

Product of composition and differentiation operators on a space of entire functions

Pawan Kumar¹ and Mohd Arief²

¹ Department of Mathematics, Govt. Degree College Kathua, India
 ² Department of Mathematics, Central University of Jammu, India

Received: 10 May 2018, Accepted: 14 December 2018 Published online: 21 May 2019.

Abstract: The product of composition operator C_{φ} and differentiation operator *D* is written as $C_{\varphi}D$ and DC_{φ} which are defined as $C_{\varphi}Df = f'o\varphi$ and $DC_{\varphi}f = (fo\varphi)'$ respectively. In this paper, we characterize the continuity of the operators $C_{\varphi}D$ and DC_{φ} on \mathscr{E} , the space of entire functions.

Keywords: Composition operator, differentiation operator, entire functions.

1 Introduction

Let *X* be a non-empty set and V(X) be a vector space of complex valued functions on *X*. If $\varphi : X \to X$ is a mapping such that $f \circ \varphi \in V(X)$ for all $f \in V(X)$, then the composition transformation $C_{\varphi} : V(X) \to V(X)$ is defined as

$$C_{\varphi}f = fo\varphi \ \forall \ f \in V(X)$$

If V(X) is a topological vector space and C_{φ} is continuous on V(X), then we call C_{φ} as composition operator induced by φ . Further, let $\psi: X \to \mathbb{C}$ be a function, then the multiplication transformation $M_{\psi}: V(X) \to V(X)$ defined as

$$M_{\psi}f = \psi f \ \forall \ f \in V(X)$$

If V(X) is a topological vector space and M_{ψ} is continuous on V(X), then M_{ψ} is called the multiplication operator induced by ψ . Let D be the differentiation operator defined on V(X) as Df = f'. The generalized composition operators $C_{\varphi}D$ and DC_{φ} on V(X) are defined as $C_{\varphi}Df = f'o\varphi$ and $DC_{\varphi}f = (fo\varphi)'$ for all $f \in V(X)$ respectively. A complex valued function $f : \mathbb{C} \to \mathbb{C}$ is called entire function if it is analytic in the whole complex plane \mathbb{C} . If f is an entire function, then the power series representation of f can be written as

$$f(z) = \sum_{n=0}^{\infty} \hat{f}_n z^n \tag{1}$$

where $\{\hat{f}_n\}$ a sequence of complex numbers such that $\lim_{n\to\infty} |\hat{f}_n|^{\frac{1}{n}} = 0$. Conversely on every sequence $\{\hat{f}_n\}$ of complex numbers such that $\lim_{n\to\infty} |\hat{f}_n|^{\frac{1}{n}} = 0$, there is an entire function f represented by (1.1). A metric d on the class of entire functions is defined by $d(f,g) = \sup\{|\hat{f}_0 - \hat{g}_0|, |\hat{f}_n - \hat{g}_n|^{\frac{1}{n}} : n \ge 1\}$. The class of entire functions topologized by this metric is denoted by \mathscr{E} . It has been shown in Iyer [8] that \mathscr{E} is a non-normable complex metrizable locally convex

topological vector space. In the space \mathscr{E} of entire functions, the convergence of a sequence of entire functions is equivalent to the uniform convergence of entire functions in any circle of finite radius and this convergence is called the strong convergence in \mathscr{E} .

The continuous linear functional F on \mathscr{E} is given by $F(f) = \sum_{n=0}^{\infty} f_n a_n$ where $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $\{f_n\}$ be a sequence of complex numbers such that $\{|\hat{f}_n|^{\frac{1}{n}}\}$ be a bounded sequence. The set of all bounded linear continuous functional on \mathscr{E} is denoted by \mathscr{E}^* . For each $n \in \mathbb{N}$, we define $e_n : \mathbb{C} \to \mathbb{C}$ as $e_n(z) = z^n \quad \forall z \in \mathbb{C}$. Then the sequence $\{e_n : n \in \mathbb{N}\}$ is called a basis for \mathscr{E} . A sequence $\{\alpha_n\}$ in \mathscr{E} is called a basis for \mathscr{E} if for each $\alpha \in \mathscr{E}$, there exists a unique sequence $\{f_n(\alpha)\}$ of complex nos such that $\alpha = \sum_{n=0}^{\infty} f_n(\alpha) . \alpha_n$. For R > 0, we denote by \mathbb{D}_R , the open unit disc in \mathbb{C} defined as $\mathbb{D}_R = \{z \in \mathbb{C} : |z| < 1\}$. The space \mathscr{E} of entire functions has been studied extensively by Iyer [8,9,10] and [11].

