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1 Introduction

In this paper, by meromorphic function we shall always mean ameromorphic function in the complex plane. We adopt

the standard notations in the Nevanlinna Theory of meromorphic functions as explained in [4,9,18]. It will be convenient

to let E denote any set of positive real numbers of finite linear measure, not necessarily the same at each occurrence.

For any nonconstant meromorphic functionf (z), we denote byS(r, f ) any quantity satisfyingS(r, f ) = ◦(T(r, f )) as

r → ∞, r 6∈ E. A meromorphic functiona(z) is said to be small with respect tof (z) if T(r,a) = S(r, f ). We denote by

S( f ) the collection of all small functions with respect tof . ClearlyC∪{∞} ∈ S( f ) andS( f ) is a field over the set of

complex numbers.

For any two nonconstant meromorphic functionsf andg, anda∈ S( f )∩S(g), we say thatf andg share “a” IM(CM)

provided thatf −a andg−a have the same zeros ignoring(counting) multiplicities.

The following theorem in the value distribution theory is well known [3,15].

Theorem 1. Let f(z) be a transcendental meromorphic function, n≥ 1 a positive integer. Then fn f ′ = 1 has infinitely

many solutions.

Fang and Hua [12], Yang and Hua [20] obtained a unicity theorem respectively to the above theorem.

Theorem 2. Let f(z) and g(z) be two nonconstant entire (meromorphic) functions, n≥ 6 (n≥ 11) be a positive integer.

If f n f ′ and gng′ share1 CM then either f(z) = c1exp(cz), g(z) = c2exp(−cz), where c1, c2 and c are three constant

satisfying4(c1c2)
n+1c2 =−1, or f(z) ≡ tg(z) for a constant t such that tn+1 = 1.

Theorem 3. Let f(z) and g(z) be two nonconstant entire functions, let n, k be two positiveintegers with n> 2k+ 4. If

( f n(z))(k) and (gn(z))(k) share1 CM then either f(z) = c1exp(cz), g(z) = c2exp(−cz), where c1, c2 and c are three

constant satisfying(−1)k(c1c2)
n(nc)2k = 1 or f (z) ≡ tg(z) for a constant t such that tn = 1.
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Theorem 4. Let f(z) and g(z) be two nonconstant entire functions and let n, k be two positive integers with n> 2k+8. If

( f n(z)( f (z)−1))(k) and(gn(z)(g(z)−1))(k) share1 CM then f(z) ≡ g(z).

Then Fang and Qiu [10] considered the fixed point sharing uniqueness problem and obtained the following theorem.

Theorem 5. Let f(z) and g(z) be two nonconstant entire functions and n≥ 6 be a positive integer. If fn(z) f ′(z) and

gn(z)g′(z) share z CM, then either f(z) = c1ecz2, g(z) = c2e−cz2, where c1, c2 and c are three constant satisfying

4(c1c2)
n+1c2 =−1 or f (z) ≡ tg(z) for a constant t such that tn+1 = 1.

Later in 2004, Lin and Yi [16] proved the following theorem:

Theorem 6. Let f and g be two nonconstant entire functions and n≥ 7 be a positive integer. If fn( f −1) f ′ and gn(g−1)g′

share z CM, then f≡ g.

Zhang [6] extended the above two theorems and got the following results:

Theorem 7. Let f(z) and g(z) be two nonconstant entire functions and let n, k be two positive integers with n> 2k+4. If

( f n)(k) and(gn)(k) share z CM, then either

(1) k= 1, f(z) = c1ecz2, g(z) = c2e−cz2, where c1, c2 and c are three constant satisfying4(c1c2)
n(nc)2 =−1, or

(2) f (z) ≡ tg(z) for a constant t such that tn = 1.

Theorem 8. Let f and g be two nonconstant entire functions and let n, k be two positive integers with n> 2k+ 6. If

( f n( f −1))(k) and(gn(g−1))(k) share z CM, then f≡ g.

Regarding Theorems 1.7−1.8, Xu et al [7] considered the case of meromorphic functions. They proved.

Theorem 9. Let f and g be two nonconstant meromorphic functions and let n, k be two positive integers with n> 3k+10.

If ( f n)(k) and(gn)(k) share z CM, f and g share∞ IM, then either f(z) = c1ecz2, g(z) = c2e−cz2, where c1, c2 and c are

three constant satisfying4(c1c2)
n(nc)2 =−1 or f (z) ≡ tg(z) for a constant t such that tn = 1.

Theorem 10. Let n, k be two positive integers with n> 3k+12, and f and g be two nonconstant meromorphic functions

satisfyingΘ(∞, f ) > 2
n. If ( f n( f −1))(k) and(gn(g−1))(k) share z CM, f and g share∞ IM, then f≡ g.

In view of above theorems, Sahoo [13] obtained the following result in 2010 for some more generalnonlinear differential

polynomial.

Theorem 11. Let f and g be two nonconstant meromorphic functions and let n, k and m be three positive integers with

n> 9k+4m+13. Let P(w) = amwm+am−1wm−1+ · ·+a1w+a0 where a0 6= 0, a1, · · ·, am 6= 0 are complex constants.

If ( f nP( f ))(k) and (gnP(g))(k) share z IM, f and g share∞ IM. Then f= tg for a constant t such that td = 1, where

d = gcd(n+m,n+m−1, ....,n+m− i, ...,n+1,n), am−i 6= 0 for some i∈ {0,1, ...,m}; or f and g satisfy the algebraic

equation R( f ,g) = 0 where R( f ,g) is given by

R( f ,g) = f n(am f m+ ...+a1 f +a0)−gn(amgm+ ...+a1g+a0). (1)

It is natural question to ask what happen if sharing fixed point in above theorem is replaced by sharing a nonconstant

polynomial.

