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Abstract: In this article, the method based on double Laplace tramsfarcombination with new iterative method is used to solve
general nonlinear partial differential equation subjertthe initial and boundary conditions. The effectivenesghaf method is
illustrated with examples of nonlinear dissipative wavaagpn, KdV equations, nonlinear heat equation and Gasabym equation.
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1 Introduction

In physical sciences, we come across linear and nonlinedialpdifferential equations. Linear partial differeritia
equations can be solved using single and double Laplacsforam. Adomian decomposition method, 2,3,4,5,6,7],
variational iteration methodB[9], homotopy perturbation method (] and reduced differential transform methddL|
12] are used to solve nonlinear partial differential equatio@ne cannot solve nonlinear partial differential equegio
using Laplace transform. So in3,14] Laplace transform is combined with homotopy perturbatizethod and in15]
with variational iteration method to solve nonlinear partifferential equations.

Eltayeb and Kilicmann16]; Debnath [L7] applied double Laplace transform for solving some lineantipl differential
equations. In 18,19], nonlinear telegraph and Klein-Gordon equations are exblusing double Laplace transform
coupled with new iterative metho®(]. Recently in 2017, Eltayeb2fl] combined double Laplace transform with
Adomian decomposition method to solve nonlinear partifiointial equations.

We consider a general nonlinear partial differential eiquatvhich covers almost all the nonlinear partial diffeiaht
equations solved inlf3,14,15,18,19,21], of the form :

Nooghu(xt) M 9Mu(xt) )
nzoan —om > bm o Nu(x,t) = h(x,t), (x,t) € R, °. 1)

m=1

wherea,, 0<n<N;bn, 1<m<M are given constant coefficients ahdM are positive integerdNu(x,t) is
nonlinear term andi(x,t) is the source function in the fori(x,t) = hy(x,t) + ha(x,t).

®© 2019 BISKA Bilisim Technology * Corresponding author e-maitinjitdhunde @rediffmail.com


 http://dx.doi.org/10.20852/ntmsci.2019.352

139 BISKA R. R. Dhunde and G. L. Waghmare: Double Laplace iterativénatefor solving nonlinear partial...

Associated with (1), we consider the initial conditions

n
9 ‘;(t);’o) — fa(X),n=0,1,2,...N—1,xe R, @)
and the boundary conditions
m,
a;f(ot)igm() m=0,12,..M—1tcR,. ®)

Further, we assume that the functidng,,n=10,1,2,....N — 1 andgm,,m=0,1,2,...,M — 1 are such that problem (1)
with initial conditions (2) and boundary conditions (3) raya solution.

In this article, we solve general nonlinear PDE (1) subjedhg initial conditions (2) and the boundary conditions (3)
using double Laplace iterative method. Nonlinear telelgrapd Klein-Gordon equations considered 118,[L9] are the
particular cases of PDE (1).

2 A brief introduction of double L aplace transforms

Let f(x,t) be a function of two variables andt defined in the positive quadrant of tkeplane. The double Laplace
transform of the functiorf(x,t) as given by lan N. Sneddo@17] is defined by

Ll f 0} =T(ps) = [ &P [ e f(x tydtdx (4)
Jo Jo
whenever that integral exist. Hepsands are complex numbers.

The inverse double Laplace transfotyr L~ [f(p,s)] = f(x,t) is defined as in17] by the complex double integral
formula

1y -1[F 1ot g, 10 poHe o
LA [T(ps)] = ) = 5z [ e¥dp [* e T(pds (5)

wheref(p,s) must be an analytic function for gl ands in the region defined by the inequalitie p> c andRe s> d,
wherec andd are real constants to be chosen suitably.
The double Laplace transform for the partial derivativearofrbitrary integer order as i@3] are

[T S 2100
LyLt [%} s'f(p,s) Zos" kL, {%5;0)} . 7)
3 Double Laplace transform combined with iterative method
Applying the double Laplace transform on both sides of (B get
ni)an[g‘mp, 9 :z:s““Lx [ U0, % bl Z) o2 [ 20U L i) o

= hy(p,s) + Lkt [hau(x,1)] .