In this paper, we initiated the study of generalized composition operators on the space \mathscr{E} of entire functions. Much of the work on composition operators is done on Hardy space. For more about composition operator on Hardy space, we refer to Schwartz [19] and Shapiro [20].

This paper is organised as follows. In the first section, we give introduction of the work done here. We study the boundedness of the operator $C_{\varphi}D$ in the second section and in the third section, we study the boundedness of the operator DC_{φ} on the space \mathscr{E} .

2 Boundedness of the operator $C_{\varphi}D$

In this section, we shall characterize the boundedness of generalized composition operator $C_{\varphi}D$ on space \mathscr{E} of entire functions. For this purpose, we need the following Lemma.

Lemma 1. Let $f \in \mathscr{E}$. Then for each $z \in \mathbb{D}_R$

$$|f'(z)| \le \frac{M(R, f).R}{(R - |z|)^2}$$

Proof. By the Cauchy integral formula for derivative, we have

$$f'(z) = \frac{1}{2\pi i} \int_{C_R} \frac{f(w)}{(w-z)^2} dw$$
 where $C_R : |z| = R$.

This implies that

$$|f'(z)| \leq \frac{1}{2\pi} \int_{C_R} \frac{|f(w)|}{|w-z|^2} |dw| \leq \frac{M(R,f)}{2\pi} \frac{1}{(R-|z|)^2} \int_{C_R} |dw| = \frac{M(R,f)}{2\pi} \frac{1}{(R-|z|)^2} 2\pi R = \frac{M(R,f) \cdot R}{(R-|z|)^2}$$

Therefore

$$|f'(z)| \leq \frac{M(R,f).R}{(R-|z|)^2}, \quad \forall \ z \in \mathbb{D}_R.$$

Theorem 1. Let $\varphi : \mathbb{C} \to \mathbb{C}$ be a mapping and $D : \mathscr{E} \to \mathscr{E}$ be the differentiation operator. Then the generalized composition operator $C_{\varphi}D : \mathscr{E} \to \mathscr{E}$ is continuous (bounded) iff φ is an entire function.

Proof. Assume that the operator $C_{\varphi}D : \mathscr{E} \to \mathscr{E}$ is continuous. Then $C_{\varphi}Df = f'o\varphi$ is an entire function. In particular for $f = \frac{e_2}{2} \in \mathscr{E}$, where $e_2(z) = z^2$, we have $f'o\varphi = e_1o\varphi = \varphi$ is an entire function.

Conversely, assume that φ is an entire function. In order to prove that $C_{\varphi}D$ is a continuous operator, it is sufficient to show that $C_{\varphi}D$ is continuous at origin.

^{© 2019} BISKA Bilisim Technology

Let R > 0 be given, then $\overline{\mathbb{D}}_R$ is a compact subset of \mathbb{C} , but φ is a continuous map, therefore $\varphi(\overline{\mathbb{D}}_R)$ is compact subset of \mathbb{C} and so we can find $K > M(R, \varphi)$ such that $\varphi(\overline{\mathbb{D}}_R) \subset \mathbb{D}_K$. Now, convergence in \mathscr{E} is equivalent to the uniform convergence in any circle of finite radius. Let $\{f_n\}$ be a sequence in \mathscr{E} s.t $f_n \to 0$. Then for each $\varepsilon > 0$, there exists $n_0 \in N$ such that $M(K, f_n) < \varepsilon \cdot \frac{K_0^2}{K}$ for $n \ge n_0$, where $K_0 = K - M(K, \varphi)$.

