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1 Introduction

Non-Newtonian calculus was created by Katz and Grossman as an alternative to classic calculus between 1967-1970 [1].
The first arithmetic calculus is defined as geometric, harmonic and quadratic calculus. Grossman also studied some
properties of derivatives and integrals in non-Newtonian calculus [2]. Bashirov et. al. have recently studied some basic
properties of derivatives and integrals in multiplicativecalculus and gave the results with applications [3]. Later, Duyar,
Sağır and Oğur gave some basic topological properties of non- Newtonian calculus [4]. Recently, Duyar and Sağır [5]
introduced the concepts of the non-Newtonian measure for open sets. For more details see [7], [8], [9], [10].

Let α be a generator,α is a one-to-one function whose domain is real numbers and whose range is a subsetA of R. We
know that each generator produces exatly one arithmetic andconversely, each arithmetic is produced by one generator.
For instance, the identity functionI generates the classic arithmetic and the exponential function exp generates geometric
arithmetic. Let take a generatorα such that have the following basic algebraic operations[1−5]:

α−addition x
.
+y= α

{

α−1(x)+α−1(y)
}

α−subtraction x
.
−y= α

{

α−1(x)−α−1(y)
}

α−multiplicative x
.
×y= α

{

α−1(x)×α−1(y)
}

α−division x
.

/y= α
{

α−1(x)/α−1(y)
}

α−order x
.
≤ y⇔ α−1(x)≤ α−1(y)

for everyx,y∈ A.

The set of non-Newtonian numbers is defined asR(N) = {α(x) : x∈ R} . A α− closed interval onR(N) can be
represented by

[a,b]N =
{

x∈R(N) : a
.
≤ x

.
≤ b
}

=
{

x∈R(N) : α−1(a)≤ α−1(x)≤ α−1(b)
}

= α
{[

α−1(a),α−1(b)
]}

.

Definition 1. Let F and S be two point sets. If F⊂ S, then the set S−F is called to complement of the set F with respect
to the set S and denoted by the symbol CF

S .
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Theorem 1.Let F be a non-void boundedα−closed set and let S be the smallestα−closed interval containing the set F.
Then the set CFS α−open [5].

Definition 2. The measure mN (a,b)N in R(N) is defined by

mN (a,b)N = α
{

m
(

α−1(a),α−1(b)
)}

[5].

Definition 3. The measure mNG of a non-void bounded open set G inR(N) is the sum of the measures of all its component
intervalsδk :

mNG= N ∑
k

mNδk.

Here it should be noted that
mNG= N ∑

k

mN (ak,bk)N = N ∑
k

bk
.
−ak

whereδk = (ak,bk)N [5].

Theorem 2.Let G1 and G2 be two bounded open set inR(N). If G1 ⊂ G2, then

mNG1
.
≤ mNG2

[5].

In this paper, we define and study on non-Newtonian measure ofbounded closed sets as a generalization of known results
in real analysis.

2 Main results

Definition 4. In R(N), the measure of a non-void boundedα−closed set F is defined as follows

mNF = α
{

m
(

α−1(A),α−1(B)
)

−m
(

α−1(CF
S

))}

where S= [A,B]N is the smallestα−closed interval containing the set F.

We can restate the above relation as follows; sinceCF
S is aα−open set, it can be written in the formCF

S = ∪k (ak,bk)N.
Thus, we get

mNF = α
{

m
(

α−1(A),α−1(B)
)

−m
(

α−1(CF
S

))}

= α
{

m
(

α−1(A),α−1(B)
)

−m
(

α−1 (∪k (ak,bk)N)
)}

= α
{

m
(

α−1(A),α−1(B)
)

−m
(

∪k
(

α−1 (ak) ,α−1 (bk)
))}

= α

{

m
(

α−1(A),α−1(B)
)

−∑
k

(

α−1 (bk)−α−1(ak)
)

}

= α

{

α−1(B)−α−1(A)−∑
k

(

α−1 (bk)−α−1(ak)
)

}

= αα−1(α
(

α−1(B)−α−1(A)
))

−α−1

(

α

(

∑
k

α−1(α
(

α−1 (bk)−α−1 (ak)
))

))
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= α

{

α−1
(

B
.
−A
)

−α−1

(

N ∑
k

α
(

α−1 (bk)−α−1(ak)
)

)}

= α

{

α−1
(

B
.
−A
)

−α−1

(

N ∑
k

mN (ak,bk)N

)}

= α
{

α−1
(

B
.
−A
)

−α−1(mNCF
S

)

}

= B
.
−A

.
−mN

(

CF
S

)

Remark.If F = [a,b]N, thenS= [a,b]N and CF
S =∅, so that mNF = b

.
−a. If F is the union of a finite number of pairwise

disjoint closed intervals inR(N), namelyF = [a1,b1]N ∪ [a2,b2]N ∪ ...∪ [an,bn]N , thenmNF =N

n
∑

k=1
bk

.
−ak.