Keeping in mind the above question X. B. Zhang and J. F. Xu [19] obtained the following result:

Theorem 12. Let f and g be two nonconstant meromorphic functions, p(z) be a nonconstant polynomial of degree

deg(p) = l ≤ 5, n, k and m be three positive integers with n> 3k+m+7. Let P(w) = amwm+am−1wm−1+ · ·+a1w+a0

be a nonzero polynomial. If( f nP( f ))(k) and(gnP(g))(k) share p CM, f and g share∞ IM, then one of the following two

cases holds:
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(1) f = tg for a constant t such that td = 1, where d= gcd(n+m,n+m−1, ....,n+m− i, ...,n+1,n), am−i 6= 0 for some

i ∈ {0,1, ...,m};

(2) f and g satisfy the algebraic equation R( f ,g) = 0 where R( f ,g) is given by (1).

(3) P(z) is reduced to a nonzero monomial, namely P(z) = aizi 6≡ 0 for some i∈ {0,1, ...,m}; if p(z) is not a constant,

then f(z) = c1ecQ(z), g(z) = c2e−cQ(z), where Q(z) =
∫ z

0 p(z)dz, c1, c2 and c are three constants satisfying

ai
2(c1c2)

n+i((n+ i)c)2 = −1, if p(z) is a constant b, then f(z) = c3ecz, g(z) = c4e−cz, c3, c4 and c are three

constants satisfying(−1)kai
2(c3c4)

n+i((n+ i)c)2k = b2.

In 2016, Sahoo et al [14] removed the restriction on the degree of the polynomialp(z) and proved the following theorems:

Theorem 13. Let f and g be two transcendental meromorphic functions, p(z) be a nonconstant polynomial of degree l,

and let n(≥ 1), k(≥ 1) and m(≥ 0) be three integers with n> max{3k+m+6,k+2l}. In addition we suppose that either

k, l are co-prime or k> l when l≥ 2. Let P(w) be defined as in the above theorem. If( f nP( f ))(k) and(gnP(g))(k) share

p(z) CM; f and g share∞ IM, then the following conclusions hold:

(i) If P(w) = amwm+am−1wm−1+ · · ·+a1w+a0 is not a monomial, then either f= tg for a constant t that satisfies td =

1, where d= gcd(n+m,n+m−1, ....,n+m− i, ...,n+1,n), am−i 6= 0 for some i∈ {0,1, ...,m}; or f and g satisfy

the algebraic equation R( f ,g) = 0 where R( f ,g) is given by (1). In particular m= 1 andΘ(∞, f )+Θ(∞,g) > 4
n,

then f= g.

(ii) When P(w) = amwm, or P(w) = c0, then either f= tg for some t such that tn+m∗
= 1, or f(z) = b1ebQ(z), g(z) =

b2e−bQ(z), where Q(z) is a polynomial without constant such that Q′(z) = p(z), b1, b2 and b are three constants

satisfying am2(b1b2)
n+m((n+m)b)2 =−1 or c0

2(b1b2)
n(nb)2 =−1, where m∗ is same as in Lemma13.

Theorem 14. Let f and g be two transcendental meromorphic functions, p(z) be a nonconstant polynomial of degree l,

and let n(≥ 1), k(≥ 1) and m(≥ 0) be three integers with n> max{9k+4m+11,k+2l}. In addition we suppose that

either k, l are co-prime or k> l when l≥ 2. Let P(w) be defined as in the above theorem. If( f nP( f ))(k) and(gnP(g))(k)

share p(z) IM; f and g share∞ IM, then the conclusion of Theorem13hold.

In this paper we investigate on the above theorem to remove sharing∞ IM and obtain the following results:

Theorem 15. Let f and g be two transcendental meromorphic functions withσ( f ) < ∞, whose zeros and poles are of

multiplicity at least s, where s is positive integer. Let p(z) is a polynomial of degree l and

P(w) = amwm+am−1wm−1+ · · ·+a1w+a0,

where a0,a1, · · ··,am are constants, where n(≥ 1), k(≥ 1), m(≥ 0) be three integers and k> l when l≥ 2 satisfying

n> max

{

2k+2l ,
3k+8

s
+m,2k(σ( f )−1)− (m+2l)

}

.

If ( f nP( f ))(k) and(gnP(g))(k) share p(z) CM, then one of the following holds:

(i) If P(w) is not a monomial and (3) hold.Then either f= tg for some t such that td = 1, where d= gcd(n+m,n+m−

1, ....,n+m− i, ...,n+1,n), am−i 6= 0 for some i∈ {0,1, ...,m}; or f and g satisfy the algebraic equation R( f ,g) = 0

where R( f ,g) is given by (1).

(ii) P(w) = amwm, or P(w) = c0, then either f= tg for a constant t such that tn+m∗
= 1, or f(z) = b1ebQ(z), g(z) =

b2e−bQ(z), where Q(z) is a polynomial without constant such that Q′(z) = p(z), b1, b2 and b are three constants

satisfying am2(b1b2)
n+m((n+m)b)2 =−1 or c0

2(b1b2)
n(nb)2 =−1, where m∗ is same as in Lemma13.
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Theorem 16. Let f and g be two transcendental meromorphic functions withσ( f ) < ∞, whose zeros and poles are of

multiplicity at least s, where s is positive integer. Let p(z) is a polynomial of degree l and P(w) = amwm+am−1wm−1+ · ·

·+a1w+a0 be a nonzero polynomial and n(≥ 1), k(≥ 1), m(≥ 0) be three integers and k> l when l≥ 2 satisfying

n> max

{

2k+2l ,
9k+14

s
+4m,2k(σ( f )−1)− (m+2l)

}

.