From Lemma 1, we have

$$|f_n'(\varphi(z))| \leq \frac{M(K,f_n)K}{(K-|\varphi(z)|)^2} \leq \frac{M(K,f_n)K}{(K-M(K,\varphi))^2} < \varepsilon, \quad \forall z \in \mathbb{D}_R, n \geq n_0.$$

Therefore

 $C_{\varphi}Df_n = f'_n o \varphi \to 0 \ as \ n \to \infty$

This proves that the operator $C_{\varphi}D$ is continuous.

Theorem 2. Let $T \in C(\mathscr{E})$. Then T is a generalized composition operator of the type $C_{\varphi}D$ for some entire function $\varphi : \mathbb{C} \to \mathbb{C}$ iff

$$Te_n = n \left[T \frac{e_2}{2} \right]^{n-1}.$$

Proof. Suppose, there exists an entire function $\varphi : \mathbb{C} \to \mathbb{C}$ such that $T = C_{\varphi}D$. Now

$$Te_n = C_{\varphi} De_n = e'_n o\varphi = n\varphi^{n-1} = n \left[e_1 o\varphi \right]^{n-1} = n \left[C_{\varphi} D\frac{e_2}{2} \right]^{n-1} = n \left[T(\frac{e_2}{2}) \right]^{n-1}, \quad \forall \ n \in \mathbb{N}$$

Conversely, assume that $Te_n = n[T(\frac{e_2}{2})]^{n-1}$.

Setting $T(\frac{e_2}{2}) = \varphi$, then φ is an entire function and so $C_{\varphi}D$ is a generalized composition operator. Now

$$Tf = T\left[\sum_{n=0}^{\infty} \hat{f}_n e_n\right] = \sum_{n=0}^{\infty} \hat{f}_n Te_n = \sum_{n=0}^{\infty} \hat{f}_n \cdot n\left[T\left(\frac{e_2}{2}\right)\right]^{n-1} = \sum_{n=0}^{\infty} \hat{f}_n \cdot n\varphi^{n-1} = \sum_{n=0}^{\infty} \hat{f}_n \cdot e'_n o\varphi = \sum_{n=0}^{\infty} \hat{f}_n \cdot C_\varphi De_n$$
$$= C_\varphi D\left[\sum_{n=0}^{\infty} \hat{f}_n e_n\right] = C_\varphi Df, \quad \forall \ f \in \mathscr{E}$$

Therefore, $T = C_{\varphi}D$ and so *T* is a generalized composition operator.

Theorem 3. Let $T \in C(\mathscr{E})$. Then T is generalized composition operator of the type $C_{\varphi}D$ iff $T^*A \subset B$, where $A = \{E_z : z \in \mathbb{C}\}$ and $B = \{E_z o D : z \in \mathbb{C}\}$

Proof. Firstly, suppose that T be a generalized composition operator. Then \exists an entire function $\varphi : \mathbb{C} \to \mathbb{C}$ such that $T = C_{\varphi}D$. Now, for $z \in \mathbb{C}$, $E_z \in \mathscr{E}^*$, we have

$$\begin{aligned} (T^{\star}E_z)f &= E_z(Tf) = E_z(C_{\varphi}Df) = E_z(f'o\varphi) = (f'o\varphi)(z) = f'(\varphi(z)) = E_{\varphi(z)}f' = (E_{\varphi(z)}oD)f, \text{ for all } f \in \mathscr{E} \text{ and } z \in \mathbb{C}, \\ &\Rightarrow T^{\star}E_zf = (E_{\varphi(z)}oD)f = (E_woD)f, \text{ where } \varphi : \mathbb{C} \to \mathbb{C} \text{ is defined by } \varphi(z) = w. \end{aligned}$$

Hence $T^*E_z = E_w oD$, for some $w \in \mathbb{C}$.

 $\therefore T^*A \subset B.$

173

Conversely, suppose that $T^*A \subset B$, where $A = \{E_z : z \in \mathbb{C}\}$ and $B = \{E_z o D : z \in \mathbb{C}\}$. Now for $f \in \mathscr{E}$ and $z \in \mathbb{C}$, we have

$$(Tf)(z) = E_z(Tf) = (T^*E_z)f = (E_w oD)f$$
 for some $w \in \mathbb{C}$

Now define $\varphi : \mathbb{C} \to \mathbb{C}$ as $\varphi(z) = w$. Then

$$(Tf)(z)E_{\varphi(z)}f' = f'(\varphi(z)) = (C_{\varphi}Df)(z)$$

This implies that $T = C_{\varphi}D$. Hence T is a generalized composition operator.