Example 1.Let take geometric calculus and letF = [a1,b1]N∪ [a2,b2]N. Then, we haveS= [a1,b2]N andCF
S = (b1,a2)N.

Thus, the measure ofα−closed set is

mNF = exp{(lnb2− lna1)− (lna2− lnb1)}= exp

{

ln
b2b1

a1a2

}

=
b1b2

a1a2
.

Theorem 3.The non-Newtonian measure of a boundedα−closed set F is non-negative.

Proof.Let F be a boundedα−closed set and letS= [a,b]N be the smallestα−closed interval containing the setF.Then

mNF = α
{

m
(

α−1 (a) ,α−1 (b)
)

−m
(

α−1(CF
S

))}

= α
{

α−1 (b)−α−1(a)−m
(

α−1(CF
S

))} .
1 α

( .
0
)

.

Lemma 1. Let F be a boundedα−closed set and let∆ be anα−open interval containing F. Then mNF = mN∆
.
−mN

(

CF
∆
)

.

Proof.Let ∆ = (A,B)N and letS= [a,b]N be the smallestα−closed interval containing the setF. Then, we have

mNF = α
{

m
(

α−1 (a) ,α−1 (b)
)

−m
(

α−1(CF
S

))}

= α
{

α−1 (b)−α−1(a)−m
(

α−1(CF
S

))}

= α
{

α−1 (B)−α−1(A)−m
(

α−1(CF
∆
))}

= α
{

α−1 (B)−α−1(A)−α−1(α
(

m
(

α−1(CF
∆
))))}

= α
{

α−1 (B)−α−1(A)−α−1(mN
(

CF
∆
))}

= B
.
−A

.
−mN

(

CF
∆
)

= mN∆
.
−mN

(

CF
∆
)

.

Theorem 4.Let F1 and F2 be two non-void boundedα−closed sets inR(N). If F1 ⊂ F2, then

mN F1
.
≤ mN F2.

Proof.Let S= (a,b)N be anα−open interval containing the setF2. We can easily see that

mN F1 = α
{

m
(

α−1 (a) ,α−1 (b)
)

−m
(

α−1
(

CF1
S

))}

= α
{

α−1 (b)−α−1 (a)−m
(

α−1
(

CF1
S

))}

.
≤ α

{

α−1 (b)−α−1 (a)−m
(

α−1
(

CF2
S

))}

= α
{

m
(

α−1 (a) ,α−1 (b)
)

−m
(

α−1
(

CF2
S

))}

= mNF2.
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Theorem 5.Let F be anα−closed set and let G be a boundedα−open set inR(N). If F ⊂ G, then mNF
.
≤ mNG.

Proof.Let S= (a,b)N be anα−open interval containing the setG= ∪k (ak,bk)N. We can easily see that

mNF = α
{

m
(

α−1 (a) ,α−1 (b)
)

−m
(

α−1(CF
S

))}

= α
{

α−1 (b)−α−1(a)−m
(

α−1(CF
S

))}

.
≤ α

{

∑
k

(

α−1 (bk)−α−1(ak)
)

}

=N ∑
k

α
(

α−1 (bk)−α−1(ak)
)

=N ∑
k

bk
.
−ak

= mNG.

Theorem 6. The non-Newtonian measure of a boundedα−open set G is the least upper bound of the mesure of all
α−closed sets contained in G.

Proof.By the preceding theorem,mNG is an upper bound for the measures ofα−closed setsF ⊂ G. Let G=
⋃

k
(λk,µk)N.

SincemNG= N ∑
k

µk
.
−λk, we have

α−1 (mNG) = α−1

(

N ∑
k

µk
.
−λk

)

= α−1

(

α

(

∑
k

α−1
(

µk
.
−λk

)

))

= ∑
k

α−1
(

µk
.
−λk

)

= ∑
k

α−1(α
(

α−1 (µk)−α−1(λk)
))

= ∑
k

α−1 (µk)−α−1(λk) .