If ( f nP( f ))(k) and(gnP(g))(k) share p(z) IM, then the conclusions of Theorem15hold.

2 Lemmas

Let F1 andG1 be nonconstant meromorphic functions defined in a complex planeC. We denote byH the following

function:

H =

(

F (2)
1

F (1)
1

−2
F(1)

1

F1−1

)

−

(

G(2)
1

G(1)
1

−2
G(1)

1

G1−1

)

. (2)

Lemma 1. [2] Let f(z) be a nonconstant meromorphic function and let a0(z),a1(z), .....,

an(z)(6≡ 0) be a small function with respect to f . Then

T(r,an f n+an−1 f n−1+ ...+a0) = nT(r, f )+S(r, f ).

Lemma 2. [4] Let f(z) be a nonconstant meromorphic function in the complex plane.If the order of f is finite, then

m(r,
f ′

f
) = O(logr), r → ∞.

Lemma 3. [4] Let h(z) be a nonconstant entire function and let f(z) = eh(z). Letλ andµ be the order and lower order of

h(z), respectively . We have

(i) If µ < ∞, thenµ is a positive integer, h(z) is a polynomial of degreeµ , andλ = µ .

(ii) If µ < ∞, then h(z) is transcendental andλ = µ .

Lemma 4. [17] Let f(z) be a nonconstant meromorphic function and s, k be two positive integers. Then

Ns

(

r,
1

f (k)

)

≤ T(r, f (k))−T(r, f )+Ns+k(r,
1
f
)+S(r, f ).

Ns

(

r,
1

f (k)

)

≤ kN(r, f )+Ns+k(r,
1
f
)+S(r, f ).

Lemma 5. [2] Let f(z) be a nonconstant meromorphic function and let k be a positiveinteger. Suppose that f(k) 6≡ 0, then

N

(

r,
1

f (k)

)

≤ kN(r, f )+N(r,
1
f
)+S(r, f ).

Lemma 6. [5] If N(r,0; f (k)/ f 6= 0) denotes the counting function of those zeros of f(k) that are not the zeros of f , where

a is zero of f(k) is counted according to its multiplicity, then

N(r,
1

f (k)
/ f 6= 0)≤ kN(r, f )+N(r,

1
f
|< k)+ kN(r,

1
f
| ≥ k)+S(r, f ).
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Lemma 7. Let f and g be two nonconstant transcendental meromorphic functions whose zeros and poles are of

multiplicity at least s, where s is positive integers. Let P(w) = amwm + am−1wm−1 + · · · + a1w + a0, where

a0(6= 0),a1, · · ··,am(6= 0) are constants, and let n(≥ 1), k(≥ 1), m(≥ 0) are integers and p(z) is a polynomial of degree l .

If

λ >
1
s
+

m+n
(m+n)s+2k

(3)

whereλ is the number of distinct roots of P(w) = 0 then

( f nP( f ))(k) (gnP(g))(k) 6= p2(z)

Proof.

( f nP( f ))(k) (gnP(g))(k) = p2(z) (4)

Let P(z) = am(z−d1)
l1.(z−d2)

l2 · · · (z−dλ)
lλ , where∑λ

j=1 l j = m, 1≤ λ ≤ m, di 6= d j , i 6= j and 1≤ i, j ≤ λ , d j ‘s are

nonzero constants andl j ‘s are positive integers,j = 1,2, ..,λ . Let z0 6∈ {z : p(z) = 0} be a zero off with multiplicity

p0(≥ s). Thenz0 is a pole ofg with multiplicity q0(≥ s) say. From (4) we get, np0− k = (m+n)q0+ k so,np0− k ≥

(m+n)s+ k andp0 ≥
(m+n)s+2k

n . Let z1 6∈ {z : p(z) = 0} be a zero ofP( f ) of orderp1 and a zero off −di of orderqi for

somei = 1,2, ...λ . Thenp1 = l iqi for somei = 1,2, ...λ , andz1 is a pole ofg with multiplicity q(≥ s) say, so from (4) we

get

qi l i − k= (n+m)q+ k

≥ (n+m)s+ k

i.e.,qi ≥
(n+m)s+2k

l i
,

for i = 1,2, ..,λ . Let z2 6∈ {z : p(z) = 0} be a zero of( f nP( f ))(k) of orderp2 but not a zero off nP( f ). Then from (4) z2 is

a pole ofg of orderξ (≥ s). Then

p2 = (n+m)ξ + k≥ (n+m)s+ k.

Suppose thatz3 6∈ {z : p(z) = 0} be a pole off then from (4) z3 is a zero of(gnP(g)) or a zero of(gnP(g))(k). Therefore

N(r, f )≤ N(r,
1
g
)+

λ

∑
j=1

N(r,
1

g−di
)+N(r,0;Bk/B 6= 0)+S(r,g),

whereN(r,0;B(k)/B 6= 0) denotes the reduced counting function of those zeros ofB(k) that are not the zeros ofB and

B= gnP(g). Now by Lemma6 we have

N(r,0;B(k)/B 6= 0)≤
1

(n+m)s+ k
N(r,

1

B(k)
/B 6= 0)

≤
1

(n+m)s+ k

{

kN(r,B)+N(r,
1
B
|< k)+ kN(r,

1
B
| ≥ k)

}

≤
k

(n+m)s+ k

{

N(r,B)+Nk(r,
1
B
)

}

≤
k

(n+m)s+ k

{

N(r,
1
g
)+

λ

∑
j=1

N(r,
1

g−di
)+N(r,g)

}
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So,

N(r, f ) ≤

(

1+
k

(n+m)s+ k

)(

n
(m+n)s+2k

+
m

(m+n)s+2k

)

T(r,g)

+
k

((n+m)s+ k)s
T(r,g)+S(r, f )+S(r,g)

≤
1
s
T(r,g)+S(r, f )+S(r,g).

