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1 Introduction

In this paper, by meromorphic function we shall always meameaomorphic function in the complex plane. We adopt
the standard notations in the Nevanlinna Theory of merohiofpnctions as explained ir][9,18]. It will be convenient
to letE denote any set of positive real numbers of finite linear megsiot necessarily the same at each occurrence.

For any nonconstant meromorphic functif(e), we denote by§(r, f) any quantity satisfying(r, f) = o(T(r,f)) as
r — oo, r ¢ E. A meromorphic functiora(z) is said to be small with respect fqz) if T(r,a) = S(r, f). We denote by
S(f) the collection of all small functions with respect fo Clearly CU {»} € §(f) andS(f) is a field over the set of
complex numbers.

For any two nonconstant meromorphic functidnandg, anda € S(f) N S(g), we say thatf andg share & IM(CM)
provided thatf — a andg — a have the same zeros ignoring(counting) multiplicities.

The following theorem in the value distribution theory isli@own [3,15].

Theorem 1. Let f(z) be a transcendental meromorphic functionzri a positive integer. Then"f’ = 1 has infinitely
many solutions.

Fang and Hual?], Yang and HuaZ20] obtained a unicity theorem respectively to the above theor

Theorem 2. Let f(z) and gz) be two nonconstant entire (meromorphic) function, 6 (n > 11) be a positive integer.
If f"f’ and d'g’ sharel CM then either {z) = c;exp(cz), g(z) = c,exp(—cz), where g, c; and c are three constant
satisfyingd(cic)"1c? = —1, or f(2) =tg(2) for a constant t such thaft! = 1.

Theorem 3. Let f(z) and gz) be two nonconstant entire functions, let n, k be two posititegers with > 2k + 4. If
(f"(2))® and (g"(2))¥ sharel CM then either fz) = ciexp(c2), g(z) = c,exp(—c2), where g, ¢, and c are three
constant satisfying—1)¥(c1c2)"(nc)* = 1 or f(2) = tg(z) for a constant t such thaft= 1.
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Theorem 4. Let f(z) and gz) be two nonconstant entire functions and let n, k be two pesititegers with n- 2k + 8. If
(f"(2)(f(2) — 1)) and(g"(2)(g(2) — 1)) sharel CM then (2) = g(2).

Then Fang and Qiull0] considered the fixed point sharing uniqueness problem btadred the following theorem.

Theorem 5. Let f(z) and gz) be two nonconstant entire functions and>r6 be a positive integer. If (z)f'(z) and
g"(2)d'(2) share z CM, then either(f) = 7, o(z) = ce~°Z, where g, ¢, and ¢ are three constant satisfying
4(cyc)"1c? = —1 or f(2) =tg(2) for a constant t such thaft! = 1.

Later in 2004, Lin and Yi16] proved the following theorem:

Theorem 6. Let f and g be two nonconstant entire functions arelhbe a positive integer. If'{(f —1)f’ and d'(g— 1)g
share z CM, then £ g.

Zhang p] extended the above two theorems and got the following t&sul

Theorem 7. Let f(z) and ¢z) be two nonconstant entire functions and let n, k be two pasititegers with n> 2k+ 4. If
(fm® and(g")® share z CM, then either

1) k=1, f(z= 17, (2 = e~ where g, ¢, and c are three constant satisfyidgc;c2)"(nc)? = —1, or
(2) f(z) =tg(z) for a constantt such thaft= 1.

Theorem 8. Let f and g be two nonconstant entire functions and let n, kwmegositive integers with - 2k + 6. If
(f"(f —1)) and(g"(g— 1)) share z CM, then £ g.

Regarding Theorems7— 1.8, Xu et al [/] considered the case of meromorphic functions. They proved

Theorem 9. Let f and g be two nonconstant meromorphic functions and letre two positive integers with>a 3k + 10.
If (f")® and(g")® share z CM, f and g share IM, then either {2) = c,6°Z, g(z) = c,e~°Z, where g, ¢, and ¢ are
three constant satisfying(c;c,)"(nc)? = —1 or f(z) =tg(z) for a constantt such thaf't= 1.

Theorem 10. Let n, k be two positive integers wittch3k+ 12, and f and g be two nonconstant meromorphic functions
satisfying®(eo, f) > 2. 1f (f"(f — 1))® and(g"(g— 1)) share z CM, f and g share IM, then f=g.

In view of above theorems, Sahatj obtained the following result in 2010 for some more geneaallinear differential
polynomial.

Theorem 11. Let f and g be two nonconstant meromorphic functions and,l&tand m be three positive integers with
n> 9k+4m+ 13. Let P(w) = aW™ 4 am_ W™ 1 4 - +ayw+ ag where @ # 0, ay, - - -, am # 0 are complex constants.
If (f“P(f))(k) and (g”P(g))(k) share z IM, f and g share IM. Then f= tg for a constant t such thaf't= 1, where
d=gcdn+mn+m-1,....n+m—i,...n+1n), anj # 0 for some ic {0,1,...,m}; or f and g satisfy the algebraic
equation Rf,g) = 0 where Rf,g) is given by

R(f,g) = f"(@anf™+...+a1f +ag) — g"(@am@™ + ... + 219+ o). (1)

It is natural question to ask what happen if sharing fixed pimirabove theorem is replaced by sharing a nonconstant
polynomial.