(© 2019 BISKA Bilisim Technology



NTMSCI 7, No. 2, 138-149 (2019)www.ntmsci.com BISKKA 140

Further, applying single Laplace transform to the initiahditions (2) and the boundary conditions (3), we get

Lx {anl;(t)f{ O>] =Ta(p). L {%} =Tn(s), 9)

n=012..,N-1andm=0,12,...M—1

By substituting (9) in (8), we get
N
Zoan[snu(pa ;gﬁ k= lfk ZO pm - l_ hl(pa )+ LXLt [hz(X,t) - NU(X,t)] : (10)

Simplifying, we obtain

N M N n-1
=[Yas'+ Y bnp" T an( T (P + S bu( S pP™ I gi(s)) + ha(p,
[n; n; P [n; (kZO k( Z zop Gj () +h(p,s)]
| (12)
+[Z)an§“+ Z bmp™ Lyl [ho(x,t) — Nu(x,t)] .
n=
Applying inverse double Laplace transform to (11), we abtai
u(xt) = L e Y[ S ans + Z bp™ S an(§ S M(p)) + Z bn( 'S P™I2gi(9) +ha(p.9)]]
2, R z -
+L [[Z)ans”+ mep 172yl [2(X,t) — Nu(x, 1)]].
n= m=1
Now we apply the new iterative method
U(X,t) = Ui (Xat) (13)
Substituting (13) in (12), we get
00 N
i 7t :inll— -1 Sn+ b § k— lf m— J 1 +h ,
i;)u(x ) t [[n;)an Z mp"] zoan Zo k( Zop gj(s)) +ha(p,s)]] "

+L 7t zoans“+ zlbmpm]’lLXLt [hz(x,t)N(.iui(x,t))]].

<||Z)uk X,t) ) (:Ztuk(x,t)ﬂ (15)

_Z)umx,wLletluians” > brp"l” zoan zos“ “IT(p) zopm I3g5(s)) + Fi(p, 9]

+L gt Zoané"qt z bmp™ Lt [h2(x,t) — N(Ug(x,t)) — _;[N ZBUk (x,1)) S

%Uk

The nonlinear ternN is decomposed as

N (i}u(x,t)) = N (up(x,t)) i

Substituting (15) in (14), we get

(16)
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Then we define the recurrence relations as

N

M m-1
lo(x,t) = L My Z)ansu z b Z)an S SRR+ Y (3 0™ Gi(8) +Ru(p. 9l
n k=0 m=1 j=

(Xt %angq-i- Z bmp 1|—x|-t hZ(X t) N(UO(Xat))”a

N M —1
Ugt1(X,t) = —Lx’lLtfl[[Z)anSnJF Z bmpm]’leLt N (iw (x,t)) —N <qu U (x,t))]], q>1.
n= m=1 |= =

Therefore, the solution of (1) in series form is given by

U(X,t) = Up(X,t) +ur(X,t) + Ua(X,t) + ... + ug(X, ) + ...

4 Applications: nonlinear partial differential equations

In this section, in every example we consider particulaesasg PDE 1.

Example 1. Consider the nonlinear Dissipative wave equation simddi.}

d%2u d%u 4
bl = 2e 'sinx— 2e 2 sinxcosx
a2 e oUW !
with initial conditions
u(x,0) = sinx, Ut (x,0) = —sinx,

and boundary conditions
u(0,t) = 0,ux(0,t) =e™"

Applying the double Laplace transform to (21) with the cdiodis (22) and (23), we obtain

1

ups =
N P T B R )

LyL¢[2e™ smxcostrg (Uy)].

Applying inverse double Laplace transform to (24), we get

LyL¢[2e~% sinxcosx+ — 0 (uw)]].

u(x,t) = e 'sinx— Ly L 7Y o

1
(- p?)

Now we apply the new iterative method.

Substituting (13) into (25) and applying (17), (18), (19 wbtain the components of the solution as follows:

Ug(x,t) = e 'sinx,

up(x,t) = —Lx "L Y

@ } ) LuL¢[2e~2 sinxcosx + %[(uo)[(uo)x]]] =0.

Ua(x,t) = —Lx 1LY

T b+ [ 5 () (o] =0

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(© 2019 BISKA Bilisim Technology
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and so on.
Therefore, we obtain the solution of (21) as follows:
u(xt) = e tsinx. (29)
Example 2. Consider the nonlinear Dissipative wave equation simddf}
°u d*u a9, , P
52 2 = —2sirfxsint cog, (30)
with initial conditions
u(x,0) = sinx, u(x,0) = 0, (31)
and boundary conditions
u(0,t) = 0,ux(0,t) = cost. (32)
Applying the double Laplace transform to (30) with the cdioatis (31) and (32), we obtain
S 1 7]
u(p,s) = - LyL¢[2sir? xsint cost 4+ — (u?)]. 33
Applying inverse double Laplace transform to (33), we get
. —1 -1 1 . . 0
u(x,t) = costsinx— Ly "Ly [(SZ sy LyL¢[2 sirfxsint cost 4+ — (34)
Now we apply the new iterative method.
Substituting (13) into (34) and applying (17), (18), (19§ wbtain the components of the solution as follows:
Up(x,t) = cogt sinx, (35)
ur(xt) = —Lx 1L *1[;L L¢[2sirf xsint cogt + 2(uo)z)]] =0 (36)
1\A X 1 (527 pz) XLt at )
1 7} a
1, -1 2 2
W(x,t) = —Lx "Lt [(32— ) Ll [ 57 (o +ug)” — = (Uo)]] = (37)
and so on.
Therefore, we obtain the solution of (30) as follows:
u(x,t) = cogt sinx. (38)
Example 3. Consider the inhomogeneous KdV equation simila5jo [
du du d%u
5t Yt aa = —€(1+t) +te(1—te), (39)
with initial condition
u(x,0) =1, (40)