By second fundamental theorem

λT(r, f ) ≤ N(r, f )+N(r,
1
f
)+

λ

∑
j=1

N(r,
1

f −di
)+S(r, f )

≤

(

n
(m+n)s+2k

+
m

(m+n)s+2k

)

T(r, f )+
1
s
T(r,g)+S(r, f )+S(r,g).

Similarly,

λT(r,g)≤

(

n
(m+n)s+2k

+
m

(m+n)s+2k

)

T(r,g)+
1
s

T(r, f )+S(r, f )+S(r,g).

Adding above two inequality we get

{

λ −
1
s
−

m+n
(m+n)s+2k

}

(T(r, f )+T(r,g))≤ S(r, f )+S(r,g)

which contradict given assumption. This completes the proof of the Lemma.

Lemma 8. Let f and g be two nonconstant meromorphic functions withσ( f ) < ∞, p(z) be nonconstant polynomial of

degree l and n, k, m be three positive integer with n> max{2k+2l ,2k(σ( f )−1)− (m+2l)}. In addition we assume

k> l when l≥ 2, and if

( f nP( f ))(k) (gnP(g))(k) = p2(z) (5)

where P(w) = amwm or P(w) = c0 then f(z) = b1ebQ(z), g(z) = b2e−bQ(z), where b1, b2 and c are three constants satisfying

am
2(b1b2)

n+m((n+m)b)2 = −1 or c0
2(b1b2)

n(nb)2 = −1 and Q(z) is a polynomial without constant such that Q′(z) =

p(z).

Proof.We first prove that

f 6= 0,g 6= 0. (6)

Let P(w) = amwm. Then from (5) we get
(

f n+m)(k) (gn+m)(k) = p2(z) (7)

Suppose thatz0 is a zero off say multiplicity r but p(z0) 6= 0 thenz0 is a pole ofg say multiplicity s0. Then we have

from (7), (n+m)r − k = (n+m)s0 + k ⇒ (n+m)(r − s0) = 2k, which is contradiction forn > 2k+ 2l . Now suppose

thatz0 is a zero off say multiplicity r1 if z0 is not a pole ofg thenz0 must be zero ofp(z) of multiplicity l0, say, then

we have from (7) (n+m)r1− k > 2l0, which is again contradiction. Ifz0 is a pole ofg say multiplicitys1 then we have

(n+m)r1− k= (n+m)s1+ k+2l0, (n+m)(r1− s1) = 2k+2l0 which is impossible. So,f has no zeros. Similarly it can
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be shown thatg also has no zeros. Thus (6) is proved. Next we prove that

N(r, f ) = O(logr); (8)

N(r,g) = O(logr);

( f nP( f ))(k) =
p(z)2

(gnP(g))(k)
(9)

SinceN(r,( f nP( f )) (k)) = N(r, f nP( f ))+ kN(r, f nP( f ) = (n+m)N(r, f )+ kN(r, f )+S(r, f )

By Lemma5

N(r,
1

(gn+m)(k)
)≤ N(r,

1
gn+m)+ kN(r,gn+m)+O(logr) = kN(r,g)+O(logr)

using above inequality and (9) we get(n+m)N(r, f )+ kN(r, f ) ≤ kN(r,g)+O(logr). Similarly we get(n+m)N(r,g)+

kN(r,g) ≤ kN(r, f ) +O(logr). Combining we getN(r, f ) +N(r, f ) = O(logr). Thus we obtain (8) which mean thatf

andg has at most finitely many poles. Now we prove thatσ( f ) = σ(g). By K.Yamanoi [8] result of second fundamental

theorem with takingF = f nP( f ), G= gnP(g) we get

T(r,F (k))≤ N(r,F (k))+N(r,
1

F(k)
)+N

(

r,
1

F (k)− p(z)

)

+(ε +O(1))T(r,F)

≤ N(r, f )+N(r,
1

F (k)
)+N

(

r,
1

F (k)− p(z)

)

+(ε +O(1))T(r,F)

Therefore T(r,F (k)) − N(r, 1
F(k) ) ≤ N(r, f ) + N

(

r, 1
F(k)−p(z)

)

+ (ε + O(1))T(r,F) Using Lemma 4 we get,

T(r,F)≤ N(r, f )+N
(

r, 1
F(k)−p(z)

)

+Nk+1(r,
1
F )+ (ε +O(1))T(r,F)

(n+m)T(r, f ) ≤ N(r, f )+N

(

r,
1

G(k)− p(z)

)

+(ε +O(1))T(r,F)

≤ N(r, f )+ (k+1)(n+m)T(r,g)+ l logr +(ε +O(1))T(r, f )

⇒ (n+m− l −1)T(r, f ) ≤ (k+1)(n+m)T(r,g)+ (ε +O(1))T(r, f )

Sinceε < 1 thenT(r, f ) = O(T(r,g)),

Similarly, T(r,g) = O(T(r, f )) and hence

σ( f ) = σ(g) (10)

Then f = eh(z)

r(z) , g= eh1(z)

q(z) wherer(z) andq(z) are polynomial with degreedeg(r(z)) = r, deg(q(z)) = q, while h(z) and

h1(z) are nonconstant entire functions.

