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Abstract: In this article, the solution of a non-stationary heat eiumain an axial symmetry cylindrical coordinates is detere,
where the heat equation is being subject to non-homogenades! discontinuous boundary conditions of first and sedand. In
fact, the problem is transformed to a Fredholm integral ggnaf first kind, therefore the solution of the heat problendetermined
by solving the Fredholm integral equation, where we useegalarization method to have the solution. In fact, the hegltransform,
Hankel transform and separation of variables are used égptbblem transformation into the integral equation.
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1 Introduction

Because of the application of the mixed equations in phygiczblems, which are based on the time independent and
Helmholtz equation, several articles have been studiesidtuion of mixed problem which has a dual equatidh§,4, 3,
5,8,7],[16],[15. For instance, in this article, we consider a mixed probtdrsolid cylindrical with an infinite height and
given radiusR. In particular, inside the disk & r < rg, the boundary conditions on the surface of cylindrical antsioe

the diskrg < r < R are given, and of first kind and second kind respectively,isnversa. Our method for having the
solution of heat equation with mixed boundary problem is suarized as follows. Firstly, we use the Laplace transform
to the heat equation and to the mixed boundary conditioes, We use the separation of variables of the heat equation in
axial cylindrical coordinates, where the problem is reditoea dual series equations (DSE) with first kind Bessel fonct
and order zero, such that the weight and the free terms degpretite parameter of the Laplace transform. Secondly, we
use the inverse of Hankel transform to reduce the DSE inteskKind Fredholm integral equation. Finally, we use the
regularization method for solving the resulting integigliation, where the regularization method based on comggitie

first kind integral equation into a second kind integral daum such that several methods could be used for solving the
integral equation numerically.

2 Formulation and Solution of the Problem

We consider the solution of the heat
6 (r,zT)+ 6:(r,2T) /1 + B4(r,z,T) = 6, (1,2 T)/a Q)
With the mixed discontinuous boundary conditions of firad aacond kind of the form

6,(r,0,7) = fi(r,7); 0<r<rg @)
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0(r,0,7) = fa(r,7); ro<r<R €))

wheref(r,z,7) =T (r,z,T) — T is the temperature distribution function, such the&anda are the given initial temperature
constant heat diffusivity coefficient respectively, afift,z);i = 1,2 are known continuous functions with respect to the
variables, T which are accept with Laplace and Hankel transforms witpeesto the variablesandt respectively. In
fact, equationX) is given over the surface of the cylindet 0 and inside the disk @ r < rg < R. On a surface = Rand
onthe axis =0 z— oo, the unmixed homogeneous boundary conditions given as:

0(RzT1)=0;, 0<z<w 4)
6(0,27)=0; 0<z<w® (5)
O(r,o,7)=0; 0<r<R (6)

In fact, the physical significance of the problem formulatadh that, on the level surface of semi-infinite cylinderdas
the diskz=0;0< r < rp, a mixed boundary condition of the second kind prescribed fiex according Fourier low of
heating, whereas outside the disk 0;rg < r < R, a temperature function is given. In the following, we withhsform

the problem to a Fredholm integral equation. applying theld@e transform to equations)(to (6), where

6(r,z,;s) =L[6(r,z,1)] = /Ooo 0(r,z,T)exp(—sr)dr

Then separate variables in equatiéhdnd use the boundary conditio@§(6), we the equation

0

0(r,25) = 3 Ca(An,S)exp(—2\/AZ+5/8)Jo(Anp) @)

n=1

Where,(fn()\n,s) are unknown coefficients\, is the root of Bessel function of the first kind and order zekgAnp).
Moreover,a = R/ro, p = /rg ; dimensionless variablesjs the parameter of L-transform.
Now by using the mixed conditiong) and @) applied to {), we obtain a DSE to determine the unknown coefficients

Cn(/\n,s)

i Cn(An,9)1/AZ+5/ado(Anp) = fa(p,5); 0<p<1 (8)
n=1
S CalAn 9d0(Anp) = Fo(p,9; 1<p<a 9)

n=1

ass— 0 the DSEs ), (9) were introduced to the stationary solution of the DSE i Laplace equation with mixed
conditions [], [14].
Now to solve DSE ), (9), we consider the substitution

An(An,S) = Cn(An,9)1 /A2 +5/a

Thus, DSE 8), (9) will be written as:

8

An(An,9)do(Anp) = fi(p,s); 0<p<1 (10)
1

n
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S Aa(An.93(Anp)/\/AZ+s/a=fa(p.8); 1<p<a (11)
=
Then, applying the inversion Fourier-Bessel transfornmifala for (L0) to have #], [3]
An(A 2 w9 %Amuudut [ (U, 9% (Aau)ud 12
An( nvs)—m{/o 1(U,9)Jo(AnU)u U+./l (u,8)Jo(AnU)u U}- (12)