Keeping in mind the above question X. B. Zhang and J. F.2g) §btained the following result:

Theorem 12. Let f and g be two nonconstant meromorphic functiong) pe a nonconstant polynomial of degree
degp) =1 <5, n, k and m be three positive integers with 18k + m+ 7. Let P(w) = apw™+ am_ W™ 4+ faw+ ag

be a nonzero polynomial. (ff“P(f))(k) and (g“P(g))(k) share p CM, f and g share IM, then one of the following two
cases holds:
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(1) f =tgforaconstantt such thatt= 1, where d= gcd(n+mn+m—1,....n+m—i,...n+1,n), an_;i # 0for some
i€{0,1,....m};

(2) f and g satisfy the algebraic equatioriRg) = 0 where Rf,qg) is given by ().

(3) P(2) is reduced to a nonzero monomial, namelg)P= a7 # 0 for some ic {0,1,...,m}; if p(2) is not a constant,
then f(z) = ¢16°9?, g(2) = c,e %%, where Qz) = [Fp(2)dz, q, c; and c are three constants satisfying
a2(c16)™((n+1i)c)? = —1, if p(z) is a constant b, then (£) = c3e%, g(2) = cae %, c3, ¢4 and c are three
constants satisfying—1)ai?(cscs)" ' ((n+i)c)% = b2,

In 2016, Sahoo et all] removed the restriction on the degree of the polynom({a) and proved the following theorems:

Theorem 13. Let f and g be two transcendental meromorphic functiorig) pe a nonconstant polynomial of degree I,
and let (> 1), k(> 1) and m(> 0) be three integers with » max{3k+ m-+6,k+ 21 }. In addition we suppose that either
k, | are co-prime or k> | when 1> 2. Let P(w) be defined as in the above theoren( f#P(f)) and (g"P(g))* share
p(z) CM; f and g shareo IM, then the following conclusions hold:

(i) IfP(w)=anwm+ am_1W" 1+ ... +aw-+ag is not a monomial, then either= tg for a constantt that satisfie$ t=

1, where d=gcd(n+mn+m—1,....n+m—i,...,n+1n), ani # 0for some ic {0,1,...,m}; or f and g satisfy
the algebraic equation ®,g) = 0 where Rf,g) is given by (). In particular m= 1 and ©(c, f) + O(,g) > ﬁ,
then f=g.

(i) When Rw) = aw™, or P(w) = ¢y, then either f=tg for some t such thaft™ =1, or f(z) = b;"??, g(z) =
boe P2, where Qz) is a polynomial without constant such that(@ = p(z), by, b, and b are three constants
satisfying &2 (b1b2)™™((n+m)b)? = —1 or cp?(byby)"(nNb)? = —1, where i is same as in Lemniss.

Theorem 14. Let f and g be two transcendental meromorphic functiorig) be a nonconstant polynomial of degree I,
and let (> 1), k(> 1) and n(> 0) be three integers with > max 9k + 4m-+ 11 k+ 2l }. In addition we suppose that
either k | are co-prime or k> | when | > 2. Let R(w) be defined as in the above theoren(.f#P(f))® and (g"P(g))™®
share z) IM; f and g sharew IM, then the conclusion of Theorel hold.

In this paper we investigate on the above theorem to remas@gfr IM and obtain the following results:

Theorem 15. Let f and g be two transcendental meromorphic functions with) < c, whose zeros and poles are of
multiplicity at least s, where s is positive integer. Léz)ds a polynomial of degree | and

P(W) = amW™ 4 am W™ - agw + ag,
where @,ay, - - --,am are constants, where(k 1), k(> 1), m(> 0) be three integers and ¥ | when | > 2 satisfying

n> max{2k+2|,3kT+8+m,2k(a(f)—1)—(m+2|)}.

It (£"P(£))® and(g"P(g))™ share [§z) CM, then one of the following holds:

(i) If P(w) is not a monomial and3) hold.Then either f=tg for some t such thaft= 1, where d= gcd(n+m,n+m-—
1,...,n+m—i,...n+1n),an i #0forsomeic {0,1,...,m}; or f and g satisfy the algebraic equatiofRg) =0
where Rf,g) is given by 1).

(i) P(w) = anw™, or P(w) = cg, then either f=tg for a constant t such thaft™ =1, or f(z) = b;e"??, g(z) =
boe P2, where Qz) is a polynomial without constant such that(@ = p(z), by, b, and b are three constants
satisfying &2 (b1b2)™™((n+m)b)? = —1 or cp?(byb,)"(nNb)? = —1, where i is same as in Lemniss.
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Theorem 16. Let f and g be two transcendental meromorphic functions with) < o, whose zeros and poles are of
multiplicity at least s, where s is positive integer. Léz)ds a polynomial of degree | and(R) = amwW™ 4 am_w™ 1+ -
-+ a3w+ ag be a nonzero polynomial andn 1), k(> 1), m(> 0) be three integers andk | when | > 2 satisfying

n> max{2k+ 21, ng; 14

+4m,2k(a(f)1)(m+2l)}.