(© 2019 BISKA Bilisim Technology
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and boundary conditions
U(O,t) - l—t,UX(O,t) == uXx(O,t) - _t

Applying the double Laplace transform to (39) with the cdiadis (40) and (41), we obtain

o1 1 1 du
u(p,s) = s~ E(p_1) + ) Lth[teX(lfteX)wLu&].

Applying inverse double Laplace transform to (42), we get

u(xt) =1—te"+ LXlLtl[(STlp"”) LyL¢[te(1—t€") + u%}].

Now we apply the new iterative method.

(41)

(42)

(43)

Substituting (13) into (43) and applying (17), (18), (19§ wbtain the components of the solution as follows:

Up(x,t) = 1—te",

d(up)

ul(x,t):folLt’l[;Lth[te?‘(l—tex)—i—uo gl

(s+p®)

7] d(u
LxLt[(ug+u1)==(Up+u1) — Ug

up(xt) = L 1LY 5(

(s+p%)

and so on.

Therefore, we obtain the solution of (39) as follows:

ux,t) =1—tes

Example 4. Consider the inhomogeneous fifth order KdV equation sintdd6]

@ u@+0_3u d—su—cosx+2tsinx+ﬁsin2<
ot ox  ox3 ad 2 ’

with initial condition
u(x,0) =0,

and boundary conditions
U(O,t) = t,UX(O,t) == O, uXx(O,t) - _t,uXxx(O,t) == O, uXxxx(O,t) == t
Applying the double Laplace transform to (48) with the cdiudis (49) and (50), we obtain

p 1 t2

; du

U(p,S) = (

Applying inverse double Laplace transform to (51), we get

1, -1 1 t2 . oJu
u(xt) =tcosx+ Ly "L [mLth[Esm&Jru&]].

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)
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Now we apply the new iterative method.
Substituting (13) into (52) and applying (17), (18), (19§ wbtain the components of the solution as follows:
Up(X,t) =tcosx, (53)
1, 1 t? d(up)
B R v
u(X,t) = Ly "Lt [(s—i— = ) LxLt[ 5 sin2x+ uo E IIE (54)
1, _ 1 7} d(up)
e P g _ _
Up(X,t) = Ly "Ly [(s+ 5 9) LuL¢[(uo+ug) ax(“°+ U1) — Ug E =0, (55)
and so on.
Therefore, we obtain the solution of (48) as follows:
u(x,t) =tcosx. (56)
Example 5. Consider the nonlinear heat equation7h [
du 0, Jdu
Fi &(U&)v (57)
with initial condition
u(x,0) = x. (58)
Applying the double Laplace transform to (57) with the cdiodi (58), we obtain
_ 1 1 J , du
u(p,s) = p_szr ngLt[d—X(Ua)]- (59)
Applying inverse double Laplace transform to (59), we get
1 Jd  du
_ -1y -1+ 9, ou
u(x,t) = x+Lx "Lt [sLth[ax(uax)H' (60)
Now we apply the new iterative method.
Substituting (13) into (60) and applying (17), (18), (19 wbtain the components of the solution as follows:
Uo(X,t) =X, (61)
1 J, 6 du
IR P T LAV NI
up(xt) = Lx Ly [sLXLt[dx(UO X )] =t, (62)
_q, -1, 1 7} Jd(up+u Jd ,  du
) = LA L2 [+ uy 28 ) 9o Ty g (63

(9) X

and so on.
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Therefore, we obtain the solution of (57) as follows:

u(x,t) = x+t. (64)

Example 6. Consider the non-homogeneous advection problerhdh [

ou du 3 .2
E+u&_2t+x+t —+ Xt (65)
with initial condition
u(x,0) = 0. (66)

Applying the double Laplace transform to (65) with the cdiudi (66), we obtain

_ 2 1 1 3 2 0u
u(p,s)_p—s3+p2—sz+§Lth[t +xt —uﬁ]. (67)