Such thath(u,s) is unknown function defined over the intervdl a), h(u,7) = L~2[h(u,s)]. Next substitute {2) into
(11), we obtain a first kind Fredholm integral equation of therior

/la K(u,p,s)h(u,s)du = Fy(p,s) (13)
where ]
K(u,p,s) = % Z Jo(An@)Jo(Anu)

The inverse L-transform forlQ) exists

/'T /'a K(u,p,t — &)h(u, &)dudé = Fi(p, ) (14)
JO J1
h
wnere K t \/7 Jo(Anp)Jo(Anu) exp[—A2a(t — &)]
(u7pa az \]l Ana \/t—f
T rl
Fa(p. 1) = fa(p. 1)~ [ [K(u.p.t=8)ta(p.§)duds
where Schiff [L3]

32
L-\/A2+s/a = \/gw.

The second set of a mixed boundary conditions on a surfacedeyk = 0;
O<r<rg<R
0(r,0,1) = f1(r,1);0<r <rg (15)

6,(r,0,7) = fo(r,7);ro<r <R (16)

In similar manner ,separate variables 1, then use the mixed conditiont5),(16) in L-transform , we obtain a DSE for
determinatiorCp(An, )

S CalAn,9%(Anp) = f1(p,9);0< p < 1 %)
n=1
i Cn(An,9)\/A2+5/ado(Anp) = f2(p,9);1< p < @ (18)
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Next, use the substltutlohn()\n, s) = /\n, s)\/AZ2 +s/a, then apply the inversion formula ii§ we have

— 2 1 a _
An(An,s) = m(/o g(u,s)\]o()\nu)udqu/1 f2(u,s)Jo(Anu)udu)

whereg(u, s) is unknown function defined over the intery8] 1). A Fredholm integral equation of the first kind is obtained
to determine the unknowg(u,s)

/ K(u,p,9g(u,s)du=F(p,s); 0<p<1 (19)

. With kernel and free term respectively

~ 2.2 Jo(Aa)do(Anu)
K(u,p,s) = pn; VAZ+s/aR(Ana)’

F_Z(pvs) = E(pvs) _Aa f_z(u,p,s)K_(p,u,s)du

whereK (u, p,s) is the same value inl@),and the inverse L-transform is always exists.

3 Solution integral equation (13)

In this section, we will use the regularization method fdwi the resulting Fredholm integral equation of the poexd
section. Regularization method is an effect tool for sajvinfirst kind Fredholm integral equations)[18,2,12,17,1].
Firstly, integral equationld) can be written as

— _ a _ —
th(va) = FZ(paS) 7/1 K(vaas)hv(uas)du (20)
yis a small positive parameter, rewrit20f as
— 1-— 1 /o — —
hV(pvs) = ;/FZ(paS) - Y/ /1 K(vaas)hv(uas)du

The solutionﬁy(u,s) converges td?(u,s) asy — 0. Adomian decomposition iteration is applicable for soi20),
however for simplificationZ0) without loss of generality, we consider

f_z(p,S) =0, E(pas) = F(p,S),

2 N Jo(Ana)do(Anu)

K_ u,p,s) +E 21
RS =52 Z 1/ AZ+s/al2(Ana) N )
En.1 is an error
& JO )\na JO )\nu)
Eni1= Anct
N+ = %H AZrsar
(20) by meaning21) becomes
= 1- 1 @ Z
0.9 = F(p.9) L [ Rup.9hy(usau (22)
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ﬁy(p,s) is the approximation solution dr_fy(p,s). Integral equation4?2) can be solved by successive approximation

~ 1 ra = ~
hV(m+l) (pvs) = ;/F(pvs) - ;/ 1 K(U,p,S)hym(U,S)dU

= 1— = =
hy_]_(p,S) = Y/F (pas)a hm(uvs) = yTOhm(uvs)

Use the summation of monograptf], Whereﬁ_y(p,s) =Smo0 ﬁ_ym(u,s). It is interesting to note that, the regularization
method is not commonly used for solving Fredholm integralagipns of first kind. Where, some numerical techniques
could be used for solving the integral equatiobg][11].

4 Conclusion

In this article we extend the use of the DSE method to solvetadionary heat equation with mixed boundary conditions
of the first and of the second kind, solution of the given peabis introduced to a Fredholm integral equation of the first
kind, which is treated by regularization technique. Thishteque will be used to solve several problems dealing with
mixed problems with different coordinate systems and warighysical and technical sciences.
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