By Lemma3, h(z) andh1(z) are polynomial withdeg(h(z)) = deg(h1(z)) = h= σ( f ), Then we have

(

f n+m)(k) =
(m+n)e(n+m)(h(z))

rn+m+k(z)
Rk(z)

and
(

gn+m)(k) =
(m+n)e(n+m)(h1(z))

qn+m+k(z)
Qk(z),
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whereRk(z) andQk(z) are two polynomials. From, (5) we geth(z)+h1(z) = C, whereC is a constant. Furthermore we

havedeg(Rk(z))+deg(Qk(z)) = deg(rn+m+k(z))+deg(qn+m+k(z))+2l , ⇒ k(r +h−1)+k(q+h−1) = q(n+m+k)+

r(n+m+ k)+2l .

⇒ 2k(h−1) = (n+m)(q+ r)+2l (11)

If N(r, f ) +N(r,g) 6= 0 then(q+ r) ≥ 1. From (11) we obtain 2k(h− 1) ≥ (n+m) + 2l ⇒ n ≤ 2k(h− 1)− (m+ 2l)

which contradict the given conditions. ThereforeN(r, f )+N(r,g) = 0, showing that bothf andg are entire function and

sor = q= 0. From (11) we geth= l +1, k= 1 orh= 2, k= l

Case 1: Fork = 1, h= l +1. We geth′(z) = bp(z), h′1(z) = −bp(z) whereb 6= 0 is a constant.⇒ h(z) = bQ(z)+d1 and

h1(z) = −bQ(z)+d2, whereQ(z) is a polynomial without constant term such thatQ′(z) = p(z) andd1, d2 are constants.

Therefore f = b1ebQ(z), g = b2e−bQ(z), where b1, b2 are constant satisfying the condition

am
2(b1b2)

n+m((n+m)b)2 =−1.

Case 2:h= 2, k= l .

For this case we getting a contradiction by our assumption. The caseP(w) = c0 can be proved similarly. This completes

the proof of the Lemma.

Lemma 9. [4] Let f1 and f2 be two nonconstant meromorphic functions. If c1 f1+c2 f2 = c3, where c1, c2, c3 are nonzero

constants, then

T(r, f1)≤ N(r, f1)+N(r,
1
f1
)+N(r,

1
f2
)+S(r, f1).

Lemma 10. Let f and g be two nonconstant meromorphic functions having zeros and poles of order at least s. Let

k, m, n, be three integers with n> 2k+1
s +m and let P(w) = amwm+ am−1wm−1 + · · ·+ a1w+a0 or P(w) ≡ c0, where

a0 6= 0,a1, · · ··,am 6= 0 are complex constants. If( f nP( f ))(k) = (gnP(g))(k), then fnP( f ) = gnP(g).

Proof.From the assumption, we getf nP( f ) = gnP(g)+ r(z) wherer(z) is a polynomial of degree at mostk−1. If r(z) 6≡ 0

then by Lemma9 we haveT(r, f nP( f )
r(z) )≤ N(r, f nP( f )

r(z) )+N(r, r(z)
f nP( f ))+N(r, r(z)

gnP(g))+S(r, f )+S(r,g). Therefore,

T(r, f nP( f ))≤ T(r,
f nP( f )
r(z)

)+ (k−1) logr +O(1)

≤ N(r,
f nP( f )
r(z)

)+N(r,
r(z)

f nP( f )
)+N(r,

r(z)
gnP(g)

)

+ (k−1) logr +S(r, f )+S(r,g)

≤ N(r, f )+N(r,
1
f
)+N(r,

1
g
)+N(r,

1
P( f )

)

+N(r,
1

P(g)
)+2(k−1) logr +S(r, f )+S(r,g),

by Lemma1 andT(r, f )≥ slogr+ O(1), we have

(n+m)T(r, f )≤

(

m+
2
s
+

2(k−1)
s

)

T(r, f )+ (m+
1
s
)T(r,g)+S(r, f )+S(r,g)

Similarly, (n+m)T(r,g)≤
(

m+ 2
s +

2(k−1)
s

)

T(r,g)+(m+ 1
s)T(r, f )+S(r, f )+S(r,g). By combining above two we get,

{

(n+m)− (2m+ 2k+1
s )
}

(T(r, f )+T(r,g))≤ S(r, f )+S(r,g), which is a contradiction. Hencer(z)≡ 0 and so,f nP( f ) =

gnP(g).
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Lemma 11. [20] Let f(z) and g(z) be two nonconstant meromorphic functions, a be a finite nonzero constant. If f and g

share a CM, then one of the following cases holds:

(i) T(r, f ) ≤ N2(r,
1
f )+N2(r,

1
g)+N2(r, f )+N2(r,g)+S(r, f )+S(r,g); same holds for T(r,g);

(ii) f g= a2;

(iii) f = g.

Lemma 12. [1] Let f(z) and g(z) be two nonconstant meromorphic functions. If f and g share1 IM and H 6≡ 0, then

T(r, f )≤ N2(r,
1
f
)+N2(r,

1
g
)+N2(r, f )+N2(r,g)+2N(r,

1
f
)+2N(r, f )+N(r,

1
g
)+N(r,g)+S(r, f )+S(r,g).

