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Abstract: In this article, the method based on double Laplace transform in combination with new iterative method is used to solve
general nonlinear partial differential equation subject to the initial and boundary conditions. The effectiveness ofthe method is
illustrated with examples of nonlinear dissipative wave equation, KdV equations, nonlinear heat equation and Gas-Dynamic equation.
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1 Introduction

In physical sciences, we come across linear and nonlinear partial differential equations. Linear partial differential

equations can be solved using single and double Laplace transform. Adomian decomposition method [1,2,3,4,5,6,7],

variational iteration method [8,9], homotopy perturbation method [10] and reduced differential transform method [11,

12] are used to solve nonlinear partial differential equations. One cannot solve nonlinear partial differential equations

using Laplace transform. So in [13,14] Laplace transform is combined with homotopy perturbationmethod and in [15]

with variational iteration method to solve nonlinear partial differential equations.

Eltayeb and Kilicmann [16]; Debnath [17] applied double Laplace transform for solving some linear partial differential

equations. In [18,19], nonlinear telegraph and Klein-Gordon equations are solved using double Laplace transform

coupled with new iterative method [20]. Recently in 2017, Eltayeb [21] combined double Laplace transform with

Adomian decomposition method to solve nonlinear partial differential equations.

We consider a general nonlinear partial differential equation which covers almost all the nonlinear partial differential

equations solved in [13,14,15,18,19,21], of the form :

N

∑
n=0

an
∂ nu(x, t)

∂ tn +
M

∑
m=1

bm
∂ mu(x, t)

∂xm +Nu(x, t) = h(x, t),(x, t) ∈R+
2
. (1)

wherean, 0 ≤ n ≤ N;bm, 1 ≤ m ≤ M are given constant coefficients andN,M are positive integers,Nu(x, t) is

nonlinear term andh(x, t) is the source function in the formh(x, t) = h1(x, t)+h2(x, t).
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Associated with (1), we consider the initial conditions

∂ nu(x,0)
∂ tn = fn(x),n= 0,1,2, ...,N−1,x∈ R+, (2)

and the boundary conditions
∂ mu(0, t)

∂xm = gm(t),m= 0,1,2, ...,M−1, t ∈ R+. (3)

Further, we assume that the functionsh, fn,n = 0,1,2, ...,N− 1 andgm,m= 0,1,2, ...,M− 1 are such that problem (1)

with initial conditions (2) and boundary conditions (3) having a solution.

In this article, we solve general nonlinear PDE (1) subject to the initial conditions (2) and the boundary conditions (3)

using double Laplace iterative method. Nonlinear telegraph and Klein-Gordon equations considered in [18,19] are the

particular cases of PDE (1).

2 A brief introduction of double Laplace transforms

Let f (x, t) be a function of two variablesx andt defined in the positive quadrant of thext-plane. The double Laplace

transform of the functionf (x, t) as given by Ian N. Sneddon [22] is defined by

LxLt { f (x, t)} = f (p,s) =
∫ ∞

0
e−px

∫ ∞

0
e−st f (x, t)dtdx, (4)

whenever that integral exist. Herep andsare complex numbers.

The inverse double Laplace transformLx
−1Lt

−1
[

f (p,s)
]

= f (x, t) is defined as in [17] by the complex double integral

formula

L−1
x L−1

t

[

f (p,s)
]

= f (x, t) =
1

2π i

∫ c+i∞

c−i∞
epxdp

1
2π i

∫ d+i∞

d−i∞
est f (p,s)ds, (5)

where f (p,s) must be an analytic function for allp ands in the region defined by the inequalitiesRe p≥ c andRe s≥ d,

wherec andd are real constants to be chosen suitably.

The double Laplace transform for the partial derivatives ofan arbitrary integer order as in [23] are

LxLt

[

∂ m f (x, t)
∂xm

]

= pm f (p,s)−
m−1

∑
j=0

pm−1− jLt

[

∂ j f (0, t)
∂x j

]

, (6)

LxLt

[

∂ n f (x, t)
∂ tn

]

= sn f (p,s)−
n−1

∑
k=0

sn−1−kLx

[

∂ k f (x,0)
∂ tk

]

. (7)

3 Double Laplace transform combined with iterative method

Applying the double Laplace transform on both sides of (1), we get

N

∑
n=0

an[s
nu(p,s)−

n−1

∑
k=0

sn−k−1Lx

[

∂ ku(x,0)
∂ tk

]

]+
M

∑
m=1

bm[p
mu(p,s)−

m−1

∑
j=0

pm− j−1Lt

[

∂ ju(0, t)
∂x j

]

]+LxLt [Nu(x, t)]

= h1(p,s)+LxLt [h2u(x, t)] .