Take an arbitraryε
.
>

.
0 and find a natural numbern so large that

n

∑
k=1

α−1 (µk)−α−1 (λk)> α−1 (mNG)−
α−1 (ε)

2
.

Therefore, we have

α−1

(

α

(

n

∑
k=1

α−1 (µk)−α−1(λk)

))

> α−1
(

α
(

α−1 (mNG)−
α−1 (ε)

2

))

and so

α

(

n

∑
k=1

α−1 (µk)−α−1(λk)

)

.
> α

(

α−1 (mNG)−
α−1 (ε)

2

)

which gives

N

n

∑
k=1

= µk
.
−λk

.
> mNG

.
−

ε
.
2

.
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For everyk (k= 1,2, ...,n), we choose aα−closed inerval[ak,bk]N so that[ak,bk]N ⊂ (λk,µk)N. Thus, we get

α
[

α−1 (ak) ,α−1 (bk)
]

⊂ α
(

α−1 (λk) ,α−1 (µk)
)

and so
[

α−1 (ak) ,α−1 (bk)
]

⊂
(

α−1 (λk) ,α−1 (µk)
)

.

Therefore, we have

α−1 (bk)−α−1(ak)> α−1 (µk)−α−1(λk)−
α−1 (ε)

2n

and so

α−1(α
(

α−1 (bk)−α−1(ak)
))

> α−1
(

α
(

α−1 (µk)−α−1(λk)−
α−1 (ε)

2n

))

.

Then, we get, by inequlity above

α
(

α−1 (bk)−α−1(ak)
) .
> α

(

α−1 (µk)−α−1(λk)−
α−1 (ε)

2n

)

which means
mN [ak,bk]N

.
> mN (λk,µk)N

.
−

ε
α (2n)

.

Let defineF0 =
n
⋃

k=1
[ak,bk]N. It is clear thatF0 ⊂ G andF0 is α−closed set.

Thus, we have

mNF0 =N

n

∑
k=1

bk
.
−ak = α

{

n

∑
k=1

α−1
(

bk
.
−ak

)

}

= α

{

n

∑
k=1

α−1 (bk)−α−1(ak)

}

.

Thus, we obtain

α

{

n

∑
k=1

α−1 (bk)−α−1 (ak)

}

> α

(

n

∑
k=1

(

α−1 (µk)−α−1(λk)−
α−1 (ε)

2n

)

)

= α

{

n

∑
k=1

(

α−1 (µk)−α−1(λk)
)

−
α−1 (ε)

2n

}

=N

n

∑
k=1

µk
.
−λk

.
−

ε
.
2
> mNG

.
−

ε
.
2

.
−

ε
.
2
= mNG

.
− ε.

Theorem 7.Let F be a boundedα−closed set. Then, the non-Newtonian measure of F is the greatest lower bound of the
measure of all possibleα−open sets containing F.

Proof.Let ∆ be anα−open interval containing the setF. Then, we have

mNF = mN∆
.
−mN(C

F
∆ ).

By Theorem 5, we can find anα−closed setΦ such thatΦ ⊂CF
∆ . By Theorem 6, we have

mNΦ
.
> mNCF

∆
.
− ε

for everyε
.
>

.
0. Let defineG0 =CΦ

∆ . It is clear thatG0 is anα−open set containingF . Also, we have

mNG0 = mNCΦ
∆ = mN∆

.
−mNΦ

.
< mN∆

.
−mNCF

∆
.
+ ε.
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Thus, we get
mNG0

.
< mNF

.
+ ε.

Theorem 8. Let the boundedα−closed set F be the union of a finite number of pairwise disjoint α−closed sets, i.e.

F =
n
⋃

k=1
Fk, where Fk∩Fl =∅ for k 6= l. Then

mNF =N

n

∑
k=1

mNFk.

Proof.SinceF is α−closed set, we haveα−1(F) =
n
⋃

k=1
α−1(Fk) is closed set. Then, by the properties of Lebesgue measure

of bounded closed set in real numbers, we have

m
(

α−1(F)
)

= m

(

n
⋃

k=1

α−1(Fk)

)

=
n

∑
k=1

m
(

α−1(Fk)
)

.

Thus, we get

mNF = α

(

n

∑
k=1

m
(

α−1(Fk)
)

)

= α

(

n

∑
k=1

α−1(α
(

m
(

α−1(Fk)
)))

)

=N

n

∑
k=1

mNFk.
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