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Abstract: The equation of geodesic in a two-dimensional Finsler sjgmggven by Matsumoto and Park for Finsler space with a
(a, B)- metric in the year 1997 and 1998. Further Park and Lee stubeeabove case for generalized Kropina metric in the ye@d.20
Recently Chaubey and his co-authors studied the same fae spetial(a, 3)- metric in 2013 and 2014. In continuation of this the
purpose of present paper is to express the differentialteomsaof geodesics in a two-dimensional Finsler space withes special
Finsler(a,3)- metric.

Keywords. Finsler space, geodesic equatidosf3) - metric, two dimensional Finsler space.

1 Introduction

In 1994,M. Matsumotdj] studied the equation of geodesic in two dimensional Fingbacesin detail. After that 1997,
Matsumoto and Pari] obtained the equation of geodesics in two dimensionall&irgpaces with the Randers metric
(L = a + B) and the Kropina metri¢. = (%2), and in 1998, they have?] obtained the equation of geodesic in two-

dimensional Finsler space with the slope metrics, i.e. Matto metric given byt = (a B by considering3 as an
infinitesimal of degree one and neglecting infinitesimal eficke more than two they obtained the equations of geodesic
of two-dimensional Finsler space in the foy’h: f(xy, y'), where(x,y) are the co-ordinate of two-dimensional Finsler
space. Further Park and Le#] ftudied the above case for generalized Kropina metricénytar 2000. In continuation

of this Chaubey and his co-authois§] are studied the same case for the different spécigB) - metric and illustrated
their main results in the different figures. In the preseipigrave have shown that under the same conditions, the geodesi
of the two-dimensional space with following metrits= a + 3 + L=a+B+ %2 +5,andL=a+ B+ B ﬂ.

az’

aB’

2 Preiminaries

Let F2 = (M2 L) be a two dimensional Finsler space with a Finslermetric tiont(x',x%;y%,y?). We denote
ax' = f., = (i = 1,2) for any Finsler functiorf (x',x%;y*,y?). Hereafter, the suffices i,j run over 1, 2.
SinceL(x',x%;y1,y?) is (1) p-homogeneous ify!,y?) we haveL j yI 0 which imply the existence of a function, so
called the Weierstrass invariat(xt, x%;y*,y?)[1,2,8] given by

L L L
L) ) 2(2 12yt y2
= — = — = W X ,X ) R . 1
(y2)2 yiy2 (y1)2 ( yoyo) 1)
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In a two-dimensional associated Riemannian sgéce: (M2, a) with respect td_ = a and 22 = a;j(x},x?)y'yl, the
Weierstrass invaria of R? is written as

1
W = 381182~ (a12).
FurtherL; are still (I) p-homogeneous iy, y?), so that we get
Liy =Lj. (2)

The geodesic equations it along curveC : X' = X (t) are given by {].

odL
L — . 0. 3
Substituting (2) in (3), we get
Li2) — Loy + (Y'Y = YYHW =0, (4)

which is called the Weierstrass form of geodesic equati@ififil, 2Jwherey' = dy /dt .For the metric functioh (x,y; X, y)
and (4) becomes to

9’%L oL o%L

. =0. 5

aydx  Ixdy + Y =) 5oz (9y)? ©)
Let " = {y}k(xl,xz)} be the Levi-Civita connection of the associated RiemansjsaceR?. We introduce the linear
Finsler connectioi” = (y}k,y(‘)j,O) and the h- and c-covariant differentiationfiri are denoted by;i, (i)) respectively,
where the index0) means the contraction wit. Then we havgi;j =0,a;; =0 anda;;; =0.

3 Equation of Geodesicsin atwo dimensional Finder with (a, 3) - metric space

In [2,4,5] a two dimensional Finsler spa¢€ = M2, L(a, ) with an (a,8)- metric, hereB = bj(x%,x?)y'. For metric
functionL(a, 3), we have

Ly = LgB: L) = Laagi) + Lgby), 6)
wherea;) = a";}’r and the subscriptions, 3 of L are the partial derivatives of L with respectdgf3 respectively. Then
we have in™* .

Liyi = L(pi yé, Lryjri,
from which
Li2) — La(1) = L2ja — Lz + Ly Yoy — Ly Yoo (7)
From (1) and (7) we have
La2) — L2a) = L2 — L2+ WY Yo — Y ¥60)- (8)
On other hand, from (6) we have
L(iyi = LapBi G DB +LpsBeibil + LsBiibii - (9)

Similarly to the case of (x}x%;yy?) anda (x},x?) , we get the Weierstrass invariamta, 8) as follows:

Laa _ Lo _Lpp

=4 " ar (10)
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Substituting (10) in (9), we have

L(jyi = awBi(ab; — Baj) + Lgby;. (11)
From (8) and (11) we have
Li2) — Loy = aw{Ba(abz — Baz) — Ba(aby — Bay)} — La(Liaz — Lz:) + WY o — Y2 ¥o0)- (12)
If we putyly =¥ + v, We get
VY2 =Y = VY% — VYo — (VY60 — Y Yoo)- (13)
Substituting (12) and (13) in (4), we have
db; by L L
aw{B.1(abz — Baz)) — Ba(abr — Bam))} — LB(W - m) +W(y'Yo —yy) =0 (14)

wheref; = by;jy". The relation of W§\; and w is written as follows:
W = (Lg + awy?)W (15)
wherey? = b?a? — B2 andb? = albjbj. Therefore (14) is expressed as follows:

dbl dby

(La + awy?)( 1)’20*)’2)’0 dxz (91)

Thus we have the following.