Lemma 13. [13] Let f(z) and g(z) be two nonconstant meromorphic functions, and n(≥ 1), k(≥ 1), m(≥ 0) be three

integers. Suppose that F1 = ( f nP( f ))(k)

p(z) and G1 = (gnP(g))(k)

p(z) . If there exists two nonzero constants c1 and c2 such that

N(r, 1
F−c1

) = N(r, 1
G1
) andN(r, 1

G1−c2
) = N(r, 1

F1
), then n≤ 3k+m∗+3, where m∗ =

{

m, if P( f ) 6= c0;

0, if P( f ) = c0;

3 Proof of the main Theorems

Proof of Theorem15:

Proof.We discuss the following cases separately

Case (i): LetP(w) = amwm + am−1wm−1 + · · ·+ a1w+ a0, wherea0(6= 0),a1, · · ··,am(6= 0) are constants, is not a

monomials. Suppose thatF = ( f nP( f ))(k), G = (gnP(g))(k) and F∗ = f nP( f ), G∗ = gnP(g) and alsoF1 = F
p(z) ,

G1 =
G

p(z) . SinceF1, G1 share 1 CM by Lemma11one of the following subcases holds:

(a) T(r,F1)≤ N2(r,
1
F1
)+N2(r,

1
G1

)+N2(r,F1)+N2(r,G1)+S(r,F1)+S(r,G1) same holds forT(r,G1);

(b) F1G1 = p2(z);

(c) F1 = G1.

Subcase (a): We have

T(r,F)≤ N2(r,
1
F
)+N2(r,

1
G
)+N2(r,F)+N2(r,G)+S(r,F)+S(r,G). (12)

By Lemma4 with s= 2, we obtain

T(r,F∗)≤ T(r,F)−N2(r,
1
F
)+Nk+2(r,

1
F∗

)+S(r,F), (13)

N2(r,
1
G
)≤ Nk+2(r,

1
G∗

)+ kN(r,G)+S(r,G). (14)

Using (12), (14) in (13) we get,

T(r,F∗)≤ Nk+2(r,
1

F∗
)+Nk+2(r,

1
G∗

)+ (k+2)N(r,g)+2N(r, f )+S(r,F)+S(r,G)

≤ (k+2)N(r,
1
f
)+N

(

r,
1

P( f )

)

+(k+2)N(r,
1
g
)+N

(

r,
1

P(g)

)

+(k+2)N(r,g)+2N(r, f )+S(r, f )+S(r,g)

≤
k+2

s
N(r,

1
f
)+N

(

r,
1

P( f )

)

+
k+2

s
N(r,

1
g
)+N

(

r,
1

P(g)

)

+
k+2

s
N(r,g)+

2
s

N(r, f )+S(r, f )+S(r,g)
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Now by first fundamental theorem and Lemma1 we get

(n+m)T(r, f ) ≤

(

2k+4
s

+m

)

T(r,g)+

(

k+4
s

+m

)

T(r, f )+S(r, f )+S(r,g).

Similarly,

(n+m)T(r,g)≤

(

2k+4
s

+m

)

T(r, f )+

(

k+4
s

+m

)

T(r,g)+S(r, f )+S(r,g).

Combining above two inequality, we get

(n+m){T(r, f )+T(r,g)} ≤

(

3k+8
s

+2m

)

{T(r, f )+T(r,g)}+S(r, f )+S(r,g)

⇒

{

n−

(

3k+8
s

+m

)}

{T(r, f )+T(r,g)} ≤ S(r, f )+S(r,g),

which is a contradiction forn>
(

3k+8
s +m

)

.

Subcase (b): Now by (b) we have

( f nP( f ))(k) .(gnP(g))(k) = p2(z),

which is a contradiction by Lemma7.

Subcase (c): By (c) we get

( f nP( f ))(k) = (gnP(g))(k) .

Heren>
(

3k+8
s +m

)

> (2k+1
s +m). So by Lemma10we get

f nP( f ) = gnP(g)

i.e., f n(am f m+ ...+a1 f +a0) = gn(amgm+ ...+a1g+a0). (15)

Let h= f
g . If h is a constant puttingf = gh in (15), we get

amgn+m(hn+m−1)+am−1g
n+m−1(hn+m−1−1)+ ......+a0g

n(hn−1) = 0

which implieshd = 1, whered = gcd(n+m,n+m−1, ....,n+m− i, ...,n+1,n), am−i 6= 0 for somei ∈ {0,1, ...,m}.

Thus f = tg for somet such thattd = 1, whered = gcd(n+m,n+m−1, ....,n+m− i, ...,n+1,n), am−i 6= 0 for some

i ∈ {0,1, ...,m}. If h is not a constant then from (15) we seef andg satisfy the algebraic equationR( f ,g) = 0 where

R( f ,g) is given by (1)

Case (ii): WhenP(w) = amwm, or P(w) = c0 am 6= 0, c0 are complex constant. Proceeding as in case (i) above we obtain

F1G1 = 1 orF1 = G1.

If F1G1 = 1 then by Lemma8 gives f (z) = b1ebQ(z), g(z) = b2e−bQ(z), whereQ(z) is a polynomial without constant such

thatQ′(z) = p(z), b1, b2 andb are three constants satisfyingam
2(b1b2)

n+m((n+m)b)2 =−1 orc0
2(b1b2)

n(nb)2 =−1 .

If F1 = G1 we obtainf = tg for a constantt such thattn+m∗
= 1.