If (f”P(f))(k) and(g“P(g))(k) share [dz) IM, then the conclusions of Theorels hold.

2 Lemmas

Let F; and G; be nonconstant meromorphic functions defined in a complargL. We denote byH the following
function:
AL T .
N ,:l<1) Fr—-1 G(ll) G—-1)

Lemmal.[2] Let f(z) be a nonconstant meromorphic function and lgtza a1 (2), .....
an(2)(# 0) be a small function with respect to f. Then

T(ranf"+an 1" 1+ ... +ag) =nT(r, f)+S(r, ).

Lemma2.[4] Let f(z) be a nonconstant meromorphic function in the complex pléirtiee order of f is finite, then

/

m(r, fT) = O(logr), r — oo.

Lemma3.[4] Leth(z) be a nonconstant entire function and lézf = €"?. LetA and u be the order and lower order of
h(z), respectively . We have

(i) If 4 < oo, thenyu is a positive integer, {z) is a polynomial of degreg, andA = .

(i) If i < oo, then Kz) is transcendental and = .

Lemma4.[17] Let f(z) be a nonconstant meromorphic function and s, k be two pesiitegers. Then

1 1
N (17 ) < T 1) = T(00) 4 Nesalr ) + S0 )

Ne (1 15 ) < KN 4 Newk(6 )+ S(0 1),
Lemma5.[2] Let f(2) be a nonconstant meromorphic function and let k be a positieger. Suppose that'¥ # 0, then
1 — 1
N{r, W < KN(r, f) 4+ N(r, ?)+S(r, f).

Lemma6.[5] If N(r,0; f® /f -£ 0) denotes the counting function of those zeros(Bfthat are not the zeros of f, where
ais zero of f¥ is counted according to its multiplicity, then

N(r,lek)/f #0) < kN(r, f)+N(r,%| < k)+kN(r,1| >Kk)+S(r, f).
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Lemma7. Let f and g be two nonconstant transcendental meromorphictions whose zeros and poles are of
multiplicity at least s, where s is positive integers. LetwP = amw™ + am W™ + - - - + aqw + apg, where
ag(#0),a1,---+,am(# 0) are constants, and let® 1), k(> 1), m(> 0) are integers and () is a polynomial of degree | .

If

1 m+n
A>—4 7
~ s+ (m-+n)s+ 2k @)

whereA is the number of distinct roots of(®) = 0 then

(f"P(£))™ (g"P(g)™ £ p?(2)

Proof.
(f"P(£))™ (g"P(g)™ = p?(2) 4)

Let P(2) = am(z—dy)'1.(z—d2)'2--- (z—dy)"*, where3}_;1j =m, 1 <A <m,di #dj,i # jand 1<i,j < A, dj'sare
nonzero constants ar¢l s are positive integers, = 1,2,..,A. Let zp ¢ {z: p(z) = 0} be a zero off with multiplicity
po(>s). Thenz, is a pole ofg with multiplicity qo(> s) say. From 4) we get, npg—k = (m+n)go+ k so,npy— k >

(m+n)s+kandpg > (M)st2K | otz ¢ {z: p(z) = 0} be a zero oP(f) of orderp; and a zero of — d; of orderq; for

n
somei =1,2,...A. Thenp; = liq; for somei = 1,2,...A, andz, is a pole ofg with multiplicity g(> s) say, so from4) we

get

gli—k=(Mn+m)g+k
> (N+m)s+k

(n+m)s+ 2k
i )

i.e,q > i

fori=1,2,..,A. Letz & {z: p(z) = 0} be a zero of f"P(f))® of orderp, but not a zero of "P(f). Then from @) z is
a pole ofg of orderé (> s). Then
p2 = (Nn+m)é +k> (n+m)s+k.

Suppose thats ¢ {z: p(z) = 0} be a pole off then from @) z3 is a zero of(g"P(g)) or a zero of(g"P(g))¥. Therefore

N(r, f) <N(r,

A o 1 o
)+JZlN(r, gidi)—i—N(r,O,Bk/B;é0)+S(r,g),

Ql

whereN(r,0;B¥ /B + 0) denotes the reduced counting function of those zerd%fthat are not the zeros & and
B = g"P(g). Now by Lemmab we have

1

N(r.0:B® _
N(r,0;B /B#O)<(n+m)s+k

1
N(r,%/B;&O)

1 1 — 1

S T = = >

< (n+m)s+k{k (r,B)+N(r,B|<k)+kN(r,B|_k)}
k

P —
~ (n+m)s+k

{N(r, B) + Nk(r, é)}

Z|

(r’

QlpP

<L )+AN(ri)+N(r )
~ (n+mjs+k le "g—di 9
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So,

— k n m
N(r, 1) < <1+ (n+mjs+ k> ((m+ n)s+ 2kt (Mm+n)s+ 2k) T(r9)

et 9 S+ Sy

T(r,g)+S(r, f)+S(r.g).

=

=5

By second fundamental theorem

AT(r, f) <N(r, f)+N(r i )

T(r,f)+ %T(r,g)ntS(r, f)+9S(r,g).

