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Abstract: The main object of the present paper is to find conditions ona, b, c andλ such that the operatorHλ
a,b,c f (z) maps certain sub

classes of analytic functions in to some other classes of functions that have geometric properties related to certain conic regions.
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1 Introduction

Let A denote the class of functionsf (z) of the form

f (z) = z+
∞

∑
n=2

anzn, (1)

which are analytic in the open discU = {z: |z|< 1} and S denotes the sub classes of the function ofA, which are univalent

in U . A function f ∈ A is called star like of orderα, denotesf ∈ S∗(α), if

Re

{

z
f ′(z)
f (z)

}

> α,z∈U.

A function f ∈ A is called convex of orderα, if and only if,

Re

{

1+ z
f ′′(z)
f ′(z)

}

≥ α,z∈U.

The class of all convex functions of orderα, are denoted byK(α). The classesK(α) andS∗(α), where introduced and

studied by Robertson[13]. Forα = 0, the classesS∗(α) andK(α) reduced to the classesS∗ respectively.

Let S∗(λ > 0) denotes the class of functions in S such that
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A sufficient condition forf ∈A of the form (1) to beS∗1⊂S∗, the class of starlike functions inU , is given by∑∞
n=2n|an| ≤ 1,

and is proved by many authors for example (see [6]). A particular extension of this, due to[16] is

∞

∑
n=2

(n+λ −1)|an| ≤ 1⇒ f ∈ S∗λ . (2)

We further note that whenf (z) is of the form (2), the condition (2) is both necessary and sufficient forf ∈ S∗λ .

Definition 1. [4] Let f ∈ A, 0≤ k< ∞ and0≤ α < 1. Then f∈ k−UCV(α) if and only if

Re

{

1+ z
f ′′(z)
f ′(z)

}

≥

∣

∣

∣

∣

z
f ′′(z)
f ′(z)

∣

∣

∣

∣

+α. (3)

This class generalizes various other classes which are worthy of mention here. The classk−UCV(0) called the

k-Uniformly convex is to[8] and has a geometric characterization given in the followingway.

Let 0≤ k < ∞, the functionf ∈ A is said to to be k-Uniformly convex inU if f is convex inU and the image of every

circular arcγ contained inU ,with centerξ where|ξ | ≤ k, in convex.

The classUCV(0) =UCV, [5] describes geometrically the domain of values of the expressionP(z) = {1+z f ′′(z)
f ′(z) ,z∈U}

as f ∈UCV if and only if P is the conic region

Ω =
{

w∈C : (Imw)2 < 2Rew−1
}

.

Using the Alexander transformation, we can obtain the classk − Sp(0) in the following way if

f ∈ k−UCV(α)⇔ z f′ ∈ k−Sp(α).

The classesUCV andSP : (1−Sp(0)) are unified and studied using a certain fractional calculus operator in[16], we refer

the reader to[9,7,14] and references there in for some interesting results in these directions.

Definition 2. The Gaussian Hypergeometric function

2F1(a,b;c;z) =
∞

∑
n=0

(a)n(b)n

(c)n

zn

n!
, |z|< 1 (4)

where(a)0 = 1, (a)n+1 = (a+n)(a)n, n= 0,1,2, · · · has appeared in the literature in many situations and contributed

to various including conformal mappings, quasi conformal theory, and continued fractions[3,4]. Here a,b,c are complex

numbers and{C 6= 0,−1,−2,−3, · · ·}. In the case of a= −k, or b= −k, where J= 0,1,2, · · · ,and K≤ m in this case

F(a,b;c;z) becomes a polynomials of degree K, we refer to a hypergeometric polynomials. The hypergeometric functions

satisfies numbers and we remark that the behavior of the hypergeometric functions F(a,b;c;z) near z=1, is classified in

to three case according as Re(c−b−a) is positive, zero or negative. The case c= a+b is called zero balanced case and

hypergeometric Re(c)≤ Re(a+b) as the asymptotic behavior in two case a+b= c and a+b> c has been refined in[1]

and[12] respectively.