Proof of Theorem16:

Proof. Case (i): LetP(w) is not a monomial. Suppose thatF = ( f nP( f ))(k), G = (gnP(g))(k) andF∗ = f nP( f ), G∗ =

gnP(g) and alsoF1 =
F

p(z) , G1 =
G

p(z) . ThenF1, G1 share 1 IM. We assume thatH 6≡ 0 defined as in (2). So, from Lemma
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12we have

T(r,F1)≤ N2(r,
1
F1

)+N2(r,
1

G1
)+N2(r,F1)+N2(r,G1)+2N(r,

1
F1

)

+2N(r,F1)+N(r,
1

G1
)+N(r,G1)+S(r, f )+S(r,g).

i;e.,

T(r,F)≤ N2(r,
1
F
)+N2(r,

1
G
)+N2(r,F)+N2(r,G)+2N(r,

1
F
)

+N(r,
1
G
)+2N(r,F)+N(r,G)+S(r, f )+S(r,g). (16)

Now by Lemma4 with s= 2, we get

T(r,F∗)≤ T(r,F)−N2(r,
1
F
)+N2+k(r,

1
F∗

)+S(r, f ). (17)

and

N2(r,
1
G
)≤ kN(r,G)+N2+k(r,

1
G∗

)+S(r,g). (18)

Using (16), (18) in (17) we have,

T(r,F∗)≤ N2+k(r,
1

F∗
)+N2(r,

1
G
)+N2(r,F)+N2(r,G)+2N(r,

1
F
)+N(r,

1
G
)+2N(r,F)+N(r,G)+S(r, f )+S(r,g)

≤ N2+k(r,
1

F∗
)+N2+k(r,

1
G∗

)+ kN(r,G)+N2(r,F)+N2(r,G)+2N(r,
1
F
)

+N(r,
1
G
)+2N(r,F)+N(r,G)+S(r, f )+S(r,g)

≤ (3k+4)N(r,
1
f
)+3N(r,

1
P( f )

)+ (2k+3)N(r,
1
g
)

+2N(r,
1

P(g)
)+ (2k+3)N(r,g)+ (2k+4)N(r, f )+S(r, f )+S(r,g).

By using Lemma1 and 1st fundamental theorem, we get

(n+m)T(r, f ) ≤
3k+4

s
T(r, f )+3mT(r, f )+

2k+3
s

T(r,g)+2mT(r,g)+
2k+3

s
T(r,g)+

2k+4
s

T(r, f )+S(r, f )+S(r,g)

≤

(

5k+8
s

+3m

)

T(r, f )+

(

4k+6
s

+2m

)

T(r,g)+S(r, f )+S(r,g). (19)

Similarly,

(n+m)T(r,g)≤

(

5k+8
s

+3m

)

T(r,g)+

(

4k+6
s

+2m

)

T(r, f )+S(r, f )+S(r,g). (20)

Combining (19) and (20) we get

{

n− (
9k+14

s
+4m)

}

(T(r, f )+T(r,g))≤ S(r, f )+S(r,g) (21)
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which is a contradiction asn> max
{

2k+2l , 9k+14
s +4m,2k(σ( f )−1)− (m+2l)

}

. ThereforeH ≡ 0. This gives,

(F (2)
1

F (1)
1

−2
F (1)

1

F1−1

)

=
(G(2)

1

G(1)
1

−2
G(1)

1

G1−1

)

.

Integrating both sides of the above equality twice we get

⇒
1

F1−1
=

A
G1−1

+B, (22)

whereA 6= 0, B are constants. We now discuss the following three subcases:

Subcase (i): LetB 6= 0 andA= B. Then from (22) we get

⇒
1

F1−1
=

BG1

G1−1
. (23)

If B=−1 then from above equation we get

F1G1 = 1

i;e.,

( f nP( f ))(k) .(gnP(g))(k) = p2(z).

a contradiction by Lemma7. If B 6= −1, from (23), we have 1
F1

= BG1
(1+B)G1−1 and soN(r, 1

G1−
1

1+B
) = N(r, 1

F1
). Now by

Nevanlinna second fundamental theorem, we get

T(r,G1)≤ N(r,
1

G1
)+N(r,

1

G1−
1

1+B

)+N(r,G1)+S(r,G1)≤ N(r,
1

G1
)+N(r,

1
F1

)+N(r,G1)+S(r,G1).

Using Lemma4

T(r,G)≤ Nk+1(r,
1

f nP( f )
)+ kN(r, f )+T(r,G)+Nk+1(r,

1
gnP(g)

)− (n+m)T(r,g)+N(r,g)+S(r,g).

Therefore,

(n+m)T(r,g)≤ (k+1)N(r,
1
f
)+N(r,

1
P( f )

)+ kN(r, f )+ (k+1)N(r,
1
g
)+N(r,

1
P(g)

)+N(r,g)+S(r, f )+S(r,g),

(n+m)T(r,g)≤

(

2k+1
s

+m

)

T(r, f )+

(

k+2
s

+m

)

T(r,g)+S(r, f )+S(r,g).

Similarly,

(n+m)T(r, f ) ≤

(

2k+1
s

+m

)

T(r,g)+

(

k+2
s

+m

)

T(r, f )+S(r, f )+S(r,g).

Combining above two inequality, we get

(

n− (
3k+3

s
+m)

)

{T(r, f )+T(r,g)} ≤ S(r, f )+S(r,g).

Which contradict our assumption.

Subcase (ii):
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Let B 6= 0 andA 6= B. Then from (22) we getF1 =
(B+1)G1−(B−A+1)

BG1+(A−B) and soN(r, 1
G1−

B−A+1
B+1

) = N(r, 1
F1
). Proceeding as in

subcase (i) we get a contradiction.