IN

n N m
(m+n)s+2k  (m+n)s+2k
Similarly,

T(r,g) < ((m+nr;s+ 2k+ (m+r:r)]s+ Zk) T(r,g9)+ éT(r, f)+S(r, f)+S(r,0).

Adding above two inequality we get

1 m-+n

Ay g T D+ T(0) < S 1) 4 S(rg

which contradict given assumption. This completes the fopbthe Lemma.

Lemma8. Let f and g be two nonconstant meromorphic functions wiffi) < «, p(z) be nonconstant polynomial of
degree | and n, k, m be three positive integer witls max{2k+ 2I,2k(c(f) — 1) — (m+2l)}. In addition we assume
k>l when |> 2, and if

(f"P(£))™ (g"P(g)™ = p*(2) (5)

where Rw) = anw™ or P(w) = ¢ then f(z) = ;"2 g(z) = be P2, where b, b, and c are three constants satisfying
am?(b1b)™™((n+m)b)2 = —1 or co?(b1b,)"(nb)?> = —1 and Q2) is a polynomial without constant such that(g) =
P(2)-

Proof. We first prove that

f#0,g#0. (6)

k k
(fn+m)( ) (gn+m)( ) pZ(Z) (7)

Suppose thaty is a zero off say multiplicityr but p(zp) # 0 thenz is a pole ofg say multiplicity sp. Then we have
from (7), (n+m)r —k = (n+ m)sp +k = (n+m)(r — ) = 2k, which is contradiction fon > 2k+ 2l. Now suppose
thatzy is a zero off say multiplicityr if z is not a pole ofg thenz, must be zero op(z) of multiplicity 1o, say, then
we have from7) (n+ mjry — k > 2lp, which is again contradiction. i is a pole ofg say multiplicity s; then we have
(n+m)ry —k= (n+m)s; + k+2lg, (n+m)(ry —s1) = 2k+ 2lp which is impossible. Sof has no zeros. Similarly it can
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be shown thaty also has no zeros. ThuB)(is proved. Next we prove that

N(r, f) = O(logr); (8)

(£ = P@ ©)

SinceN(r, (f"P(f)) (k)) = N(r, f"P(f)) + kN(r, f"P(f) = (n+m)N(r, f) + kN(r, f) + S(r, f)
By Lemma5b

1 1 — —
N(ra (gner)(k) ) S N(r7 W) + kN(r7 gner) + O(Iogr) = kN(r7 g) + O(lOgr)

using above inequality an@)we get(n+m)N(r, f) +kN(r, f) <kN(r,g) + O(logr). Similarly we get(n+m)N(r,g) +
kN(r,g) < kN(r, f) +O(logr). Combining we geN(r, f) + N(r, f) = O(logr). Thus we obtain& which mean thaff
andg has at most finitely many poles. Now we prove tbaf) = g(g). By K.Yamanoi B] result of second fundamental
theorem with takindg= = f"P(f), G = g"P(g) we get

_ — 1 — 1
T(r,F®) <N(r,F®) +N(r, F—) +N (r, m) +(e+0O(1))T(r,F)

<N(r, f)+N(r,==)+N (r, ﬁ) +(e+0O(1))T(r,F)

Therefore T(r,F®) — N(r, ) < N(r,f) + N(r’lz(k)+p(z)) + (¢ + O(1)T(r,F) Using Lemma 4 we get,
(

T(LF) <N +N (1 zmig ) + Nl ) + (€4 O(L)T (1 F)

_ _ 1
(n+m)T(r, f) <N(r,f)+N (r, m) +(e+0(1)T(r,F)

<N(r, f) + (k+2)(n+m)T(r,g) + I logr + (£ + O(2)) T (r, f)

= n+m=I1-)T(r,f) < (k+1)(n+m)T(r,g) + (¢ +O(1))T(r, f)
Sincee < 1thenT(r, f) = O(T(r,9)),
Similarly, T(r,g) = O(T (r, f)) and hence
o(f) =0(9) (10)

Thenf = % g= % wherer(z) andq(z) are polynomial with degregedr(z)) = r, degq(z)) = g, while h(z) and

h1(z) are nonconstant entire functions.

By Lemma3, h(z) andh;(z) are polynomial wittdegh(z)) = degh;(z)) = h= o(f), Then we have

(k) (m+ n)e(n+m)(h(z))
(fmm® — ) R«(2)
and (n+m)(h1(2))
(k) _ (m+n)elnrrmini
(g™ ® = G X(2),
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whereRy(z) andQ(z) are two polynomials. Frompf we geth(z) + h1(z) = C, whereC is a constant. Furthermore we
havedegRy(2)) +deg Qk(2)) = degr™™X(z)) +deg g™ ™*(2)) + 2|, = k(r +h—1) + k(g+h—1) = g(n+m+k) +
r(n+m+k)+2l.

= 2k(h—1) = (n+m)(q+r)+2l (12)

If N(r, f) +N(r,g) # 0 then(g+r) > 1. From (L1) we obtain X(h—1) > (n+m)+2 = n< 2k(h—1) — (m+2l)
which contradict the given conditions. Therefdté, f) + N(r,g) = 0, showing that botH andg are entire function and
sor=q=0. From 1) we geth=1+1,k=21orh=2k=1

Case 1: Fok=1,h=1+1. We geth'(z) = bp(2), h;(z) = —bp(z) whereb + 0 is a constant= h(z) = bQ(z) +d; and
hi(z) = —bQ(z) + dy, whereQ(z) is a polynomial without constant term such tli#tz) = p(z) andd,, d; are constants.
Therefore f = b e?®?, g = be ™2  where by, b, are constant satisfying the condition
am?(b1b)™™((n+ m)b)2 = —1.