If Re(c−a−b)> 0 (see [18]), then

F(a,b;c;1) =
Γ (c−a−b)Γ (c)
Γ (c−a)Γ (c−b)

. (5)
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In this paper, we introduce the operatorHλ
a,b;c f (z) such that

Hλ
a,b;c f (z) = λzF(a,b;c;z)+ (1−λ )nz[F(a,b;c;z)]∗ f (z) (6)

= λ

[

z+
∞

∑
n=2

(a)n−1(b)n−1

(c)n−1(n−1)!
zn

]

+(1−λ )n

[

z+
∞

∑
n=2

(a)n−1(b)n−1

(c)n−1(n−1)!
zn

]

∗ f (z) (7)

=

[

z+
∞

∑
n=2

(a)n−1(b)n−1

(c)n−1(n−1)!
zn

]

{λ +n(1−λ )}∗ f (z) (8)

where

An =
(a)n−1(b)n−1

(c)n−1(n−1)!
{λ +n(1−λ )}an. (9)

2 Main results and preliminary lemmas

We state a few results obtained in the literature by various author which are useful in proving our results.

Let τ = eiη cosη , where− π
2 < η < π

2 , then we havePτ
γ (β ) = Pγ(β ), which can be written as the following simple

analytic characterization:

Pγ(β ) =
{

f ∈ A : Re

[

eiφ
(

(1− γ)
f (z)
z

+ γ f ′(z)−β
)]

> 0,φ ∈ R,z∈U

}

Throughout this paper byPγ(β ), we meanPτ
β with τ = eiη cosη where− π

2 < η < π
2 we need the following sufficient

condition on the sufficient of the classk−UCV(α).

Lemma 1. [4] A function f∈ A is in k−UCV(α) if it satisfied the condition

∞

∑
n=2

n[n(1+ k)− (k+α)] |an| ≤ 1−α. (10)

It was also found that the condition (10) is necessary, if f∈ A is of the form

f (z) = z−
∞

∑
n=2

anzn,an ≥ 0. (11)

Further more, the condition
∞

∑
n=2

[n(1+ k)− (k+α)] |an| ≤ 1−α.

Is sufficient for f to be in k−Sp(α) and turns out to be also necessary if f∈ A is of the form (10).

Theorem 1. Let f ∈ A be defined as in (1). Suppose that a,b ∈ C/{0}, C > |a|+ |b| are such that for k≥ 0, λ ≥ 0,

0≤ α < 1

Γ (c−|a|− |b|)Γ (c)
Γ (c−|a|)Γ (c−|b|)

[

{(1+ k)(2−λ )+ (1−λ )(1−α)}
|ab|

(c−|a|− |b|−1)

+(1−α)+ (1+ k)(1−λ )
|ab|(|a|+1)(|b|+1)

(c−|a|− |b|−2)(c−|a|− |b|−1)

]

≤ (1−α)

{

1+
γ

2cosη(1−β )

}

then for f∈ pγ(β ), 0≤ α ≤ 1 and0≤ β ≤ 1, Hλ
a,b,c f (z) ∈ k−UCV(α).
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Proof.Let f ∈ A be defined as in theorem (10). From a result given in[18], we have

f (z) = z+
∞

∑
n=2

anzn ∈ Pγ(β )⇒ |an| ≤
2|τ| (1−β )
1+ γ(n−1)

. (12)

Considering (10), we need to prove that iff ∈ A satisfies (11), then

∞

∑
n=2

n{n(1+ k)− (k+α)}|An| ≤ 1−α,

where

An =
(a)n−1(b)n−1

(c)n−1(n−1)!
{λ +n(1−λ )}an,n≥ 2.

∞

∑
n=2

n{n(1+ k)− (k+α)}
(|a|)n−1(|b|)n−1

(c)n−1(n−1)!
{λ +n(1−λ )}

2cosη(1−β )
1+ γ(n−1)

≤ 1−α.

Since 1+ γ(n−1)≥ γn andn≥ 2

≤
∞

∑
n=2

n{n(1+ k)− (k+α)}
(|a|)n−1(|b|)n−1

(c)n−1(n−1)!
{λ +n(1−λ )}

γn
≤

(1−α)

2cosη(1−β )

=
∞

∑
n=2

{n(1+ k)− (k+α)}
(|a|)n−1(|b|)n−1

(c)n−1(n−1)!
{λ +n(1−λ )}≤

γ(1−α)

2cosη(1−β )
.