Subcase (iii): LetB = 0 and A 6= 0. Then (22) gives F1 = G1+A−1
A and G1 = AF1 − (A− 1). If A 6= 1, we have

N(r, 1
F1−

A−1
A
) = N(r, 1

G) andN(r, 1
G1−(1−A)) = N(r, 1

F1
). Using the Lemma13 we haven ≤ 3k+m+ 3, a contradiction.

ThusA= 1 and henceF1 = G1

( f nP( f ))(k) = (gnP(g))(k) .

Heren>
(

9k+14
s +4m

)

> (2k+1
s +m). So by Lemma10we get

f nP( f ) = gnP(g),

i.e., f n(am f m+ ...+a1 f +a0) = gn(amgm+ ...+a1g+a0). (24)

Let h= f
g .

If h is a constant puttingf = gh in (24), we get

amgn+m(hn+m−1)+am−1g
n+m−1(hn+m−1−1)+ ......+a0g

n(hn−1) = 0

which implieshd = 1, whered = gcd(n+m,n+m− 1, ....,n+m− i, ...,n+1,n), am−i 6= 0 for somei ∈ {0,1, ...,m}.

Thus f = tg for somet such thattd = 1, whered = gcd(n+m,n+m−1, ....,n+m− i, ...,n+1,n), am−i 6= 0 for some

i ∈ {0,1, ...,m}. If h is not a constant then from (24) we seef andg satisfy the algebraic equationR( f ,g) = 0 where

R( f ,g) is given by (1).

Case (ii): WhenP(w) = amwm, or P(w) = c0 am 6= 0, c0 are complex constant. Proceeding as in case (i) above we obtain

F1G1 = 1 orF1 = G1. If F1G1 = 1 then by Lemma8 gives f (z) = b1ebQ(z), g(z) = b2e−bQ(z), whereQ(z) is a polynomial

without constant such thatQ′(z) = p(z), b1, b2 andb are three constants satisfyingam
2(b1b2)

n+m((n+m)b)2 = −1 or

c0
2(b1b2)

n(nb)2 =−1. If F1 = G1 we obtainf = tg for a constantt such thattn+m∗
= 1

Following example is the supportive example of Theorem15, when the polynomialP(w) is not a monomial.

Example 1. Let P(w) = a4w4+a0, wherea0,a4 ∈ C\ {0} andp(z) = z3−3z2+ z−1. Let

f (z) =
(ez−a)2

(ez−b)3
and g(z) =−i

(ez−a)2

(ez−b)3
,

wherea,b∈ C\ {0} with a 6= b. Let k= 4,n= 16. Clearlys= 2. Now

f 16P( f ) =
(ez−a)32

(ez−b)60

{

a4(e
z−a)8+a0(e

z−b)12
}

and

g16P(g) =
(ez−a)32

(ez−b)60

{

a4 (e
z−a)8+a0(e

z−b)12
}

.
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Thus we see thatf andg are two non-constant meromorphic functions having zeros and poles of multiplicity at least 2,

and[ f 16P( f )](4) and[g16P(g)](4) share the polynomialp(z) CM with

n> max

{

2k+2l ,
3k+8

s
+m∗, 2k(σ( f )−1)− (m+2l)

}

.

We thus see that one of the conclusionf ≡ tg of Theorem15holds good wheretd = (−i)gcd(20,16) = (−i)4 = 1.

The next example is the supportive example of Theorem15when the polynomialP(w) is a monomial.

Example 2. Let f = tanz, andg(z) = − tanz, p(z) = a2z2+a0, wherea0,a2 ∈ C \ {0}, P(w) = w2. Let n= 18. Clearly

s= 1, l = 2,m∗ = 2 and

n> max

{

2k+2l ,
3k+8

s
+m∗, 2k(σ( f )−1)− (m+2l)

}

.

We also see that[ f 18P( f )](2) = [ f 20](2) = [tan20z](2) and[g18P(g)](2) = [g20](2) = [tan20z](2) share the polynomialp(z)

CM, and one of the conclusionf ≡ tg of Theorem15holds good wheretd = (−1)gcd(20,18) = (−1)2 = 1.

The next example is the supportive example of Theorem15when the polynomialP(w) = c0.

Example 3.Let

f (z) =
2+3i
1−5i

e3z3+2z2−z+6 and g(z) =
1−5i
2+3i

e−(3z3+2z2−z+6).

Let n= 13,P(w) = c0 =
i

13
andk= 1. Here we see thatb1 =

2+3i
1−5i

andb2 =
1−5i
2+3i

andb= 1. It is clear that

c2
0 (b1b2)

n (nb)2 =−1.

Let Q(z) = 3z3+2z2− z+6 andp(z) = 9z2+4z−1. Clearly,Q′(z) = p(z). Clearly

n> max

{

2k+2l ,
3k+8

s
+m∗, 2k(σ( f )−1)− (m+2l)

}

is satisfied. We see that

(

f 13P( f )
)′
=

i
13

(

2+3i
1−5i

)13
(

e13(3z3+2z2−z+6)
)′

=
i

13

(

2+3i
1−5i

)13

·13(9z2+4z−1) ·e13(3z3+2z2−z+6)

= i

(

2+3i
1−5i

)13

· p(z)e13(3z3+2z2−z+6).

Similarly,

(

g13P(g)
)′
=−i

(

1−5i
2+3i

)13

· p(z)e−13(3z3+2z2−z+6).

Clearly
(

f 13P( f )
)′

and
(

g13P(g)
)′

share the polynomialp(z) CM. We see thatf andg are of the formsf (z) = b1ebQ(z)

andg(z) = b2e−bQ(z) with c2
0 (b1b2)

n (nb)2 =−1.
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