Case 2h=2,k=I.
For this case we getting a contradiction by our assumptibe.dasd”(w) = cg can be proved similarly. This completes
the proof of the Lemma.

Lemma 9.[4] Let f; and % be two nonconstant meromorphic functionslfict ¢, f, = ¢z, where g, ¢, c3 are nonzero
constants, then

T(r, f1) < N(r, f1) +N(r, i) +N(r, f_lz) +5(r, f1).

f1

Lemma10. Let f and g be two nonconstant meromorphic functions havargszand poles of order at least s. Let
k, m, n, be three integers with>n LS“ + m and let Bw) = apmW™ + am W4+ aw+ag or P(w) = ¢y, where
ap # 0,ay, - -, am # 0 are complex constants. (f"P(f))™ = (g"P(g))¥, then MP(f) = g"P(q).

Proof.From the assumption, we g&tP(f) = g"P(g) +r(z) wherer(z) is a polynomial of degree at mdst-1. Ifr(z) 20
f)

then by Lemma we haveT (r, r(z()”) < N(r, e (() )+ N(r, fné() ))+N( gnp )+S(r f) + S(r,g). Therefore,

f"p

—~
—

T(r, f"P(f)) <T(r,

)+ (k—1)logr + O(1)

f"P(f), — (2 —1(2
i N e N i)

E)+N(r,é)+ﬁ(r

1
f BE)

57— ) +2(k=1)logr+ S(r, f) + S(r, g),
by Lemmal andT (r, f) > slogr+ O(1), we have

(Nn+m)T(r,f) < <m+§+ 2(k751)> T(r, f)+(m+ é)T(r,g)+S(r, f)+S(r,0)

Similarly, (n+m)T(r,g) < (m+ % + z(kgl)) T(r,9)+(m+2)T(r, f)+S(r, )+ S(r,g). By combining above two we get,
{(n+m)—(2m+ LS“)} (T(r,f)+T(r,g)) < Sr, f)+S(r,g), which is a contradiction. Hena¢z) = 0 and sof"P(f) =
g"P(g)-
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Lemma 11.[20] Let f(z) and gz) be two nonconstant meromorphic functions, a be a finite morcmnstant. If f and g
share a CM, then one of the following cases holds:
() T(r,f) <Na(r, ) +Na(r, 5) +Na(r, f) + Na(r,g) + S(r, f) + S(r, g); same holds for Tr,g);
(i) fg=a%
(i) f=ag.
Lemma 12.[1] Let f(z) and gz) be two nonconstant meromorphic functions. If f and g stidi and H # 0, then
1

T(r, f) < Ny(r, %) + No(r, é) +Na(r, f) 4+ No(r,g) + 2N(r, %) +2N(r, f) +N(r, =) +N(r,g) + S(r, f) + S(r,g).

«

Lemma 13. [13] Let f(z) and gz) be two nonconstant meromorphic functions, aiig ), k(> 1), m(> 0) be three

integers. Suppose that = % and G = %. If there exists two nonzero constantsand ¢ such that
m, if P(f) # co;

Fa 0, if P(f)=co;

N(r, =25) = N(r, &) andN(r, 525) = N(r, &), then n< 3k+m + 3, where m = {

3 Proof of the main Theorems

Proof of Theoreni5:

Proof. We discuss the following cases separately

Case (i): LetP(w) = amw™ + am W™ 1 + - .. 4 ayw + a9, whereag(# 0),ay,- - --,am(# 0) are constants, is not a

monomials. Suppose thd = (f”P(f))(k), G = (g”P(g))<k> and F* = f"P(f), G* = ¢g"P(g) and alsoF; = %
G = % SinceFy, G; share 1 CM by Lemma1 one of the following subcases holds:
(@) T(r,F1) < Na(r, &)+ No(r, &) + Na(r,F1) + Na(r, G1) + S(r,F1) + S(r, G1) same holds foT (r,G1);
(b) F1G1 = p?(2);
(c) F1 =G
Subcase (a): We have
1 1
T(r,F) < No(r, E) + No(r, 6) +No(r,F) +Na(r,G) + S(r,F) + S(r,G). (12)
By Lemma4 with s= 2, we obtain
* 1 1
T(raF )ST(er)7NZ(raE)+Nk+2(rva)+S(er)v (13)
1 1 _
NZ(rv 6) < Nk+2(ra @) +K (r7 G) +S(ra G) (14)
Using (12), (14) in (13) we get,
. 1 1 — _
T(ra F ) < Nk+2(ra E) + Nk+2(ra @) + (k+ Z)N(ra g) =+ 2N(r7 f) +S(r7 F) +S(r7 G)
— 1 1 — 1 1 — _
< (K+2)N(r,—)+N r,—>+ k+2)N(r, = +N<r,—>+ k+2)N(r,g) + 2N(r, f) + S(r, f) + S(r,
Ot 2N 1) N (1 gy )+ (k2N ) N (1 s ) + (k2N ) +2N(r 1) +S(r, ) +S(r.g)
k+2 1 1 k+2 1 1 k+2 2
< = = i I = . I — =
< N(r, f)+N <r, P(f)> + S N(r,g)+N (r, P(g)) + S N(r,g) + SN(r,f)JrS(r,f)JrS(r,g)
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Now by first fundamental theorem and Lemihave get

(Nn+m)T(r, ) < <2kT+4+m)T(r,g)+ <k%4+m>T(r,f)+S(r,f)+S(r,g).