(8)
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Further, applying single Laplace transform to the initial conditions (2) and the boundary conditions (3), we get

Lx

[

∂ nu(x,0)
∂ tn

]

= fn(p),Lt

[

∂ mu(0, t)
∂xm

]

= gm(s),

n= 0,1,2, ...,N−1,and m= 0,1,2, ...,M−1.

(9)

By substituting (9) in (8), we get

N

∑
n=0

an[s
nu(p,s)−

n−1

∑
k=0

sn−k−1 fk(p)]+
M

∑
m=1

bm[p
mu(p,s)−

m−1

∑
j=0

pm− j−1g j(s)] = h1(p,s)+LxLt [h2(x, t)−Nu(x, t)] . (10)

Simplifying, we obtain

u(p,s) = [
N

∑
n=0

ansn+
M

∑
m=1

bmpm]−1[
N

∑
n=0

an(
n−1

∑
k=0

sn−k−1 fk(p))+
M

∑
m=1

bm(
m−1

∑
j=0

pm− j−1g j(s))+h1(p,s)]

+[
N

∑
n=0

ansn+
M

∑
m=1

bmpm]−1LxLt [h2(x, t)−Nu(x, t)] .

(11)

Applying inverse double Laplace transform to (11), we obtain

u(x, t) = Lx
−1Lt

−1[[
N

∑
n=0

ansn+
M

∑
m=1

bmpm]−1[
N

∑
n=0

an(
n−1

∑
k=0

sn−k−1 fk(p))+
M

∑
m=1

bm(
m−1

∑
j=0

pm− j−1g j(s))+h1(p,s)]]

+Lx
−1Lt

−1[[
N

∑
n=0

ansn+
M

∑
m=1

bmpm]−1LxLt [h2(x, t)−Nu(x, t)]].

(12)

Now we apply the new iterative method

u(x, t) =
∞

∑
i=0

ui(x, t) (13)

Substituting (13) in (12), we get

∞

∑
i=0

ui(x, t) = Lx
−1Lt

−1[[
N

∑
n=0

ansn+
M

∑
m=1

bmpm]−1[
N

∑
n=0

an(
n−1

∑
k=0

sn−k−1 fk(p))+
M

∑
m=1

bm(
m−1

∑
j=0

pm− j−1g j(s))+h1(p,s)]]

+Lx
−1Lt

−1[[
N

∑
n=0

ansn+
M

∑
m=1

bmpm]−1LxLt

[

h2(x, t)−N(
∞

∑
i=0

ui(x, t))

]

].

(14)

The nonlinear termN is decomposed as

N

(

∞

∑
i=0

ui(x, t)

)

= N(u0(x, t))+
∞

∑
i=1

[

N

(

i

∑
l=0

uk(x, t)

)

−N

(

i−1

∑
l=0

uk(x, t)

)]

(15)

Substituting (15) in (14), we get

∞

∑
i=0

ui(x, t) = Lx
−1Lt

−1[[
N

∑
n=0

ansn+
M

∑
m=1

bmpm]−1[
N

∑
n=0

an(
n−1

∑
k=0

sn−k−1 fk(p))+
M

∑
m=1

bm(
m−1

∑
j=0

pm− j−1g j(s))+h1(p,s)]]

+Lx
−1Lt

−1[[
N

∑
n=0

ansn+
M

∑
m=1

bmpm]−1LxLt [h2(x, t)−N(u0(x, t))−
∞

∑
i=1

[N(
i

∑
l=0

uk(x, t))−N(
i−1

∑
l=0

uk(x, t)]]].

(16)
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Then we define the recurrence relations as

u0(x, t) = Lx
−1Lt

−1[[
N

∑
n=0

ansn+
M

∑
m=1

bmpm]−1[
N

∑
n=0

an(
n−1

∑
k=0

sn−k−1 fk(p))+
M

∑
m=1

bm(
m−1

∑
j=0

pm− j−1g j(s))+h1(p,s)]], (17)

u1(x, t) = Lx
−1Lt

−1[[
N

∑
n=0

ansn+
M

∑
m=1

bmpm]−1LxLt [h2(x, t)−N(u0(x, t))]], (18)

uq+1(x, t) =−Lx
−1Lt

−1[[
N

∑
n=0

ansn+
M

∑
m=1

bmpm]−1LxLt [N

(

q

∑
l=0

ul (x, t)

)

−N

(

q−1

∑
l=0

ul (x, t)

)

]], q≥ 1. (19)

Therefore, the solution of (1) in series form is given by

u(x, t) = u0(x, t)+u1(x, t)+u2(x, t)+ ...+uq(x, t)+ ... (20)

4 Applications: nonlinear partial differential equations

In this section, in every example we consider particular cases of PDE 1.