Theorem 4. Let $T = C_{\varphi}D \in C(\mathscr{E})$. Then $T^* : \mathscr{E}^* \to \mathscr{E}^*$ is a generalized composition operator if $\varphi(z) = \alpha z$.

Proof. Let $F \in \mathscr{E}^{\star}$, $f \in \mathscr{E}$ and $\varphi(z) = \alpha z$. Define $\psi : \mathbb{C} \to \mathbb{C}$ by $\psi(z) = \alpha z$. Then

$$F(z) = \sum_{n=0}^{\infty} F_n z^n, \quad f(z) = \sum_{n=0}^{\infty} \hat{f}_n z^n.$$

Therefore

$$F'(z) = \sum_{n=1}^{\infty} nF_n z^{n-1}, \quad f'(z) = \sum_{n=1}^{\infty} n\hat{f}_n z^{n-1}.$$

Now

$$(f'o\varphi)(z) = \sum_{n=0}^{\infty} (\widehat{f'o\varphi})(n) \cdot z^n = \sum_{n=1}^{\infty} (\widehat{f'o\varphi})(n-1) z^{n-1}$$
(2)

and

$$(f'o\varphi)(z) = f'(\varphi(z)) = \sum_{n=1}^{\infty} n\hat{f}_n(\varphi(z))^{n-1} = \sum_{n=1}^{\infty} n\hat{f}_n \alpha^{n-1} z^{n-1}.$$
(3)

From (1) and (2), we get

$$\widehat{f'o\varphi}(n-1) = n\widehat{f}_n\alpha^{n-1} = nz^{n-1}\alpha^{n-1} \quad \text{where} \quad \widehat{f}_n = z^{n-1}.$$

Also

$$F'(\psi(z)) = \sum_{n=1}^{\infty} nF_n(\psi(z))^{n-1} = \sum_{n=1}^{\infty} nF_n \alpha^{n-1} z^{n-1}.$$

Now

$$(C_{\varphi}D^{\star}F)(f) = F[C_{\varphi}Df] = F(f'o\varphi) = \sum_{n=0}^{\infty} F_n(f'o\varphi)(n)$$
$$= F_0(f'o\varphi)(0) + \sum_{n=1}^{\infty} F_n(f'o\varphi)(n-1) \quad [\because F_0(f'o\varphi)(0) = 0]$$
$$= \sum_{n=1}^{\infty} nF_n \cdot \hat{f}_n \alpha^{n-1} = F'(\psi(f)) = (C_{\psi}DF)(f).$$

Therefore $C_{\varphi}D^{\star} = C_{\psi}D$ for some entire function ψ .

(

© 2019 BISKA Bilisim Technology

3 Boundedness of the operator DC_{φ} .

In this section, we characterize the boundedness of the generalized composition operators DC_{φ} on the space \mathscr{E} of entire functions.

Theorem 5. Let $\varphi : \mathbb{C} \to \mathbb{C}$ be a mapping such that φ' is bounded and $D : \mathscr{E} \to \mathscr{E}$ be the differentiation operator. Then the generalized composition operator $DC_{\varphi} : \mathscr{E} \to \mathscr{E}$ is continuous iff φ' is constant.

Proof. Suppose that the operator $DC_{\varphi} : \mathscr{E} \to \mathscr{E}$ is continuous. Then $DC_{\varphi}f = (fo\varphi)'$ is entire for all $f \in \mathscr{E}$.

In particular for $f = z \in \mathscr{E}$, we have $DC_{\varphi}f = f'(\varphi).\varphi' = 1.\varphi' = \varphi'$ is an entire function. Therefore φ' being a bounded entire function must be constant.