Similarly,
2k+4 k+4
memTeg < (2 em) T+ (S em) T 4501 + S
Combining above two inequality, we get

(n+m){T(r,f)+T(r,9)} < (?"(TJFBJer) {T(r, f)+T(r,g)}+5(r, f)+(r,9)

3k+8
= - (¥ em) e+ Tro) < s+ sino)
which is a contradiction fon > (38 4+ m).

Subcase (b): Now by (b) we have
(f"P() Y. (g"P(@)" = P*(2).

which is a contradiction by Lemma

Subcase (c): By (c) we get
(f"P(1) " = (g"P(@) .

Heren > (342 4 m) > (£ + m). So by LemmalOwe get

f'P(f) = g"P(g)

ie, f"(@anf™+...+af +a0) =g"(amg™+ ... + @19+ ap). (15)

Leth= é. If his a constant putting = ghin (15), we get
amgn+m(hn+m _ 1) + amilgn+mfl(hn+m—l _ 1) 4o + aogn(hn _ 1) -0

which impliesh? = 1, whered = ged(n+mn+4+m—1,....n4+m—i,..,n+1,n), an_; # 0 for somei € {0,1,...,m}.

Thusf = tg for somet such that? = 1, whered = gcd(n+mn+m—1,.....n+m—i,...n+1,n), am_; # O for some
i €{0,1,...,m}. If his not a constant then fron1§) we seef andg satisfy the algebraic equatid®(f,g) = 0 where
R(f,g) is given by ()

Case (ii): WherP(w) = anw™, or P(w) = ¢p am # 0, ¢ are complex constant. Proceeding as in case (i) above wimobta
F1Gi=1o0rF, =G.

If F1G; = 1 then by Lemma gives f(z) = b;e???, g(z) = be "2, whereQ(z) is a polynomial without constant such
thatQ'(z) = p(2), by, by andb are three constants satisfyiag?(b;bz)"™((n+m)b)? = —1 or co?(b1by)"(nb)? = —1 .

If F; = G1 we obtainf =tgfor a constant such that"™ = 1.

Proof of Theorenmi6:
Proof. Case (i): LetP(w) is not a monomial. Suppose that= (f"P(f))¥, G = (g"P(g))® andF* = f"P(f), G* =

g"P(g) and alsd~; = %, G = %. ThenF;, G; share 1 IM. We assume thidtZ 0 defined as ing). So, from Lemma
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12 we have

1 1 _ 1

T(r,F1) < No(r, =)+ Na(r, =) + No(r,F1) + No(r,G1) + 2N(r, =)
Fi Gy F1
_ 1 _
+ 2N(r; Fl) + N(r7 G_) + N(r7 Gl) + S(ra f) + S(ra g)
1

iie.,

=

T(r,F) < Na(r, é) + No(r, é) +Na(r,F) + No(r,G) + 2N(r, =)

T

— 1 _ —
+N(r76)+2N(raF)+N(rvG)+S(raf)+s(rag) (16)
Now by Lemma4 with s= 2, we get
x 1 1
T(raF )ST(raF)7N2(r7E)+N2+k(raE)+S(raf)' (17)

and

No(r, &) < KN(T,G) 4 Nouilr, ) + (1, 9) (18)
Using (16), (18) in (17) we have,

T(r,F*) < Npy(r, F—l*) + No(r, é) + No(r,F) + Np(r,G) + 2N(r, é) +N(r, é) +2N(r,F) +N(r,G) + S(r, f) + S(r,9)
i) + No.«(r, é) +KkN(r,G) + Na(r,F) + Na(r,G) + 2N(r, é)
+N(r, =)+ 2N(r,F) +N(r,G) + S(r, f) + S(r,9)

1 — 1
+2N(r,Pig))+ (2K-+ 3N(r, 0) + (2k+ AN, )+ S(r, ) + S(1,9).

