney to bladder, chime
movement in gastrointestinal tract, blood circulation in small blood vessels, sanitary and corrosive fluids transport, etc.
(see [1-6]). Non-Newtonian Fluids has a singular characteristic; it show both properties of solid and liquid, as the
relationship among the shear rate and the shear stress. As examples for application of non-Newtonian fluid: Food
industries the petroleum industry oil refining industries,in processing industries such as paper production, hot rolling,
wire drawing, glass-fiber production, etc.

Jeffrey fluid is a one subclass of non-Newtonian fluids which has been attracted much by the investigators, this fluid
model is adequate for describe the characteristics of relaxation and retardation times. V.P. Rathod et al [7] addressed
peristaltic flow of Jeffrey fluid with slip effects in an inclined channel. Effects of an endoscope and magnetic field on the
peristalsis involving Jeffrey fluid is elucidates by Hayat et. al. [8]. Characteristics of Jeffrey fluid model for peristaltic
flow of chime in small intestine with magnetic field is reported by Akbar et. al. [9]. Hayat et. al. [10] study the Impacts of
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constructive and destructive chemical reactions in magneto hydrodynamic (MHD) flow of Jeffrey liquid due to nonlinear
radially stretched surface. Hussain et al [11] investigatethe Heat transfer analysis in peristaltic flow of MHD Jeffreyfluid
with variable thermal conductivity.

Joule heating occurs when the energy of an electric current is changed into heat as it flows through a resistance. There
are many practical uses of Joule heating such as electric stoves and other electric heaters Soldering irons and cartridge
heaters electric fuses electronic cigarettes usually workby Joule heating, vaporizing propylene glycol and vegetable
glycerin, thermistors and resistance thermometers. Slip and Joule heating effects in mixed convection peristaltic transport
of Nano fluid with Soret and Dufour effects is reported by Hayat et al [12]. Hayat et al [13] elucidates the radiative and
Joule heating effects on peristaltic transport of dusty fluid in a channel with wall properties. Influence of Joule Heating
on MHD Peristaltic Flow of a Nano fluid with Compliant Walls isreported by Reddy et al [14]. Influence of slip and
Joule heating with radiation on MHD peristaltic blood flow with porous medium through a coaxial asymmetric vertical
tapered channel blood flow analysis study is discussed by Abzal [15]. Hayat et al [16] addressed Joule heating and
thermal radiation effects on peristalsis in curved configuration.

To be more specific, In transaction with heat and mass transfer problems, we address a phenomenon named by diffusion
thermo effect (Duffour effect) in which an energy flux could be produced by the concentration gradients in addition to
that generated by the temperature gradients, as well on otherwise mass fluxes could be produced by heat gradients which
is renowned by thermal-diffusion effect (Sort effect) [21-22].

Because of the flow behavior of non-Newtonian fluids, the governing equations become more sophisticated to handle as
supplemental nonlinear terms evidence in the equations of motion. Thus we turn to find the analytical solution for our
model using a semi-analytical method named by Multi-step differential transform method (MsDTM). The DTM
introduces promising approach form any applications in different domains of science. However, DTM has some
disadvantages. By using the DTM, we obtain a series solution, actually a truncated series solution. This series solution
does not offer the real behaviors of the problem but gives a pretty approximation to the true solution in a very small
region. It is the purpose of this paper is to propose a reliable algorithm of the DTM. The new algorithm, multi-step DTM
progressed in this paper, accelerates the convergence of the series solution over a large region and improves the accuracy
of the DTM. For this, we apply the multi-step differential transform method, which provides the solution in terms of
convergent series over a sequence of subintervals [17-20].

So far, no investigation has been made yet to elucidate the effects of Joule heating on peristaltic flow of a Jeffrey fluid in
presence of heat and mass transfer under applying multi-step differential transform method, the velocity slip at the
boundaries are taken into a consideration. Physical behaviors of different parameter are achieved and their salient
features are established through figures for pressure rise,pressure gradient, velocity, temperature and concentration. To
assure the numerical algorithm applied here, results are compared with good manners and found to be in excellent
agreement. It is paramount to note that the results of this investigation are new and are published for the first time.