Conversely, suppose that φ' is constant. Then φ is differentiable and hence continuous. To prove that DC_{φ} is continuous in \mathscr{E} , it is enough to prove that DC_{φ} is continuous at origin. Let R > 0 be given, then $\overline{\mathbb{D}}_R$ is a compact subset of \mathbb{C} , but φ is a continuous map, therefore $\varphi(\overline{\mathbb{D}}_R)$ is compact subset of \mathbb{C} and so we can find $K > M(R, \varphi)$ such that $\varphi(\overline{\mathbb{D}}_R) \subset \mathbb{D}_K$. Now, convergence in \mathscr{E} is equivalent to the uniform convergence in any circle of finite radius.

Let $\{f_n\}$ be a sequence in \mathscr{E} s.t $f_n \to 0$. Then for each $\varepsilon > 0$, there exists $n_0 \in N$ such that $M(K, f_n) < \varepsilon \cdot \frac{K_0^2}{K|\varphi'(z)|}$, where $K_0 = K - M(K, \varphi)$ for $n \ge n_0$.

From Lemma (1), we have

$$|f_n'(\boldsymbol{\varphi}(z)).\boldsymbol{\varphi}'(z)| = |f_n'(\boldsymbol{\varphi}(z))|.|\boldsymbol{\varphi}'(z)| \le \frac{KM(K,f_n).|\boldsymbol{\varphi}'(z)|}{(K-|\boldsymbol{\varphi}(z)|)^2} < \boldsymbol{\varepsilon}, \quad \forall \ z \in \mathbb{D}_R, \ n \ge n_0.$$

Hence $DC_{\varphi}f_n = (f_n o \varphi)' \to 0$ as $n \to \infty$.

Theorem 6. Let $T \in C(\mathscr{E})$. Then T be a generalized composition operator of type DC_{φ} iff

$$Te_n = Te_1^n \text{ for } n = 0, 1, 2, 3...$$

Proof. Let T be a generalized composition operator of the type DC_{φ} . Then \exists an entire function $\varphi : \mathbb{C} \to \mathbb{C}$ such that $T = DC_{\varphi}$. Now

$$Te_n = DC_{\varphi}e_n = (e_n o\varphi)' = [\varphi^n]' = [(e_1 o\varphi)^n]' = [e_1^n o\varphi]' = DC_{\varphi}e_1^n = Te_1^n \text{ for } n = 0, 1, 2, 3, \dots$$

Conversely, suppose that $Te_n = Te_1^n$. Then set $Te_1^n = (\varphi^n)'$. Clearly φ is an entire function. Now

$$Tf = T\left[\sum_{n=0}^{\infty} \hat{f}_n e_n\right] = \sum_{n=0}^{\infty} \hat{f}_n Te_n = \sum_{n=0}^{\infty} \hat{f}_n Te_1^n = \sum_{n=0}^{\infty} \hat{f}_n (\varphi^n)' = \sum_{n=0}^{\infty} \hat{f}_n (e_n o\varphi)' = \sum_{n=0}^{\infty} \hat{f}_n DC_{\varphi} e_n$$
$$= DC_{\varphi}\left[\sum_{n=0}^{\infty} \hat{f}_n e_n\right] = (DC_{\varphi})f, \quad for \ every \ f \in \mathscr{E}.$$

Therefore $T = DC_{\varphi}$ and so *T* be generalized composition operator.

Theorem 7. Let $T \in C(\mathscr{E})$. Then T be a generalized composition operator of the type DC_{φ} iff $T^*A \subset B$, where $A = \{E_z : z \in \mathbb{C}\}$ and $B = \{E_w DC_{\varphi} : w \in \mathbb{C} \text{ and } \varphi \text{ an entire function}\}$

Proof. First suppose that $T \in C(\mathscr{E})$ be a generalized composition operator. Then \exists an entire function $\varphi : \mathbb{C} \to \mathbb{C}$ such that $T = DC_{\varphi}$. Now

$$(T^{\star}E_z)f = E_z(Tf) = E_z(DC_{\varphi}f) = E_z(fo\varphi)' = (E_zD)(fo\varphi) = (E_zD)(C_{\varphi}f) = (E_zDC_{\varphi})f.$$

Thus $T^*A \subset B$.