)

By using Lemmal and 1st fundamental theorem, we get

3k+4 2k+3 2k+3 2k+4
(n+m)T(r, f) < %T(r, F) 4 3mT(r, f) + %T(r,g)+2mT(r,g)+ %T(r,g)Jr%

T(r, f)+S(r, f)+S(r,9)
< (5'%8+3m) T )+ (‘"‘%Gﬂm)T(r,gHS(r, f)+8r.g). (19)
Similarly,

(n+mM)T(r,g) < (SKT—i_B—FSm) T(r,g)+ (AJ(T—FG—FZm) T(r, f)+9(r, f)+ 9(r,g). (20)

Combining (L9) and @0) we get

fn- G am e+ Tre) < s+ srg @1)
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which is a contradiction as > max{2k+ 2|, %14 4 am 2k(o(f) — 1) — (m+2!) }. Therefored = 0. This gives,

2 1 2 1
SER G &

(@* Fl—l) - (G(ll> Gl—l)'

Integrating both sides of the above equality twice we get

1 A

“E-1 G -1

+B, (22)
whereA = 0, B are constants. We now discuss the following three subcases:

Subcase (i): LeB # 0 andA = B. Then from 22) we get

1 BG,
= ) 23
TH-o1 G 1 (23)
If B= —1 then from above equation we get
F1Gi=1

ie.,
(f"P()™ . (g"P(9))™ = p*(2).

a contradiction by Lemma. If B # —1, from (23), we havet = ﬁ%rl and soN(r, Grlrlg) =N(r, &). Now by
Nevanlinna second fundamental theorem, we get
— 1 — 1 — — 1 — 1 —
T(r,Gy) <N(r, —) +N(r, ———) + N(r,G1) + S(r,G1) < N(r, =) + N(r, —)+N(r,G1) + S(r,Gy).
G1 Gi— 15 Gy F
Using Lemmag
T(r,G) < Ny (r = )+ KN(r, f) + T(r,G) + Niy1(r 1 )— (n+m)T(r,g) + N(r,g) + S, 9)
) > Nk+1 7fnP(f) ) ) k+1 7gnp(g) 7g ag 7g .
Therefore,
— 1 1 — — 1 1 —
(n+ m)T(rvg) < (k+ 1)N(r7 ?) + N(rv m) =+ kN(r7 f) =+ (k+ 1)N(ra a) =+ N(ra @) =+ N(rvg) + S(ra f) + S(r5 g)5
2k+1 k+2
memT(rg) < (25 m) T+ (L2 m) T+ ) 4 Srg),

Similarly,
2k+1 k+2
emT( ) < (2 em) T+ (524 m) T 6 4 S0 1)+ So)
Combining above two inequality, we get

(n= 2 m ) (T + T 0) < Sir. 1)+ S(r).

Which contradict our assumption.

Subcase (ii):
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Let B + 0 andA # B. Then from @2) we getF; = %&w and soN(r, W{AH) =N(r, &). Proceeding as in
1— 5

subcase (i) we get a contradiction.

Subcase (iii)): LetB =0 andA # 0. Then @2) givesF; = G“T’H andG; = AR — (A—1). If A# 1, we have

N(r, —x) = N(r, ) andN(r, ﬁ) =N(r,£). Using the Lemma.3 we haven < 3k+m+ 3, a contradiction.
AT

ThusA=1 and henc&; = G;

(f"P(£))% = (g"P(g))".

Heren > (%14 4 4m) > (ZH 4 m). So by LemmalOwe get

f"P(f) =g"P(g),

ie, f"(anf™+...+af +ag) =g"(ang™ + ... + @19+ ao). (24)

Leth= é.
If his a constant putting = ghin (24), we get

ang™™(h™ M — 1) + apm_1g™ ™ MMM 1) 4 ag"(h"—1) =0

which implieshd = 1, whered = gcd(n+mn+m—1,...n+m—i,...n+1,n), an_i # 0 for somei € {0,1,...,m}.
Thus f = tg for somet such that® = 1, whered = gcd(n+m,n+m—1,....n+m—i,...,n+1,n), am_i # 0 for some
i €{0,1,....,m}. If his not a constant then fron24) we seef andg satisfy the algebraic equatid®(f,g) = 0 where
R(f,qg) is given by @).

Case (ii): WherP(w) = anw™, or P(w) = ¢cp am # 0, ¢ are complex constant. Proceeding as in case (i) above wimobta
F1G; = 1 orF; = G1. If F;G; = 1 then by Lemma gives f (z) = b1e???, g(z) = b,e "%@, whereQ(z) is a polynomial
without constant such th&¥ (z) = p(z), by, b> andb are three constants satisfyiag?(b1by)™™((n+m)b)2 = —1 or
co?(bib2)"(nb)2 = —1. If F; = G; we obtainf = tg for a constant such that™™ =1

Following example is the supportive example of Theod&mwhen the polynomiaP(w) is not a monomial.

Example 1. Let P(w) = aqw* + ag, whereag, a4 € C\ {0} andp(z) = 22— 322 +z— 1. Let

(€ —a)®
(&-b)*

f(z) = —; andg(z) = —i

wherea,b € C\ {0} with a# b. Letk=4,n=16. Clearlys= 2. Now

7 a2
() = (o {au(@ - a e -
and
7
PG = (o as( - a0 |
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Thus we see that andg are two non-constant meromorphic functions having zerdspaes of multiplicity at least 2,
and[f16P()]® and[g*6P(g)]¥ share the polynomigl(z) CM with

n>max{2k+2| 3KT+B+ - 2k(a(f)1)(m+2|)}.

We thus see that one of the conclusios tg of Theoremil5 holds good wheré! = (—i)90d20.16) — (_j)4 =1,

The next example is the supportive example of Theot&mhen the polynomiaP(w) is a monomial.