2 Mathematical formulations

Let us consider the peristaltic flow of non-Newtonian fluid (Jeffrey fluid) in a two-dimensional channel having widthsd1

andd2, under the effect of a constant magnetic field.φ is the phase difference,φ varies in the range 0≤ φ ≤ φ ; φ=0
corresponds to a symmetric channel with waves out of phase and for φ the waves are in phase. The geometry of the wall
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surface is defined as:

Y = H1 = d1+a1cos

[

2π
λ

(X− ct)

]

Upper wall (1)

Y = H1 =−d2−b1cos[
2π
λ

(X− ct)+φ ] Lower wall (2)

Wherea1 andb1 are the amplitudes of the waves,d1+d2 is the width of the channel,c is the velocity of propagation,t is
the time andX is the direction of wave propagation, Furthermore,a1, b1, d1, d2 andφ satisfy the condition.

A2
1+b2

1+2a1b1cosφ ≤ (d1+d2) (3)

The governing equations of the flow under consideration can be expressed as follows [1, 6, 15]. The Continuity Equation:

∂U
∂X

+
∂V
∂Y

= 0 (4)

The Momentum Equations:

ρ
[

∂U
∂ t

+U
∂U
∂X

+V
∂U
∂Y

]

=−
∂P
∂X

+
∂Sxx

∂X
+

∂Sxy

∂Y
−σB2

0cosγ (Ucosγ −Vsinγ)−ρgsinα, (5)

ρ
[

∂V
∂ t

+U
∂V
∂X

+V
∂V
∂Y

]

=−
∂P
∂Y

+
∂Sxy

∂X
+

∂Syy

∂Y
−σB2

0sinγ (Ucosγ −Vsinγ)−ρgcosα, (6)

Heat equation yields:

C
′
[

∂T
∂ t

+U
∂T
∂X

+V
∂T
∂Y

]

=
k
′

ρ
+

(

∂ 2T
∂X2 +

∂ 2T
∂Y2

)

+
ρDmkT

Cs

(

∂ 2C
∂X2 +

∂ 2C
∂Y2

)

+υ
1

1+λ1

[

1+λ2

(

U
∂

∂X
+V

∂
∂Y

)]

(7)

[

2

(

∂U
∂X

)2

+2

(

∂V
∂Y

)2

+

(

∂U
∂X

+
∂V
∂Y

)2
]

+

⇀

J .
⇀

J
σ

,

Mass transfer equation yields:

[

∂C
∂ t

+U
∂C
∂X

+V
∂C
∂Y

]

= Dm

(

∂ 2C
∂X2 +

∂ 2C
∂Y2

)

+
DmkT

TA

(

∂ 2T
∂X2 +

∂ 2T
∂Y2

)

. (8)

Where〈U,V,0〉 are the velocity components in the laboratory frame(X,Y), T is the temperature of the fluid,C is the
concentration of the fluid,T is the mean value ofT0 andT°, C is the mean value ofC0 andC° Both the magnetic field
and channel are inclined at anglesγ andα respectively,g is the acceleration due to gravity,ρ fluid density,C′ concentration
susceptibility,K′ thermal diffusion ratio,Dm mass diffusivity. The constitutive equation for the extra stress tensorS is [1].

S=
µ

1+λ1
(γ̇+λ2γ̈) (9)

Here λ1 is the ratio of relaxation to retardation times,γ̇the shear rate,λ2 the retardation time, and dots denote the
differentiation with respect to time. The transformationsbetween the laboratory and wave frames are given by
x = X − ct, y = Y, u = U − c, v = V and p(x) = P(X, t) . In which (x,y), (u,v) and pare the coordinates, velocity
components and pressure in the wave frame.
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The dot product:

⇀

J .
⇀

J = σ
(

⇀
v ×

⇀

B
)

.σ
(

⇀
v ×

⇀

B
)

(10)

= σ2
(

⇀
v ×

⇀

B
)

.

(

⇀
v ×

⇀

B
)

= σ2







i j k

U V 0
B0sinγ B0cosγ 0






.







i j k

U V 0
B0sinγ B0cosγ 0







= σ2B2(Ucosγ −Vsinγ)2
.