Replacingn by (n+2),we get

∞

∑
n=0

{(n+2)(1+ k)− (k+α)}
(|a|)n+1(|b|)n+1

(c)n+1(n+1)!
{λ +(n+2)(1−λ )}.

Using

{(n+2)(1+ k)− (k+α)}= {(n+1)(1+ k)+ (1−α)}

=
∞

∑
n=0

{(n+1)(1+ k)+ (1−α)}
(|a|)n+1(|b|)n+1

(c)n+1(n+1)!
{λ +(n+2)(1−λ )}

= (1+ k)
∞

∑
n=0

(n+1)
(|a|)n+1(|b|)n+1

(c)n+1(n+1)!
{λ +(n+2)(1−λ )}+(1−α)

∞

∑
n=0

(|a|)n+1(|b|)n+1

(c)n+1(n+1)!
{λ +(n+2)(1−λ )}

= λ (1+ k)
∞

∑
n=0

(|a|)n+1(|b|)n+1

(c)n+1n!
+(1−λ )(1+ k)

∞

∑
n=0

(n+2)
(|a|)n+1(|b|)n+1

(c)n+1n!

+λ (1−α)
∞

∑
n=0

(|a|)n+1(|b|)n+1

(c)n+1(n+1)!
+(1−λ )(1−α)

∞

∑
n=0

(n+2)
(|a|)n+1(|b|)n+1

(c)n+1(n+1)!

= λ (1+ k)
|ab|
c

∞

∑
n=1

(|a|+1)n(|b|+1)n

(c+1)nn!
+(1−λ )(1+ k)

∞

∑
n=0

(|a|)n+1(|b|)n+1

(c)n+1(n−1)!

+2(1−λ )(1+ k)
|ab|
c

∞

∑
n=1

(|a|+1)n(|b|+1)n

(c+1)nn!
+(1−λ )(1−α)

|ab|
c

∞

∑
n=1

(|a|+1)n(|b|+1)n

(c+1)n(n)!

+(1−λ )(1−α)
∞

∑
n=0

(|a|)n+1(|b|)n+1

(c)n+1(n+1)!
+λ (1−α)

∞

∑
n=1

(|a|)n(|b|)n

(c)nn!

= {λ (1+ k)+2(1−λ )(1+ k)+ (1−λ)(1−α)}
|ab|
c

∞

∑
n=1

(|a|+1)n(|b|+1)n

(c+1)nn!
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+

{

(1−λ )(1+ k)
(|ab|)(|a|+1)(|b|+1)

(c)(c+1)

} ∞

∑
n=2

(|a|+2)n−1(|b|+2)n−1

(c+2)n−1n−1!

+ {λ (1−α)+ (1−λ )(1−α)}
∞

∑
n=1

(|a|)n(|b|)n

(c)nn!

= {(1+ k)(2−λ )+ (1−λ)(1−α)}|ab|
Γ c−|a|− |b|−1Γ c

Γ c−|a|Γ c−|b|

+ {(1−λ )(1+ k)(|ab|)(|a|+1)(|b|+1)}

×
Γ c−|a|− |b|−2Γ c

Γ c−|a|Γ c−|b|
+(1−α)

{

Γ c−|a|− |b|Γ c
Γ c−|a|Γ c−|b|

−1

}

=
Γ (c−|a|− |b|)Γ (c)
Γ (c−|a|)Γ (c−|b|)

[

{(1+ k)(2−λ )+ (1−λ )(1−α)}
|ab|

(c−|a|− |b|−1)

+(1−α)+ (1+ k)(1−λ )
|ab|(|a|+1)(|b|+1)

(c−|a|− |b|−2)(c−|a|− |b|−1)

]

≤ (1−α)

{

1+
γ

2cosη(1−β )

}

.

Remark.Forλ = 1 in theorem 2.1, the result reduces to the known result of Swaminathan [15].

Corollary 1. Let f ∈ A be defined as in (1). Suppose that a,b∈C\ {0}, C> |a|+ |b| are such that for k≥ 0, 0≤ α < 1,

Γ (c−|a|− |b|−1)Γ (c)
Γ (c−|a|)Γ (c−|b|)

{|ab|(1+ k)+ (1−α)(c−|a|− |b|−1)} ≤ (1−α)

{

1+
γ

2cosη(1−β )

}

,

then for f∈ Pγ(β ), 0≤ γ ≤ 1 and0≤ β < 1, Hλ
a,b,c f (z) ∈ k−UCV(α).