Example 1. Consider the nonlinear Dissipative wave equation similar to [1]

∂ 2u
∂ t2 −

∂ 2u
∂x2 +

∂
∂ t

(uux) = 2e−t sinx−2e−2t sinxcosx, (21)

with initial conditions

u(x,0) = sinx,ut(x,0) =−sinx, (22)

and boundary conditions

u(0, t) = 0,ux(0, t) = e−t
. (23)

Applying the double Laplace transform to (21) with the conditions (22) and (23), we obtain

u(p,s) =
1

(s+1)(p2+1)
−

1
(s2− p2)

LxLt [2e−2t sinxcosx+
∂
∂ t

(uux)]. (24)

Applying inverse double Laplace transform to (24), we get

u(x, t) = e−t sinx−Lx
−1Lt

−1[
1

(s2− p2)
LxLt [2e−2t sinxcosx+

∂
∂ t

(uux)]]. (25)

Now we apply the new iterative method.

Substituting (13) into (25) and applying (17), (18), (19), we obtain the components of the solution as follows:

u0(x, t) = e−t sinx, (26)

u1(x, t) =−Lx
−1Lt

−1[
1

(s2− p2)
LxLt [2e−2t sinxcosx+

∂
∂ t

[(u0)[(u0)x]]] = 0. (27)

u2(x, t) =−Lx
−1Lt

−1[
1

(s2− p2)
LxLt [

∂
∂ t

[(u0+u1)[(u0+u1)x]]−
∂
∂ t

[(u0)[(u0)x]]] = 0, (28)
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and so on.

Therefore, we obtain the solution of (21) as follows:

u(x, t) = e−t sinx. (29)

Example 2. Consider the nonlinear Dissipative wave equation similar to [1]

∂ 2u
∂ t2 −

∂ 2u
∂x2 +

∂
∂ t

(u2) =−2sin2xsint cost, (30)

with initial conditions

u(x,0) = sinx,ut(x,0) = 0, (31)

and boundary conditions

u(0, t) = 0,ux(0, t) = cost. (32)

Applying the double Laplace transform to (30) with the conditions (31) and (32), we obtain

u(p,s) =
s

(s2+1)(p2+1)
−

1
(s2− p2)

LxLt [2sin2xsint cost +
∂
∂ t

(u2)]. (33)

Applying inverse double Laplace transform to (33), we get

u(x, t) = cost sinx−Lx
−1Lt

−1[
1

(s2− p2)
LxLt [2sin2xsint cost +

∂
∂ t

(u2)]]. (34)

Now we apply the new iterative method.

Substituting (13) into (34) and applying (17), (18), (19), we obtain the components of the solution as follows:

u0(x, t) = cost sinx, (35)

u1(x, t) =−Lx
−1Lt

−1[
1

(s2− p2)
LxLt [2sin2xsint cost +

∂
∂ t

(u0)
2)]] = 0, (36)

u2(x, t) =−Lx
−1Lt

−1[
1

(s2− p2)
LxLt [

∂
∂ t

(u0+u1)
2−

∂
∂ t

(u0)
2]] = 0, (37)

and so on.

Therefore, we obtain the solution of (30) as follows:

u(x, t) = cost sinx. (38)

Example 3. Consider the inhomogeneous KdV equation similar to [5]

∂u
∂ t

−u
∂u
∂x

+
∂ 3u
∂x3 =−ex(1+ t)+ tex(1− tex), (39)

with initial condition

u(x,0) = 1, (40)
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and boundary conditions

u(0, t) = 1− t,ux(0, t) = uxx(0, t) =−t. (41)

Applying the double Laplace transform to (39) with the conditions (40) and (41), we obtain

u(p,s) =
1
ps

−
1

s2(p−1)
+

1
(s+ p3)

LxLt [te
x(1− tex)+u

∂u
∂x

]. (42)

Applying inverse double Laplace transform to (42), we get

u(x, t) = 1− tex+Lx
−1Lt

−1[
1

(s+ p3)
LxLt [te

x(1− tex)+u
∂u
∂x

]]. (43)

Now we apply the new iterative method.

Substituting (13) into (43) and applying (17), (18), (19), we obtain the components of the solution as follows:

u0(x, t) = 1− tex
, (44)

u1(x, t) = Lx
−1Lt

−1[
1

(s+ p3)
LxLt [te

x(1− tex)+u0
∂ (u0)

∂x
]] = 0, (45)

u2(x, t) = Lx
−1Lt

−1[
1

(s+ p3)
LxLt [(u0+u1)

∂
∂x

(u0+u1)−u0
∂ (u0)

∂x
]] = 0, (46)

and so on.