Defining following non-dimensional quantities:

x=
x
λ
, y=

y
d1

, u=
u
c
, v=

v
cδ

, p=
d2

1

µcλ
, t =

ct
λ

, h1 =
H1

d1
,h2 =

H2

d2
, (11)

d =
d2

d1
, a=

a1

d1
, b=

b1

d1
, Re =

ρcd1

µ
, θ =

T −T0

T1−T0
, ϕ =

C−C0

C1−C0
, Pr =

cυC
′

k′ ,

Sc =
µ

ρDm
, γ =

k
′
d2

1

Dm
, Sr =

ρDmkT (T −T0)

µTA (C1−C0)
,D f =

ρDmkT (C−C0)

µCsC
′ (T1−T0)

,

rec =
c2

C′
(T1−T0)

, M2 =
σ0B0d2

1

µ
, Fr =

c2

gd1
,S=

Sd1

µc
, C1 =

k1d2
1C

Dm(C−C0)
.

WhereRe is the Reynolds number,δ is the dimensionless wave number,Pr is the Prandtl numberSc is the Schmidt number,
Sr is the Soret number,D f Dufour number,M Hartman number,Fr Froude number andEc is the Eckert number. Writing
the stream functionψ = ψ(x,y), which is related to u andv by the relationsu= ∂ψ

∂y , v= − ∂ψ
∂x , and by substituting with

equations (9), (11) and (??) into Eqs. (4-7) (After dropping bars) yield.

δRe[ψyψxy−ψxψyy] =−
∂ p
∂x

+ δ 2 ∂Sxx

∂x
+

∂Sxy

∂y
−M2cosγ (ψy+1)cosγ + δψxsinγ +

Re

Fr
sinα, (12)

δRe
[

−ψyψxx+ψyψxy
]

=−
∂ p
∂y

+ δ 2 ∂Syx

∂x
+ δ

∂Sxy

∂y
− δM2sinγ (ψy+1)cosγ + δψxsinγ −

Re

Fr
cosα, (13)

δRe[ψyθx−ψxθy] =−
1
Pr

[

θyy+ δ 2θxx
]

+
1

1+λ1

((

1+
λ2cδ
d1

(

ψy
∂
∂x

−ψx
∂
∂y

))

(

4δ 2ψ2
xy+

(

ψyy− δ2ψxx

))

)

(14)

−M2Eccos2γ(ψy+1)2,

δRe[ψyϕx−ψxϕy] =
1
Sc

[

δ 2ϕxx+ϕyy
]

+Sr
[

δ 2θxx+θyy
]

. (15)

Where equation (4) is satisfied identically and,

Sxx =
2δ

1+λ1

[

1+
cδλ2

d1

(

ψy
∂
∂x

−ψx
∂
∂y

)]

ψxy, (16)

Sxy =
2δ

1+λ1

[

1+
cδλ2

d1

(

ψy
∂
∂x

−ψx
∂
∂y

)]

[

ψyy−δ 2ψxx
]

, (17)
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Syy =
2δ

1+λ1

[

1+
cδλ2

d1

(

ψy
∂
∂x

−ψx
∂
∂y

)]

ψxy. (18)

Then by adopting the long wavelength(δ ≪ 1), low Reynolds number process, equation (12-15) becomes

∂ p
∂x

+
∂
∂y

(

1
1+λ1

∂ 2ψ
∂y2

)

−M2cos2γ (ψy+1)+
Re

Fr
sinα = 0, (19)

∂ p
∂y

= 0, (20)

1
Pr

∂ 2θ
∂y2 +

Ec

1+λ1

(

∂ 2ψ
∂y2

)

−D f
∂ 2ϕ
∂y2 −M

2

Eccos2γ
(

∂ψ
∂y

+1

)2

= 0, (21)

1
Sc

+
∂ 2ϕ
∂y2 +Sr

∂ 2θ
∂y2 . (22)

Implies thatp is not a function iny and eliminating pressure above Eqns.

∂ 2

∂y2

(

1
1+λ1

∂ 2ψ
∂y2

)

−M2cos2γ
∂ 2ψ
∂y2 = 0, (23)

The convenient boundary conditions can be put into the following forms:

ψ =
q
2
,ϕ = 0,θ = 0,

∂ψ
∂y

+L
∂ 2ψ
∂y2 =−1, at y= h1 = 1+acos2πx, (24)

ψ =−
q
2
,ϕ = 1,θ = 1,

∂ψ
∂y

−L
∂ 2ψ
∂y2 =−1, at y= h2 =−d−bcos(2πx+φ). (25)

WhereL the non-dimensional is slipping parameter andq is the flux in the wave frame. The dimensional time mean flow
rateQ in the laboratory frame is related toq through the relation [1, 13]

Q= q+1+d. (26)

3 Differential transformation method

Consider a general equation of nth order ordinary differential equation [19]

y(t, f , f ′, ..., f (n)) = 0.