+ aw{bo: 1(0!b27[30! ) bo;z(ablfﬁ'a(l))}:o. (16)

Theorem 1. In a two-dimensional Finsler space’Rwith an (a,3)— metric, the differential equation of a geodesic is
given by (16).

Suppose thatr be positive-definite. Then we may refer to an isothermal coordinate ay$t®) = (x,y) ([1,2]) such that
a=aE,a=a(x,y) > 0,E = /X2 + V2,

that isay; = ag> = a%,a12 = 0 and(y*,y?) = (x,y). Froma? = a;j (X)y'y! we getaaj) = aj — awajsyrys Therefore we
haveaa(y) 1) = (Z)2 andw; = ?“5 Furthermore the Christoffel symbols are given by

a a
FIRT NP Y WY NP .
wherea, = 92 a, = ‘7"" _Therefore we have

(VY2 — Y2 Wk = o (% — YR) + 1(axy ayX). (17)

Next calculating/? = b?a? — B2, bo,1(abz — Ba(y)) andbgz(aby — Ba(y)) we have

V2 = (b1)?+ (02)* (% +¥7) — (bax+ bay)? = (1Y — ba¥)?, (18)
bra(abz — Bag)y’ = o D2y — b (19)
brsa(aby — Bagy)y = gbo;z(bly— boX)y. (20)
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Substituting (17), (18), (19) and (20) in (16), we have

{a(%y — %) + E?(axy — &%) HLa +aEw(byy — bpx)?} — E3Lg (byy — bay) — E3a®W(byy — by)boo =0,  (21)
where

Do = DrSyYy® = (Buict D)X+ (bak-+ ) + {02+ 7) b1 + aybe) — 200k +bof) @kt a)} (22

wherebjy = %—?(i andby = %—t}’j. Thus we have the following.

Theorem 2. In a two dimensional Finsler spacéRvith an (a, 8)- metric, if we refer to an isothermal coordinate system
(x,y) such thato = aE , then the differential equation of a geodesic is giverdy &nd (22).

4 Equation of Geodesicsin atwo dimensional Finsler with special (a, 3)-metric
L= a+B+%

The(a,B)-metricL(a,B)=a+ B+ B s called speciala, 3) metric

(a—B)
B BZ B ZBZ
B CE  CE )
ap 2a?
h T la—p P B
_ Laa _ LaB _ LBB 2

U e T @ @-pf

Substituting (23) in (21), we obtain the differential eqoatof a geodesic in an isothermal coordinate system (X,) wi
respect tax as follows:

{a(a—B)(a—2B)+ 2a (b1 — bpX)* }{a(xy — yX) + E*(axy — ayX) } — E3a?(a — B) (bry — bxx) (24)
— 2E3a2(byy — boX)bg.o = 0.

In the particular case for the t of curve C is chosen %0f) , thenXx=1y=y ,X=0,y =y’ E = /1+ (Y)2.

{a(a—B)(a —2B)+2a(by —b2)*Hay' + (1+ (Y)?) &y —ay)} —al+ ()){(1+(Y)?) (25)
a(a — B)(by —bax) — 2a(byy’ —bz)bg} =0

0= (bye+biy) + (b b)Y + = (L4 (%) (@b + aybo) ~ 201 + by )@t ay)}. (26)

It seems quite complicated from, byitis given as a fractional expressionyin Thus we have the following

Theorem 3. Let F? be two-dimensional space with special Finsler metric. Ifrefer to a local coordinate syste(w,y)
with respect tar, then the differential equation of a geodesie y(x) of F? is of the form

Y. gxy,y)

-~ fxyy)’
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wheref (x,y,y') is a quadratic polynomial i andg(x,y,Y') is a polynomial iny’ of degree at most five.

In order to find the concrete form, we treat the case of whieh ahsociated Riemannian space is Euclidean with
orthonormal coordinate system. Thagr= 1 anday = ay = 0. If we take scalar function b such thiag = by, by, = by then
b1y — by = O.therefore (25) is reduces to

g1 (2L ()2} (e ) (b + ) (e + )y o
{a@-p)a-2p)+2a(bry —b?}

Thus we have the following

Corollary 1. Let F? be a two -dimensional Finsler space with a special metriwdfrefer to an orthonormal coordinate

system(x,y) with respect tax and by = g—g, b, = 3—3 for a scalar b, then the differential space of geodesie y(x) of F?

is given by (27).