Therefore, we obtain the solution of (39) as follows:

u(x, t) = 1− tex
. (47)

Example 4. Consider the inhomogeneous fifth order KdV equation similarto [6]

∂u
∂ t

−u
∂u
∂x

+
∂ 3u
∂x3 −

∂ 5u
∂x5 = cosx+2t sinx+

t2

2
sin2x, (48)

with initial condition

u(x,0) = 0, (49)

and boundary conditions

u(0, t) = t,ux(0, t) = 0,uxx(0, t) =−t,uxxx(0, t) = 0,uxxxx(0, t) = t. (50)

Applying the double Laplace transform to (48) with the conditions (49) and (50), we obtain

u(p,s) =
p

(p2+1)s2 +
1

(s+ p3− p5)
LxLt [

t2

2
sin2x+u

∂u
∂x

]. (51)

Applying inverse double Laplace transform to (51), we get

u(x, t) = t cosx+Lx
−1Lt

−1[
1

(s+ p3− p5)
LxLt [

t2

2
sin2x+u

∂u
∂x

]]. (52)
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Now we apply the new iterative method.

Substituting (13) into (52) and applying (17), (18), (19), we obtain the components of the solution as follows:

u0(x, t) = t cosx, (53)

u1(x, t) = Lx
−1Lt

−1[
1

(s+ p3− p5)
LxLt [

t2

2
sin2x+u0

∂ (u0)

∂x
]], (54)

u2(x, t) = Lx
−1Lt

−1[
1

(s+ p3− p5))
LxLt [(u0+u1)

∂
∂x

(u0+u1)−u0
∂ (u0)

∂x
]] = 0, (55)

and so on.

Therefore, we obtain the solution of (48) as follows:

u(x, t) = t cosx. (56)

Example 5. Consider the nonlinear heat equation in [7]

∂u
∂ t

=
∂
∂x

(u
∂u
∂x

), (57)

with initial condition

u(x,0) = x. (58)

Applying the double Laplace transform to (57) with the condition (58), we obtain

u(p,s) =
1

p2s
+

1
s

LxLt [
∂
∂x

(u
∂u
∂x

)]. (59)

Applying inverse double Laplace transform to (59), we get

u(x, t) = x+Lx
−1Lt

−1[
1
s
LxLt [

∂
∂x

(u
∂u
∂x

)]]. (60)

Now we apply the new iterative method.

Substituting (13) into (60) and applying (17), (18), (19), we obtain the components of the solution as follows:

u0(x, t) = x, (61)

u1(x, t) = Lx
−1Lt

−1[
1
s
LxLt [

∂
∂x

(u0
∂u0

∂x
)]] = t, (62)

u2(x, t) = Lx
−1Lt

−1[
1
(s)

LxLt [
∂
∂x

[(u0+u1)
∂ (u0+u1)

∂x
]−

∂
∂x

(u0
∂u0

∂x
)]] = 0, (63)

and so on.
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Therefore, we obtain the solution of (57) as follows:

u(x, t) = x+ t. (64)

Example 6. Consider the non-homogeneous advection problem in [13]

∂u
∂ t

+u
∂u
∂x

= 2t + x+ t3+ xt2, (65)

with initial condition

u(x,0) = 0. (66)

Applying the double Laplace transform to (65) with the condition (66), we obtain

u(p,s) =
2

ps3 +
1

p2s2 +
1
s
LxLt [t

3+ xt2−u
∂u
∂x

]. (67)

Applying inverse double Laplace transform to (67), we get

u(x, t) = t2+ xt+Lx
−1Lt

−1[
1
s

LxLt [t
3+ xt2−u

∂u
∂x

]]. (68)

Now we apply the new iterative method.

Substituting (13) into (68) and applying (17), (18), (19), we obtain the components of the solution as follows:

u0(x, t) = t2+ xt, (69)

u1(x, t) = Lx
−1Lt

−1[
1
s

LxLt [t
3+ xt2−u0

∂u0

∂x
]] = 0, (70)

u2(x, t) =−Lx
−1Lt

−1[
1
s
LxLt [(u0+u1)

∂ (u0+u1)

∂x
−u0

∂u0

∂x
]] = 0, (71)

and so on.