Subject to the initial equations
f (k)(0) = dk, k= 0, ...,n−1.

To demonstrate the differential transformation method (DTM) for solving differential equations, the basic definitions of
differential transformation are introduced as follows. Let f (t) be analytic in a domainD and lett = t° represent any
point in D. The function f (t) is then represented by one power series whose centre is located at t°. The differential
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transformation of thek− th derivative of a functionf (t) is defined as the following:

F (k) =

(

1
k!

)

[(

d(k) f (t)

dt(k)

)]

(t=t0)

, ∀t ∈ D. (27)

And the inverse transformation ofF(k) can take the form

f (t) =
∞

∑
k=0

F (k) (t − t0)
(k)
, ∀t ∈ D. (28)

In fact, from Eq. (27) and (28), we obtain

f (t) =
∞

∑
k=0

(t − t0)
(k)

k!

(

d(k)y(t)

dt(k)

)

t=t0

,∀t ∈ D. (29)

Eq. (28) implies that the concept of differential transformation is derived from the Taylor series expansion. Form the
definitions of (27) and (28); it is easy to prove that the functions comply with the following basic mathematics operations
(see Table 1). In real applications, the functionf (t) is expressed by a finite series and (29) can be written as:

f (t) =
N

∑
k=0

F (k) (t − t0)
(k)
, ∀t ∈ D. (30)

Eq. (30) implies that∑∞
k=N+1 F (k) (t − t0)

(k) is negligibly small. The following table show that the transformation for
some functions and relation by using differential transformation method.

Table 1: Operations of the one dimensional differential transform.

Original function Transformed function
f (t)=g(t)+h(t) F (k)=G(k)+H (k)
f (t)=αg(t) F (k)=αG(k)
f (t)=g(t)h(t) F (k)=∑k

l=0 G(l)H (k−l)

f (t)=dg(t)
dt F (k)=(k+l)G(k+l)

f (t)=dng(t)
dtn F (k)= (k+l)!

k! G(k+n)
f (t)=u(t)v(t)w(t) F (k) = ∑k

l=0 ∑k−l
r=0U (l)V (l)w(k− r − l)

4 Multi-steps differential transformation method

The multi-step DTM is treated as an algorithm in a sequence ofintervals for finding accurate approximate solutions for
systems of differential equations.

Suppose[0, T] is the interval over which we want to find the solution for a system of equations(27−29). In actual
applications of the DTM, the approximate solution for a system of equations can be expressed by the finite series

f (t) =
N

∑
k=0

a(k)t
(k)
, t ∈ [0,T] . (31)

The multi-steps approach introduces a new idea for constructing the approximate solution. Assume that the interval[0,T]
is divided intoM sub intervals[tm−1, tm], m= 1,2, ...,M of equal step sizeh= T

M by using the nodestm = mh. The main
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ideas of the Multi-step DTM are as follows. First, we apply the DTM to a system of equations(27−29) over the interval
[0,T] we will obtain the following approximate solution,

f1 (t) =
N

∑
k=0

a1nt
k
, t ∈ [0, t1] , (32)

Using the initial conditionsf (k) (0) =Ck Formm≥ 2 and at each sub interval[tm−1, tm] we will use the initial conditions
f (k)m (tm=1) = f (k)m=1 (tm=1) and apply the DTM to Eqs.(25−27) over the interval[tm=1, tm], wheret° in Eq. (26) is replaced
by tm−1 the process is repeated and generates a sequence of approximate solution sum.fm(t) , m= 1,2, . . . ,M for the
solution f (t).

fm(t) =
N

∑
k=0

amk
(

t − t{m−1}
)2
, t ∈ [tm, tm−1] (33)

5 Analytical solutions by means of the Multi-step DTM

Now, we apply the differential transform method propertiesas table 1 to Eqns.(21− 23) For finding ψ(x,y),
θ (x,y), ϕ(x,y) andp(x,y), then we have

(

[k+1] [k+2] [k+3] [k+4]
1+λ1

)

Ψ [k+4]−M2cos2γ [k+1] [k+2]Ψ [k+2] = 0, (34)

[k+1] [k+2]

[(

1
Pr

)

Θ [k+2]+D f Φ [k+2]

]