Example 2. Let f = tanz, andg(z) = —tanz, p(z) = a;z* + ao, whereag,a; € C\ {0}, P(w) = w?. Letn = 18. Clearly
=1l=2m" =2and

n>max{2k+2| 3KT+B+ - 2k(a(f)1)(m+2|)}.

We also see thdtf18P()]2 = [f20](2) = [tar?®Z(® and[g*®P(g)]® = [¢?°)(? = [tarP°Z(? share the polynomigh(z)
CM, and one of the conclusioh= tg of Theoreml5 holds good wher¢? = (—1)9¢d(2018) — (_1)2— 1,
The next example is the supportive example of Thect&mvhen the polynomiaP(w) = co.

Example 3.Let

2+3i Q3B +27- 216 _ 15 (38,22 716)
f(z) = 15 5| and g(z) = 2+3ie .
i 2+3i 1-5i )
Letn=13,P(w) =cp = 13 andk = 1. Here we see thdi; = T5| andb, = 513 andb = 1. Itis clear that
c§ (b1by)" (nb)? = —

LetQ(z) = 32 + 222 — z+ 6 andp(z) = 922 + 4z— 1. Clearly,Q'(2) = p(2). Clearly

n>max{2k+2| 3KT+S+ - 2k(0(f)—1)—(m+2|)}

is satisfied. We see that
13 ,
(e13(3z3+222—z+6))

13(922 +4z— 1) . e13(323+222—z+6)

13 5

o\ 13
. (2 +3i ) ! . p(z)e13(3z3+22272+6)_
Similarly,

(ngP(g))/ L (;Jr g: > . p(2)e 1332 122 216)

Clearly (f13P(f))" and (g'3P(g))’ share the polynomiah(z) CM. We see thaf andg are of the formsf (z) = by’
andg(z) = bpe 2 with ¢ (byb)" (nb)? = —

© 2019 BISKA Bilisim Technology



NTMSCI 7, No. 2, 222-236 (2019)www.ntmsci.com BISKKA 236

Acknowledgement

The authors would like to thanks the reviewers for their aale comments and suggestions.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors have contributed to all parts of the article. &lithors read and approved the final manuscript.

References

[1] A. Banerjee, Meromorphic functions sharing one value, J. Math. Math. Sci. 22 (2005), 3587-3598.
[2] C. C. Yang, On deficiencies of differential polynomialsMath. Z. 125 (1972), 107-112.
[3] H. H. Chen, M. L. Fang, On the value distrbution©¥f’, Sci. China Ser. A 38 (1995), 789-798.
[4] H. X.Yi, C. C. Yang, Uniqueness theory of meromorphicdtions(in Chinese), Science Press, Beijing, 1995.
[5] 1. Lahiri, S. Dewan, Value distribution of the product afmeromorphic functions and its derivative, Kodai Math. &.(2003),
95-100.
[6] J. L. Zhang, Uniqueness theorems for entire functiomxeming fixed points, Comput. Math. Appl. 56 (2008), 30TBA
[7] 3. F Xu, F. Li; H. X. Yi, Fixed points and uniqueness of meromorphic fumtsi, Comput. Math. Appl. 59 (2008), 9-17.
[8] K. Yamanoi, The second main theorem for small functiond eelated problems, Acta Math. 192 (2004), 225-294.
[9] L. Yang, Value distributions theory, Springer-Verld&grlin, 1993.
[10] M. L. Fang, H. L. Qiu, Meromorphic functions that shareefil points, J. Math. Anal. Appl. 268 (2002), 426-439.
[11] M. L. Fang, Unigueness and value sharing of entire fionst, Comput. Math. Appl. 44 (2002), 828-831.
[12] M. L. Fang, X. H. Hua, Entire functions that share oneuealNanjing Univ. J. Math. Biquarterly 13 (1996), 44-48.
[13] P. Sahoo, Meromorphic functions that share fixed painits finite weights, Bull. Math. Anal. Appl. 2 (2010), 106-8.1
[14] P. Sahoo, Uniqueness and differential polynomials efamorphic functions sharing a polynomial, Pales. J. M&t2016),
46-56.
[15] W. Bergweiler, A. Eremenko, On the singularities of theerse to a meromorphic function of finite order, Rev. Mberbam. 11
(1995), 355-373.
[16] W. C. Lin, H. X. Yi, Uniqueness theorems for meromorphinctions concerning fixed points, Complex Var. Theory Api9
(2004), 793-806.
[17] W. C. Lin, H. X. Yi, Uniqueness theorems for meromorphiactions, Indian J. Pure Appl. Math. 35 (2004), 121-132.
[18] W. K. Hayman, Meromorphic function, Clarendon Pressfatd, 1964.
[19] X. B. Zhang, J. F. Xu, Uniqueness of meromorphic funesisharing a small function and its applications, compt.iMAppl. 61
(2011), 722-730.
[20] X. H. Hua, C. C. Yang, Uniqueness and value-sharing abmerphic functions, Ann. Acad. Sci. Fenn. Math. 22 (198B5—-406.

© 2019 BISKA Bilisim Technology


www.ntmsci.com

	Introduction
	Lemmas
	Proof of the main Theorems