Conversely, suppose that $T^*A \subset B$. Now for $f \in \mathscr{E}$ and $z \in \mathbb{C}$, we have

$$(Tf)(z) = E_z(Tf) = T^*(E_z f) = (T^* E_z)(f) = (E_w DC_{\varphi_1})(f),$$

where $w \in \mathbb{C}$ and φ_1 an entire function. Now define $\varphi_2 : \mathbb{C} \to \mathbb{C}$ as $\varphi_2(z) = w$. Then

$$\begin{aligned} (Tf)(z) = & (E_{\varphi_2(z)}DC_{\varphi_1})(f) = E_{\varphi_2(z)}(DC_{\varphi_1}f) = (DC_{\varphi_1}f)(\varphi_2(z)) = (Dfo\varphi_1o\varphi_2)(z) \\ = & D(fo\varphi)(z), \text{ where } \varphi = \varphi_1o\varphi_2 \text{ is an entire function.} \\ = & (DC_{\varphi}f)(z) \Rightarrow T = DC_{\varphi} \end{aligned}$$

This completes the proof.

Theorem 8. Let $T = DC_{\varphi} \in C(\mathscr{E})$. Then $T^* : \mathscr{E}^* \to \mathscr{E}^*$ be a generalized composition operator if $\varphi(z) = z$.

Proof. Let $\varphi : \mathbb{C} \to \mathbb{C}$ is defined by $\varphi(z) = z$. Now, let $F \in \mathscr{E}^*$, $f \in \mathscr{E}$. Then we have

$$F(z) = \sum_{n=0}^{\infty} F_n z^n, \quad f(z) = \sum_{n=0}^{\infty} \hat{f}_n z^n, \quad F'(z) = \sum_{n=1}^{\infty} n F_n z^{n-1}, \quad f'(z) = \sum_{n=1}^{\infty} n \hat{f}_n z^{n-1}.$$

Define $\psi : \mathbb{C} \to \mathbb{C}$ by $\psi(z) = z$. Then clearly ψ is an entire function. Now

$$(f \circ \varphi)'(z) = f'(\varphi(z))\varphi'(z) = \sum_{n=1}^{\infty} n\hat{f}_n(\varphi(z))^{n-1} 1 = \sum_{n=1}^{\infty} n\hat{f}_n z^{n-1} \quad and$$
$$(f \circ \varphi)'(z) = \sum_{n=1}^{\infty} (\widehat{f \circ \varphi})'(n) z^n = \sum_{n=1}^{\infty} (\widehat{f \circ \varphi})'(n-1) z^{n-1}.$$

Since $(f \circ \phi)'(z)$ has a unique representation. Therefore, we have

$$(\widehat{fo\varphi})'(n-1) = n\widehat{f}_n = nz^{n-1}, \quad where \quad \widehat{f}_n = z^{n-1}.$$

Also, we have

$$F'(\psi(z))\psi'(z) = \sum_{n=1}^{\infty} nF_n(\psi(z))^{n-1} = \sum_{n=1}^{\infty} nF_n z^{n-1}.$$

Now

$$(T^*F)(f) = F(Tf) = F(DC_{\varphi}f) = F(fo\varphi)' = \sum_{n=0}^{\infty} (\widehat{fo\varphi})'(n)F_n = \sum_{n=1}^{\infty} (\widehat{fo\varphi})'(n-1)F_n = \sum_{n=1}^{\infty} n.F_n.z^{n-1} = F'(\psi(z))\psi'(z) = (DC_{\varphi}F)(f) = (TF)(f).$$

Therefore, $T^{\star} = T$ and so T^{\star} be a generalized composition operator.