+

(

Ec

1+λ1

) k

∑
r=0

[r +1] [k− r +1] [k− r +2]Ψ [r +1]Ψ [k− r +2] (35)

−M2cos2γEc

(

δ (k,0)+2[k+1]Ψ [k+1]+
k

∑
r=0

[r +1] [k− r +1]Ψ [r +1]Ψ [k− r +1]

)

= 0,

1
Sc

[k+1] [k+2]Φ [k+2] =−Sr [k+1] [k+2]Θ [k+2] . (36)

With the associated boundary conditions.

n

∑
k=0

Ψk[h2 (x)−h1(x)]
k =

q
2
,

n

∑
k=0

Θk[h2(x)−h1(x)]
k = 0,

n

∑
k=0

Φk[h2 (x)−h1(x)]
k = 0, (37)

n

∑
k=1

kΨk[h2 (x)−h1(x)]
k−1+L

n

∑
k=2

k(k−1)Ψk[h2 (x)−h1(x)]
k−2 =−1 at y= h0.

n

∑
k=0

Ψk[h2 (x)−h1(x)]
k =

−q
2

,

n

∑
k=0

Θk[h2(x)−h1(x)]
k = 1,

n

∑
k=0

Φk[h2 (x)−h1(x)]
k = 1, (38)

n

∑
k=1

kΨk[h2(x)−h1(x)]
k−1−L

n

∑
k=2

k(k−1)Ψk[h2(x)−h1(x)]
k−2 =−1 at y= h2.

6 Graphical results and discussions

Here the non-linear analysis is computed for the Ms-DTM. Thecharacteristics of several emerging parameters on the
distributions of pressure rise and pressure gradient as well as velocity, temperature and concentration fields are plotted in
the Figs. 1–25.
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6.1 Pressure rise

Figs. 1-4 are ploted to see the effects of various values of the angle of inclinationγ, Jeffrey parameterλ0, Froude number
Fr and Hartmann numberM on pressure rise. It is observed that there is a linear relationship between∆P andQ. Values
for which ∆P> 0 andQ< 0 is known as the retrograde pumping or backward pumping region. For∆P > 0;0< Q< Q°
indicates peristaltic pumping region, atQ = Q° > 0; ∆P = 0 this refer to the case of free pumping. Finally, the region
was∆P < 0 andQ> Q° > 0 is called the co-pumping or the augmented region.

• Influences ofλ0 andγ are portrayed in Figs 1-2. Here it is observed that the pumping rate decrease by increasingλ0
andγ in the retrograde and peristaltic regions till a certain valueQ= Q∗, after which∆P increases withQ> Q∗. It is
noticed that the peristaltic pumping region becomes lightly wider with the decrease ofλ0 andγ.

• Fig 3. Describe the behavior ofFr on pressure rise∆P, it’s clear that pressure rise decreases in all pumping region with
an increase in Froude numberFr .

• The opposite effect ofλ0 can be observed with increasing in Hartmann number on the pumping rate in Fig 4.

6.2 Pressure gradient

Figs. 5-8 are affirmed to visualize the influence of pressure gradientdP
dx for various values of Jeffrey parameterλ0, Froude

numberFr , Hartmann number M and the angle of inclinationγ.

• Fig. 5 Show that for high Jeffrey parameterλ0 the resistance to the flow in the central part of the channel decreases?
• Fig. 6 implies that for the Froude numberFr the resistances to the flow all over the channel decreases.
• The pressure gradient for different values of M and against xis plotted in Figs. 7-8. It is shown that forx∈ [0, 0.23]

andx ∈ [0.6, 1], the pressure gradient is small, i.e. the flow can easily passwithout imposition of a large pressure
gradient, while in the regionx∈ [0.24,0.61], the pressure gradient increases with an increase in M and decreases with
an increase in, so a large pressure gradient is required to enable the flux to pass.

• The pressure gradient for different values ofγ and against x is displayed in Fig. 8. It is shown that forx ∈ [0,0.23]
andx ∈ [0.6,1], the pressure gradient is large, while in the regionx∈ [0.24,0.61], the pressure gradient decreases with
an increase inγ.

6.3 Velocity profile

Figs. 9-12 are scrutinized to study the impacts ofM, λ0, L andγ on the axial velocity.