Therefore, we obtain the solution of (65) as follows:

u(x, t) = t2+ xt. (72)

Example 7. Consider the nonlinear partial differential equation in [14]

∂ 2u
∂ t2 +

∂ 2u
∂x2 +(

∂u
∂x

)2 = 2x+ t4
, (73)

with initial conditions

u(x,0) = 0,ut(x,0) = a, (74)

and boundary conditions

u(0, t) = at,ux(0, t) = t2
. (75)
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Applying the double Laplace transform to (73) with the conditions (74) and (75), we obtain

u(p,s) =
a

ps2 +
2

p2s3 +
1

(s2+ p2)
LxLt [t

4− (
∂u
∂x

)2]. (76)

Applying inverse double Laplace transform to (76), we get

u(x, t) = at+ xt2+Lx
−1Lt

−1[
1

(s2+ p2)
LxLt [t

4− (
∂u
∂x

)2]]. (77)

Now we apply the new iterative method.

Substituting (13) into (77) and applying (17), (18), (19), we obtain the components of the solution as follows:

u0(x, t) = at+ xt2, (78)

u1(x, t) = Lx
−1Lt

−1[
1

(s2+ p2)
LxLt [t

4− (
∂u0

∂x
)2]] = 0, (79)

u2(x, t) =−Lx
−1Lt

−1[
1

(s2+ p2)
LxLt [(

∂ (u0+u1)

∂x
)2− (

∂u0

∂x
)2]] = 0, (80)

and so on.

Therefore, we obtain the solution of (73) as follows:

u(x, t) = at+ xt2. (81)

Example 8. Consider the nonlinear partial differential equation in [15]

∂ 2u
∂ t2 −

∂ 2u
∂x2 +u2 = x2t2

, (82)

with initial conditions

u(x,0) = 0,ut(x,0) = x, (83)

and boundary conditions

u(0, t) = 0,ux(0, t) = t. (84)

Applying the double Laplace transform to (82) with the conditions (83) and (84), we obtain

u(p,s) =
1

p2s2 +
1

(s2− p2)
LxLt [x

2t2−u2]. (85)

Applying inverse double Laplace transform to (85), we get

u(x, t) = xt+Lx
−1Lt

−1[
1

(s2− p2)
LxLt [x

2t2−u2]]. (86)

Now we apply the new iterative method.

c© 2019 BISKA Bilisim Technology

www.ntmsci.com


147 R. R. Dhunde and G. L. Waghmare: Double Laplace iterative method for solving nonlinear partial...

Substituting (13) into (86) and applying (17), (18), (19), we obtain the components of the solution as follows:

u0(x, t) = xt, (87)

u1(x, t) = Lx
−1Lt

−1[
1

(s2− p2)
LxLt [x

2t2− (u0)
2]] = 0, (88)

u2(x, t) =−Lx
−1Lt

−1[
1

(s2− p2)
LxLt [(u0+u1)

2− (u0)
2]] = 0, (89)

and so on.

Therefore, we obtain the solution of (82) as follows:

u(x, t) = xt. (90)

Example 9. Consider the following non-homogeneous nonlinear Gas Dynamic equation in [24]

∂u
∂ t

+
1
2

∂ (u2)

∂x
−u(1−u) =−et−x

, (91)

with initial condition

u(x,0) =−e−x
. (92)

Applying the double Laplace transform to (91) with the condition (92), we obtain

u(p,s) =
1
ps

−
1

(s−1)(p+1)
−

1
s

LxLt [
1
2

∂ (u2)

∂x
−u+u2]. (93)

Applying inverse double Laplace transform to (93), we get

u(x, t) = 1−et−x−Lx
−1Lt

−1[
1
s
LxLt [

1
2

∂ (u2)

∂x
−u+u2]]. (94)

Now we apply the new iterative method.

Substituting (13) into (94) and applying (17), (18), (19), we obtain the components of the solution as follows:

u0(x, t) = 1−et−x
, (95)

u1(x, t) =−Lx
−1Lt

−1[
1
s

LxLt [
1
2

∂ (u0)
2

∂x
−u0+(u0)

2]] = 0, (96)

u2(x, t) =−Lx
−1Lt

−1[
1
s
LxLt [

1
2

∂ (u0+u1)
2

∂x
− (u0+u1)+ (u0+u1)

2− [
1
2

∂ (u0)
2

∂x
−u0+(u0)

2]]] = 0, (97)

and so on.

Therefore, we obtain the solution of (91) as follows:

u(x, t) = 1−et−x
. (98)
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5 Conclusion

From the illustrative examples nonlinear dissipative waveequation, KdV equations, nonlinear heat equation and Gas-

Dynamic equation, it is clear that double Laplace transformcombined with new iterative method is one of the best method

to solve wide range of nonlinear partial differential equations in Mathematical Physics.
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