Applying inverse double Laplace transform to (67), we get

1
u(x,t) =t 4+ xt+ folLfl[ngLt [t3+xt? — u%}]. (68)
Now we apply the new iterative method.
Substituting (13) into (68) and applying (17), (18), (19§ wbtain the components of the solution as follows:
Ug(x,t) =t2+xt, (69)
(%) = L AL x2 - w2 — o, (70)
S ox
P | d(up+up) dug
— 1 -11= 2 T u—1 =
U2(X,t) =—Ly L [SLth[(UOJF Ul) ox Ug ax ]] 0, (72)
and so on.
Therefore, we obtain the solution of (65) as follows:
u(x,t) =t2 4 xt. (72)
Example 7. Consider the nonlinear partial differential equationid][
d’u  d%u  du, 4
WﬁLWJr(&) = 2X+t7, (73)
with initial conditions
u(x,0) = 0,u(x,0) = a, (74)
and boundary conditions
u(0,t) = at, uy(0,t) = t2. (75)

(© 2019 BISKA Bilisim Technology
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Applying the double Laplace transform to (73) with the cdiwais (74) and (75), we obtain

upe = 242 b (942
Up.s) = 02 T st (24 p?) Lt = (5507 (76)
Applying inverse double Laplace transform to (76), we get
1 ou
_ 2 -1 -1 4_ 2
u(x,t) = at+xt“+ Ly "Lt [(S2Jr 2 LuLe[t (dx) 1] (77)

Now we apply the new iterative method.
Substituting (13) into (77) and applying (17), (18), (19§ wbtain the components of the solution as follows:

Up(X,t) = at 4 xt2, (78)

-1 -1 1 4 2
ur(x,t) = Lx "Lt [m'—xl—t[t — (5, 1=0, (79)
oy 1 d(Uo+us), Qo p.
Up(Xt) = —Lx "Lt [(sz+p2) b [(——5, )" = (5, =0, (80)
and so on.
Therefore, we obtain the solution of (73) as follows:
u(x,t) = at+ xt2. (81)

Example 8. Consider the nonlinear partial differential equationd][

2 2 +Uu” =Xt (82)
with initial conditions
u(x,0) = 0,u(x,0) = X, (83)
and boundary conditions
u(0,t) = 0,ux(0,t) =t. (84)
Applying the double Laplace transform to (82) with the cdiwatis (83) and (84), we obtain
up,s) = — + ;LXLt [X%t2 —u?]. (85)
e (-
Applying inverse double Laplace transform to (85), we get
1
-1y -1 2.2 2
u(x,t) = xt+Lx "Lt [(Sz_pz)Lth[xt —u7]. (86)

Now we apply the new iterative method.

(© 2019 BISKA Bilisim Technology
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Substituting (13) into (86) and applying (17), (18), (19 wabtain the components of the solution as follows:

UO(Xat) =Xxt,

ui(x,t) = inlLtil[ LxLt [thz - (UO)ZH =0,

1
(£ -p?)

Up(x,t) = —Ly 1LY LxLt[(Uo + u1)® — (up)?]] =0,

_ 1
(- p?)

and so on.

Therefore, we obtain the solution of (82) as follows:

u(x,t) = xt.

Example 9. Consider the following non-homogeneous nonlinear Gas Byniaquation in 24]

du 19(u?) L ix
EJFE Ox *U(lfu)—fet ,
with initial condition
u(x,0) = —e™

Applying the double Laplace transform to (91) with the caiodi (92), we obtain

2
u(p,s) = _(S_T](-)} th[%d(aLi() —u+ud.

Applying inverse double Laplace transform to (93), we get

1 10(u?
ux,t)=1—ée>*— L[lLfl[gLXLt 5 ((?X )

—u+u?.

Now we apply the new iterative method.

(87)

(88)

(89)

(90)

(91)

(92)

(93)

(94)

Substituting (13) into (94) and applying (17), (18), (19§ wbtain the components of the solution as follows:

ug(x,t) =1—€%

I | 19(up)?
up(xt) = —Ly lLt 1[§Lth[§ (03) *UOJF(UO)Z]]:O’
1.1 10(up+up)? 1.9 (up)?
up(x,t) = —Lx 1L l[g'—xh[ﬁ%*(U0+U1)+(UO+U1)2*[5 ((9;?

and so on.

Therefore, we obtain the solution of (91) as follows:

ux,t) =1—¢e*

(95)

(96)

—up+ (W)l =0,  (97)

(98)

(© 2019 BISKA Bilisim Technology
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5 Conclusion

From the illustrative examples nonlinear dissipative wageation, KdV equations, nonlinear heat equation and Gas-
Dynamic equation, it is clear that double Laplace transfoombined with new iterative method is one of the best method
to solve wide range of nonlinear partial differential eqoias in Mathematical Physics.
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