• We percept fromFigs. 9-10 and11 that the longitudinal velocity decreases with an increase in M, λ0 and increases
with an increase inγ at the central region of the channel, whilst the longitudinal velocity increases with an increase in
M, λ0 and decreases with an increase inγ at the Both sides of the channel regions.

• Fig 12. discuss the effect of slip parameter L on the longitudinal velocity, which divided into two parts, in the first half
at the left channel the longitudinal velocity decreases with an increase in L, the opposite effect of slip parameter can
easily clarified at the second half at the right channel.

6.4 Heat and mass characteristics

Figs. 13-18 are depicted the influence ofγ, Pr, M,λ1 andL on the temperatureθ (y).

• The influence ofγ, Pr andλ0 are demonstrated in Figs. 13-14 and 17 higher values ofγ andPr yield increase in
temperatureθ (y), andθ (y) decreases with an increase inλ0. Physically, larger heat generation parameter means an
increase in heat produced inside the boundary layer which leads to higher temperature distribution.
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• Impact of slip parameterL is portrayed inFig. 18. It is disclosed that the temperature increases in the first part of the
channel and then decreases in the second part of the channel with an increase inL.

• Figs. 13-14 investigated to display the difference effect of Hartmann number M on temperatureθ (y) with absence of
Joule heating term and in presence of Joule heating term. Firstly, hereθ (y) reduces for higher values of Hartmann
numberM , with absence of Joule heating term. However,θ (y) has opposite effects with an increase Hartmann
numberM, in presence of Joule heating term. So it’s important study the effect of Joule heating, its cause of leading
to get more active due to stock of energy which is useful in enhancing temperature.
Figs. 19-25 are plotted to study the impact ofγ, Pr , M,λ1,L andSc,Sr on the concentrationϕ(y):

• Figs. 19-24 are illustrated the influence ofγ, Pr , M,λ1,L on concentrationϕ(y), we will find an opposite effect on the
effect of those parameter with the heat.

• Fig. 25 displayed to visualize that the concentration distribution decreases with an increases inSc,Sr together.

Fig. 1: The change of∆ P with Q for several values
of γ at a=0.9, b=0.5, d=1.2,φ = π

3 , Fr = 0.8, M=0.5,
λ0 =π

4 ,Pr = 2, Ec = 0.15, L=0,Sr = 1,Sc = 1, Re = 1,
D f = 0, α = 0.2.

Fig. 2: The change of∆ P with Q for several values
of λ0 at a=0.9, b=0.5, d=1.2,φ = π

3 , Fr = 0.8, M=0.5,
γ=π

4 ,Pr =2,Ec= 0.15, L=0,Sr = 1,Sc= 1,Re= 1,D f =
0, α = 0.2.

Fig. 3: The change of∆P with Q for several values of
Fr at a=0.9, b=0.5, d=1.2,φ= π

3 ,λ0=1,M=1,γ=π
4 ,Pr =

3,Ec = 0.15,L=0.1,Sr = 1,Sc = 1,Re = 1,D f = 0.2,α =
1.

Fig. 4: The change of∆P with Q for several values of
M at a=0.9, b=0.5, d=1.2,φ= π

3 , λ0=1,Fr = 1.5, γ=π
4 ,

Pr = 3,Ec = 0.15, L=0.1,Sr = 1, Sc = 1,Re = 1,D f =
0.2,α = 0.2.
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Fig. 5: The change ofdP
dx with x for several values ofλ0

at a=0.5, b=0.5, d=1.2,φ= π
3 , M=1, γ=π

4 , Pr = 3, Ec = 0.15,
L=0.1,Sr = 1,Sc = 1,Re= 1,D f = 0.2,α=1,Fr = 1,q= 0.5.

Fig. 6: The change ofdP
dx with x for several values ofFr at

a=0.5, b=0.5, d=1.2,φ= π
3 , M=1, γ=π

4 , Pr = 3, Ec = 0.15,
L=0.1,Sr = 1,Sc = 1,Re= 1,D f = 0.2,α=1, λ 0=1,q= 0.5.

Fig. 7: The change ofdP
dx with x for several values ofM at

a=0.9, b=0.5, d=1.2,φ= π
2 , Fr=0.8,γ=π

8 , Pr = 2, Ec = 0.15,
L=0, Sr = 1, Sc = 1, Re = 0.5,D f = 0,α=0.5,λ 0=1,q= 0.5

Fig. 8: The change ofdP
dx with x for several values ofγ at

a=0.5, b=0.5, d=1.2,φ= π
2 , Fr=0.8, M=1,Pr = 2,Ec= 0.15,

L=0, Sr = 1, Sc = 1, Re = 0.5,D f = 0,α=0.5,λ 0=1,q= 0.5.