Theorem 2.Let a,b> 0 or a∈C/{0} with a= b. Further, let|a| 6= 0,|b| 6= 0 and0 6= c≥ {0,a+b−1} be such that

Γ (c−|a|− |b|−1)Γ (c)
Γ (c−|a|)Γ (c−|b|)

×

[

{1+(µ −1)(1−λ )}(c−|a|− |b|−1)+ (1−λ )(|ab|)+
λ (µ −1)

(|a|−1)(|b|−1)

]

≤

(

µ(1+
γ

2cosη(1−β )
)+

λ (µ −1)(c−1)
(|a|−1)(|b|−1)

)

.

Assume thatf ∈ A is defined in (1). Then for f ∈ Pγ(β ), 0≤ γ < 1 and 0≤ β < 1 andλ ≥ 0, µ ≥ 0, Hλ
a,b,c f (z) ∈ S∗λ .

Proof.Let f (z) be of the form (1). In view of (2.2), it suffices to prove that

∞

∑
n=2

(n+ µ −1) |An| ≤ µ

where

An =
(a)n−1(b)n−1

(c)n−1(n−1)!
{λ +n(1−λ )}an, n≥ 2.

© 2019 BISKA Bilisim Technology
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Since f ∈ Pγ(β ), using(2.2) and 1+ γ(n−1)≥ γn we need only to show that

T =
∞

∑
n=2

(n+ µ −1)
(|a|)n−1(|b|)n−1

(c)n−1(n−1)!
{λ +n(1−λ )}

2cosη(1−β )
1+ γ(n−1)

≤ µ

≤
∞

∑
n=2

(n+ µ −1)
(|a|)n−1(|b|)n−1

(c)n−1(n−1)!
{λ +n(1−λ )}

1
γn

≤
µ

2cosη(1−β )

=
∞

∑
n=2

(n+ µ −1)
(|a|)n−1(|b|)n−1

(c)n−1(n−1)!
{λ +n(1−λ )}

1
n
≤

γµ
2cosη(1−β )

=
∞

∑
n=2

(|a|)n−1(|b|)n−1

(c)n−1(n−1)!
{λ +n(1−λ )}+(µ −1)

∞

∑
n=2

(|a|)n−1(|b|)n−1

(c)n−1n!
{λ +n(1−λ )}

= λ
∞

∑
n=2

(|a|)n−1(|b|)n−1

(c)n−1(n−1)!
+(1−λ )

∞

∑
n=2

(n−1+1)(|a|)n−1(|b|)n−1

(c)n−1(n−1)!

+(µ −1)λ
∞

∑
n=2

(|a|)n−1(|b|)n−1

(c)n−1n!
+(1−λ )(µ −1)

∞

∑
n=2

(|a|)n−1(|b|)n−1

(c)n−1(n)!

= λ
∞

∑
n=1

(|a|)n(|b|)n

(c)nn!
+(1−λ )

∞

∑
n=2

(|a|)n−1(|b|)n−1

(c)n−1(n−2)!
+(1−λ )

∞

∑
n=1

(|a|)n(|b|)n

(c)nn!

+(µ −1)λ
(c−1)

(|a|−1)(|b|−1)

∞

∑
n=2

(|a|−1)n(|b|−1)n

(c−1)nn!
+(1−λ )(µ −1)

∞

∑
n=1

(|a|)n(|b|)n

(c)nn!

= {λ +(1−λ )(µ −1)+1−λ}
∞

∑
n=1

(|a|)n(|b|)n

(c)nn!

+(1−λ )
|ab|
c

∞

∑
n=1

(|a|+1)n−1(|b|+1)n−1

(c+1)n−1(n−1)!
+(µ −1)λ

(c−1)
(|a|−1)(|b|−1)

∞

∑
n=2

(|a|−1)n(|b|−1)n

(c−1)nn!