© 2019 BISKA Bilisim Technology

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

References

- [1] Boyd D. M., Composition operators on $H^p(A)$, Pacific J. Math. 62 (1976), 55-60.
- [2] Conway J. B., A course in functional analysis, Springer Verlag, 1985.
- [3] Cowen C. C., Composition operator on H^2 , J. Oper. Theory 9 (1983), 77-106.
- [4] Cowen C. C. and MacCluear B., Composition operators on spaces of analytic functions, Stud. Adv. Math., CRC Press. Boca Ration, 1995.
- [5] Duren P., Theory of H^p spaces, Academic Press New York, 1973.
- [6] Garnett J. B., Bounded analytic functions, Revised first edition. Graduate Texts in Mathematics, 236.Springer, New York, 2007.
- [7] Hibschweiler R. A. and Portnoy N., Composition Operators followed by differentiation between Bergman and Hardy spaces, Rocky Mountain J.Math.35, 843-855 (2005).
- [8] Iyer V. G., On the space of integral functions-I, J. Indian Math. Soc. 12 (1948).
- [9] Iyer V. G., On the space of integral functions-II, Quart J. Math. Oxford Ser (2) Vol. I (1950), 86-96.
- [10] Iyer V. G., On the space of integral functions-Ill, Proc. Amer. Math. Soc. Vol. 3 (1952), 874-883.
- [11] Iyer V. G., On the space of integral functions-IV, Proc. Amer. Math. Soc. 7 (1956), 644-649.
- [12] Kumar Pawan and Sharma S. D., Weighted composition operators from weighted Bergman-Nevanlinna spaces to zygmund spaces, Int.J.Mod. Math.Sci.3(1),(2012),31-54.
- [13] Kumar Pawan and Sharma S. D., Generalized composition operators from weighted Bergman-Nevanlinna spaces to zygmund spaces, Int.J.Mod. Math.Sci.1(3),(2012),160-162.
- [14] Kumar Pawan and Abbas Zaheer, Product of multiplication and composition operators on weighted Hardy spaces, S.S International Journal of Pure and Applied Mathematics Vol.1, Issue 2,2015.
- [15] Kumar Pawan and Abbas Zaheer, Composition operator between weighted Hardy type spaces, International journal of pure and Applied mathematics Vol.106,No.3,2016.
- [16] Kumar Pawan and Abbas Zaheer, Product of multiplication composition and differentation operators on weighted Hadry space, International Journal of computational and applied mathematics, Vol.12, No.3, 2017.
- [17] Li S. and Stevic S., Composition followed by differentiation between H^{∞} and α -Bloch spaces, Houston J. Math. 35(2009), 327-340.
- [18] Ohno S., Product of composition and differentiation between Hardy spaces, Bull Austral Math. Soc.73(2006), 235-243.
- [19] Schwartz H. J., Composition operators on H^p , Thesis University of Toledo, 1969.
- [20] Shapiro J. H., Composition operators and classical function theory, Springer-Verlag New York 1993.
- [21] Singh R. K. and Komal B. S., Composition operators on lp and its adjoint, Proc. Amer. Math. Soc. 70 (1978), 21-25.
- [22] Shield A. L., Weighted shift operator and analytic function theory, in topic in operator theory, Math surveys, No 13, Amer. Math. soc. Providence 1947.
- [23] Sharma S. D. and Kumar R., Substitution Operators on Hardy -Orlicz spaces, Proc.Nat.Acad.Sci.India Sect.A61 (1991),535-541.
- [24] Sharma A. K., Product of composition Multiplication and differentiation between Bergman and Bloch type spaces, Turkish. J. Math. 34 (2010), 117.
- [25] Sharma A. K., Volterra composition operators between Bergman Nevanlinna and Bloch-type spaces, Demonstratio Mathematica VolXLII No. 3 2009.
- [26] Sharma A. K. and Sharma S. D., Weighted composition operators between Bergman type spaces, Comm. Korean Math. Soc. 21 No. 3(2006), 465-474.

178 **BISKA** P. Kumar and M. Arief: Product of composition and differentiation operators on a space of entire functions

- [27] Swantan D. W., Composition operators on $H^p(D)$, Ph. D. Thesis North western University, 1974.
- [28] Zhu K., Operator theory in function spaces, Marcel-Dekker, New York 1990.
- [29] Zhu K., Spaces of holomorphic functions in the unit ball. Graduate Text in Mathematics, vol.226. Springer, New York (2005).
- [30] Zhu X., Weighted composition operators from area Nevanlinna spaces into Bloch spaces, Applied Mathematics and computation, 215 (2010), 4340-4346.