Fig. 9: The change ofu with y for several values ofM at
a=0.5, b=1.2, d=1.2,φ= π

2 , Pr = 3,Ec = 0.25, L=0.1,Sr = 1,
Sc = 1, ,D f = 0.2, λ0=1.5,q=−1, γ= π

12.

Fig. 10: The change ofu with y for several values ofλ0 at
a=0.7, b=1.2, d=1.2,φ= π

2 , M = 1,Pr = 2,Ec = 0.15, L=0.1,
Sr = 1, Sc = 1, ,D f = 0.2, q=−2, γ= π

12.
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Fig. 11: The change ofu with y for several values of L
at a=0.5, b=0.4, d=2,φ= π

3 , M = 1, Pr = 2, Ec = 0.15,
λ0 =1,Sr = 1, Sc = 1, ,D f = 0.2, q=−1, γ= π

12.

Fig. 12: The change ofu with y for several values ofγ
at a=0.5, b=0.4, d=2,φ= π

3 , M = 1, Pr = 3, Ec = 0.15,
λ0 =1,Sr = 1, Sc = 1, ,D f = 0.2, L = 0.1, q=−1.

Fig. 13: The change ofθ with y for several values ofγ
at a=0.5, b=0.4, d=2,φ= π

3 , M = 1, Pr = 3, Ec = 0.15,
λ0 =1,Sr = 1, Sc = 1, ,D f = 0.2, L = 0.1, q=−1.

Fig. 14: The change ofθ with y for several values of
Pr at a=0.5, b=1.2, d=1.5,φ= π

2 , M = 1, γ = π
8 , Ec =

0.15,λ0 =1,Sr = 1, Sc = 1, ,D f = 0, L = 0, q=−1.

Fig. 15: The change ofθ with y for several values ofM
at a=0.5, b=1.2, d=1.2,φ= π

2 , Pr = 3, Ec = 0.25, L=0,
Sr = 1, Sc = 1, ,D f = 0, λ0=1.5,q= −1, γ= π

12 (With
absence of Joule heating term).

Fig. 16: The change ofθ with y for several values ofM
at a=0.5, b=1.2, d=1.2,φ= π

2 , Pr = 3,Ec =0.25, L=0.1,
Sr = 1, Sc = 1, ,D f = 0.2, λ0=1.5,q= −1, γ= π

12 (In
presence of Joule heating term).
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Fig. 17: The change ofθ with y for several values of
λ0 at a=0.7, b=1.2, d=1.2,φ= π

2 , M = 1, Pr = 2, Ec =
0.15, L=0.1,Sr = 1, Sc = 1, ,D f = 0.2, q=−2, γ= π

12.

Fig. 18: The change ofθ with y for several values of L
at a=0.5, b=0.4, d=2,φ= π

3 , M = 1, Pr = 2, Ec = 0.15,
λ0 =1,Sr = 1, Sc = 1, ,D f = 0.2, q=−1, γ= π

12.

Fig. 19: Fig 19. The change ofϕ with y for several
values ofγ at a=0.5, b=0.4, d=2,φ= π

3 , M = 1, Pr = 3,
Ec = 0.15,λ0 =1,Sr = 1, Sc = 1, ,D f = 0.2, L = 0.1,
q=−1.

Fig. 20: The change ofϕwith y for several values of
Pr at a=0.5, b=1.2, d=1.5,φ= π

2 , M = 1, γ = π
8 , Ec =

0.15,λ0 =1,Sr = 1, Sc = 1, ,D f = 0, L = 0, q=−1.

Fig. 21: Fig 19. The change ofϕ with y for several
values ofM at a=0.5, b=1.2, d=1.2,φ= π

2 , Pr = 3,Ec =
0.25, L=0,Sr = 1, Sc = 1, ,D f = 0, λ0=1.5,q = −1,
γ= π

12 (With absence of Joule heating term).

Fig. 22: The change ofϕ with y for several values ofM
at a=0.5, b=1.2, d=1.2,φ= π

2 , Pr = 3,Ec= 0.25, L=0.1,
Sr = 1, Sc = 1, ,D f = 0.2, λ0=1.5,q= −1, γ= π

12 (In
presence of Joule heating term).