= {1+(µ −1)(1−λ )}
{

Γ (c−|a|− |b|)Γ (c)
Γ (c−|a|)Γ (c−|b|)

−1

}

+(|ab|)(1−λ )
Γ (c−|a|− |b|−1)Γ (c)

Γ (c−|a|)Γ (c−|b|)
+ (µ −1)λ

(c−1)
(|a|−1)(|b|−1)

×

{

Γ (c−|a|− |b|−1)Γ (c−1)
Γ (c−|a|)Γ (c−|b|)

−1−
(|a|−1)(|b|−1)

c−1

}

=
Γ (c−|a|− |b|−1)Γ (c)

Γ (c−|a|)Γ (c−|b|)
×

[

{1+(µ −1)(1−λ )}(c−|a|− |b|−1)+ (1−λ )(|ab|)+
λ (µ −1)

(|a|−1)(|b|−1)

]

≤

(

µ(1+
γ

2cosη(1−β )
)+

λ (µ −1)(c−1)
(|a|−1)(|b|−1)

)

.

Remark.Settingλ = 1 in theorem (11), the result reduces to the known result of Swaminathan [15].

Corollary 2. Let a,b> 0 or a∈C\ {0} with a= b. Further, let|a| 6= 0,|b| 6= 0 and0 6= c≥ {0,a+b−1} be such that

Γ (c−|a|− |b|−1)Γ (c)
Γ (c−|a|)Γ (c−|b|)

×

{

1+(µ −1)(c−|a|− |b|−1)+ (1−λ )(|ab|)+
λ (µ −1)

(|a|−1)(|b|−1)

}

≤

{

µ(1+
γ

2cosη(1−β )
)+

λ (µ −1)(c−1)
(|a|−1)(|b|−1)

}

.

Suppose that f∈ A is defined in (1). Then for F∈ Pγ(β ), 0≤ γ < 1, 0≤ β < 1 andλ ≥ 0, µ ≥ 0, Hλ
a,b,c( f )(z) ∈ S∗λ .
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Theorem 3.Let a,b> 0 and0 6= c≥ {0,a+b+2}. If for k ≥ 0, 0≤ α < 1

Γ (c−a−b)Γ c
Γ c−aΓ c−b

[

(1−α)+

{

(1+ k)(7−4λ )− (k+α)(3−2λ )
ab

(c−a−b−1)

}

+ {λ (1+ k)− (k+α)(1−λ )+6(1+k)(1−λ )}×
(a)2(b)2

(c−a−b−2)2
+(1+ k)(1−λ )

(a)3(b)3

(c−a−b−3)3

]

≤ 2(1−α).

Then Hλ
a,b,c f (z) maps f(z) ∈ S if the form (1) in yo k−Sp(α).

Proof.Using|an| ≤ n for f (z) ∈ Sand of the form (1). It is enough to show that

T =
∞

∑
n=2

{n(1+ k)− (k+α)}
(a)n−1(b)n−1

(c)n−1(n−1)!
{λ +n(1−λ )}|an| ≤ 1−α

≤
∞

∑
n=2

{

n2(1+ k)− (k+α)n
} (a)n−1(b)n−1

(c)n−1(n−1)!
{λ +n(1−λ )}

=
∞

∑
n=2

n2(1+ k)
(a)n−1(b)n−1

(c)n−1(n−1)!
{λ +n(1−λ )}− (k+α)

n(a)n−1(b)n−1

(c)n−1(n−1)!
{λ +n(1−λ )}

= λ (1+ k)
∞

∑
n=2

n2 (a)n−1(b)n−1

(c)n−1(n−1)!
+(1+ k)(1−λ )

∞

∑
n=2

n3 (a)n−1(b)n−1

(c)n−1(n−1)!

− (α + k)λ
∞

∑
n=2

n
(a)n−1(b)n−1

(c)n−1(n−1)!
− (α + k)(1−λ )

∞

∑
n=2

n2 (a)n−1(b)n−1

(c)n−1(n−1)!

= λ (1+ k)
∞

∑
n=1

(n+1)2 (a)n(b)n

(c)nn!
+(1+ k)(1−λ )

∞

∑
n=1

(n+1)3(a)n(b)n

(c)nn!

− (α + k)λ
∞

∑
n=2

(n+1)
(a)n(b)n

(c)nn!
− (α + k)(1−λ )

∞

∑
n=1

(n+1)2(a)n(b)n

(c)nn!