© 2019 BISKA Bilisim Technology



NTMSCI 7, No. 2, 123-137 (2019) /www.ntmsci.com 135

Fig. 23: Fig 19. The change ofϕ with y for several
values ofλ0 at a=0.7, b=1.2, d=1.2,φ= π

2 , M = 1,
Pr = 2, Ec = 0.15, L=0.1,Sr = 1, Sc = 1, ,D f = 0.2,
q=−2, γ= π

12.

Fig. 24: The change ofϕ with y for several values of L
at a=0.5, b=0.4, d=2,φ= π

3 , M = 1, Pr = 2, Ec = 0.15,
λ0 =1,Sr = 1, Sc = 1, ,D f = 0.2, q=−1, γ= π

12.

Fig. 25: The change ofϕ with y for several values ofSr
andSc ata= 0.5,b= 1.2,d= 2, φ = π

2 , M = 1,Pr = 2,
L=0, Ec = 0.15,λ0 =1,D f = 0.2, q= 2, γ = π

8 .

Table 2: Comparison of velocity, Temperature and Concentration profiles for the selected values of the embedded
parametersM = 1,Pr = 3,γ = π

3 ,Ec = 0.25,L = 0.1,φ = π
4 ,d = 1.2, D f = 0.2, Sr = 1,Sc = 1,a= 0.4, b= 0.5.

y u(y) ND
Solve

u(y) Ms−DTM Error of
solutions

θ (y) ND
Solve

θ (y) Ms −
DT M

Error of
solutions

ϕ (y) ND
Solve

ϕ (y) Ms−DTM Error of
solutions

−1.55355 −1.02585761 −1.0258572 0 0 0 0 0 0 0

−1.25819 −1.09809064 −1.09809062 2×10−8 0.231895 0.231895 2×10−9 0.00165098 0.00165099 1×10−9

−0.9628 −1.02684131 −1.02684 2×10−8 0.451063 0.451063 1×10−8 0.00980551 0.0098055 6×10−9

−0.66748 −0.84418128 −0.844181 4×10−8 0.650584 0.650584 2×10−8 0.0284813 0.0284813 1×10−8

−0.37213 −0.59130465 −0.591305 2×10−8 0.817079 0.817079 4×10−8 0.0656345 0.0656345 2×10−8

−0.07677 −0.31896831 −0.318968 6×10−8 0.9428577 0.942858 7×10−8 0.127577 0.127577 4×10−8

0.218578 −0.08524376 −0.0852439 1×10−7 1.03005 1.03005 1×10−7 0.217309 0.217309 6×10−8

0.513933 0.04705016 0.04705 1×10−7 1.08787 1.08787 1×10−7 0.336106 0.336106 9×10−8

0.809289 0.00960650 0.00960633 1×10−7 1.12281 1.12281 2×10−7 0.488515 0.488515 1×10−7

1.104644 −0.27344174 −0.273442 2×10−8 1.11879 1.11879 2×10−7 0.692632 0.692632 1×10−7

1.399999 −0.87068411 −0.870685 5×10−8 1. 1. 3×10−7 1 1 2×10−7
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7 Conclusions

Joule heating effects on peristaltic flow of Jeffrey fluid in presence of heat and mass transfer in an inclined symmetric or
asymmetric channel is analyzed. Main findings of present analysis are listed below.

• Pressure gradient tends to decrease with an increase in the Jeffery parameter and Hartmann number. However, reverse
behavior is noted for the angle of inclination.

• High of Jeffrey parameter and Hartmann number leads to increase the longitudinal velocity.
• There is an enhancement of temperature for large angle of inclination and Prandtl number.
• The concentration field increases with an increase inM and decreases with an increase inSc andSr as in [1].
• In the center of the channel, the pressure gradient increases with an increase inM and decreases with the increase inγ

as in [1].
• Effect of Hartmann number in temperature and concentrationin presence of joule heating term is opposite effect in

absence of joule heating.
• A fine comparison of our results and obtainable results available in the limiting case are also offered in the table.
• In fact, the multi-step DTM is applicable to nonlinear models such as Non-Newtonian peristaltic fluid models which is

more complicated and have a higher degree of non-linearity,in a direct way without using linearization, perturbation
or restrictive assumptions.
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