= {λ (1+ k)− (k+α)(1−λ )}
∞

∑
n=1

{n(n−1)+3n+1}
(a)n(b)n

(c)nn!

+(1+ k)(1−λ )
∞

∑
n=1

{n(n−1)(n−2)+6n(n−1)+7n+1}
(a)n(b)n

(c)nn!

− (α + k)λ
∞

∑
n=1

(a)n(b)n

(c)n(n−1)!
− (α + k)λ

∞

∑
n=1

(a)n(b)n

(c)nn!

= {λ (1+ k)− (k+α)(1−λ )}

{

∞

∑
n=1

(a)n(b)n

(c)n(n−2)!
+3

∞

∑
n=1

(a)n(b)n

(c)n(n−1)!
+

∞

∑
n=1

(a)n(b)n

(c)nn!

}

+(1+ k)(1−λ )

{

∞

∑
n=1

(a)n(b)n

(c)n(n−3)!
+6

∞

∑
n=1

(a)n(b)n

(c)n(n−2)!
+7

∞

∑
n=1

(a)n(b)n

(c)n(n−1)!
+

∞

∑
n=1

(a)n(b)n

(c)nn!

}

− (α + k)λ
∞

∑
n=1

(a)n(b)n

(c)n(n−1)!
− (α + k)λ

∞

∑
n=1

(a)n(b)n

(c)nn!

= (1−λ )(1+ k)
∞

∑
n=1

(a)n(b)n

(c)n(n−3)!
+ {λ (1+ k)− (k+α)(1−λ )+6(1+k)(1−λ )}

∞

∑
n=1

(a)n(b)n

(c)n(n−2)!

+ {3λ (1+ k)−3(k+α)(1−λ )+7(1+k)(1−λ )−λ (k+α)}
∞

∑
n=1

(a)n(b)n

(c)n(n−1)!

+ {(1+ k)λ − (k+α)(1−λ )+ (1+ k)(1−λ )− (k+α)λ}
∞

∑
n=1

(a)n(b)n

(c)nn!
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= (1+ k)(1−λ )(a)3(b)3
Γ (c−a−b−3)Γ (c)

Γ (c−a)Γ (c−b)
+ {λ (1+ k)− (k+α)(1−λ )+6(1+k)(1−λ)}

× (a)2(b)2
Γ (c−a−b−2)Γ c

Γ c−aΓc−b
+ {(1+ k)(7−4λ )− (k+α)(3−2λ )}

× (ab)
Γ (c−a−b−3)Γ c

Γ c−aΓc−b
+(1−α)

{

Γ (c−a−b)Γ c
Γ c−aΓ c−b

−1

}

=
Γ (c−a−b)Γ c
Γ c−aΓc−b

[

(1−α)+

{

(1+ k)(7−4λ )− (k+α)(3−2λ )
ab

(c−a−b−1)

}

+ {λ (1+ k)− (k+α)(1−λ )+6(1+k)(1−λ)}

×
(a)2(b)2

(c−a−b−2)2
+(1+ k)(1−λ )

(a)3(b)3

(c−a−b−3)3

]

≤ 2(1−α).

Remark.Forλ = 1 in theorem (12), the result reduces to the known result of Swaminathan [15].

Corollary 3. Let a,b> 0 and0 6= c≥ {0,a+b+2}. If for k ≥ 0, 0≤ α < 1,

Γ (c−a−b)Γ (c)
Γ (c−a)Γ (c−b)

[

(1−α)(k+α)(3−2k−α)×
ab

(c−a−b−1)
+ (1+ k)

(a)2(b)2

(c−a−b−2)2

]

≤ 2(1−α).

Then Hλ
a,b,c f (z) maps f(z) ∈ S of the form (1) in to k−Sp(α).

3 Concluding remarks

In this paper, we introduce the operatorHλ
a,b,c f (z) and find the conditionsa,b,c andλ . The operatorHλ

a,b,c f (z) maps

certain subclass of analytic functions into some other classes of functions. By mean of Theorem 1, we have derived some

(presumably) new operator as its special cases. It is noticed that, in a similar manner we can obtain various other useful

operator with the help of Theorem 2. Also, it is remarked thatif we replace the operator (6) (which is used to establish the

main results) by any other operator, then we get a number of new interesting results.
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