5 Equation of Geodesicsin a two dimensional Finsler with special (a, ) -metric
L=a+B+%+5

The(a,B)-metricL(a,B)=a+ B+ %2 + 2 is called speciala, 3) metric

B2
2a 3a? 2 6a a?  2q?
Lazl—i—F—f—F, LGGZE—F?’ Lﬁzl—ﬁ—ﬁ7 (28)
202 603 a (2B +6a)
LBB:F—FF, LGBZ_T’

_ Laa Lag . Lgg _ B+6a

VBT Tapa T B

Substituting (28) in (21), we obtain the differential equatof a geodesic in an isothermal coordinate system (x,3) wi
respect tax as follows:

{B?(B?+2ap) + a(2B+6a) (bay — byx)? Ha(ky — yX) + E*(axy — ayX)} — E*B(B° — 30°B — 20°%)(byy —bp) (29
—E3a%(2 4 6a)(byy — boX)bg,0 = 0.

In the particular case for the t of curve C is chosen %0¥) , thenX=1y=y X=0,y=y" E = /1+(Yy)2.

{B?(B*+2aB)+ a(2B+6a)(bry — bz)*}Hay'+ (1+ (Y)?)(axy —ay)} —a(l+ (Y)) ({ (1+ (Y)?)B (30)
(B* - 3a®B — 2a°)(bay — bay) + a (2B + 6ar) (byy — b2)bo,0 = 0)

bo:0 = (bix+ bayy') + (bax+ by )Y + g{(1+ (Y)?)(axby + ayby) — 2(b1 + boy') (ax + ayy') }- (31)

It seems quite complicated from, Blitis given as a fractional expressionyn Thus we have the following.
Theorem 4. Let F? be two-dimensional space with special Finsler metric. Ifrafer to a local coordinate systefw,y)

with respect tax, then the differential equation of a geodesiey(x) of F? is of the form

Y. axyy)

f(xyy)’

where f(x,y,y) is a quadratic polynomial in’yand gx,y,Yy) is a polynomial in §of degree at most five.
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In order to find the concrete form, we treat the case of whiehdhsociated Riemannian space is Euclidean with
orthonormal coordinate system. Thag= 1 anday = a, = 0. If we take scalar function b such thiat = by, b, = by then
b1y — box = 0.Therefore (30) is reduces to

Y = (6a +2B)a(1+(y)?)(bxy —by) (bux+ bayy') (bax + boyy )y (32)
- B2(B?+2aB +3a?) + a(2B +6a)(bry — by)? '

Thus we have the following.

Corollary 2. Let F? be a two -dimensional Finsler space with a special metrievdfrefer to an orthonormal coordinate
system(x,y) with respect tax and by = ax,bz = for a scalar b, then the differential space of geodesie y(x) of F?
is given by (32).

6 Equation of Geodesicsin atwo dimensional Finsler with special (a,3) -metric
(n+1)
L=a+pB+ B

The(a,B)-metricL(a,B)=a+ B+ B

B(n+1) B(nJrl)

Lg=1— nm, Lag =N(N+ 1) G2 (33)
Bn (n—1)
LB—1+(n+1) o LBB:n(n+1) on ,
Bn
Lap = —n(n+1) oy
_Laa _ Lap _Lpp [
=~ ap a2 " Dim

Substituting (33) in (21), we obtain the differential eqaatof a geodesic in an isothermal coordinate system (x,tf) wi
respect tax as follows:

{(a™V —ng™D) 4 n(n+1)B" Y (byy — bpX)*H{a(y — YX) + E*(axy — ayX)} (34)
—E3a(a”+ (n+1)B")(bry — b) — E%a®n(n+1)B" Y (byy — byx)bo0 = 0.
In the particular case for the t of curve C is chosen %0f) , thenXx=1y=y ,X=0,y =y’ E = /1+ (Y)2.

{(a'n+1)=nBn+1)) +n(n+1)B'n—1)(bry —b2)?} (@' + (1 + (Y)?) (@Y —ay) —a(l+(Y)*)(1+(Y)?)  (35)
(a"+ (n+1)B") (bry — b2) + n(n+1)Bn — 1) (bay — bz)bo,0 = 0)

bp.o = (bix+ b1yy') + (b2x+ bayy) )/+ (1+ (y)z)(axb1+ayb2) —2(by+ b2y (ax+ayy)). (36)

It seems quite complicated from, plitis given as a fractional expressionyin Thus we have the following,

Theorem 5. Let F? be two-dimensional space with special Finsler metric. Ifrefer to a local coordinate syste(w,y)
with respect tax, then the differential equation of a geodesiey(x) of F? is of the form

;9 yY)
Y= fxy.y)’
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where f(x,y,y') is a quadratic polynomial inyand gx,y,y’) is a polynomial in {of degree at most five.

In order to find the concrete form, we treat the case of whieh ahsociated Riemannian space is Euclidean with
orthonormal coordinate system. Thagr= 1 anday = ay = 0. If we take scalar function b such thiag = by, b, = by then
b1y — box = 0.Therefore (35) is reduces to

y' = n(n+21)Bn—1)(1+ (v)?) (bxy —by) (bix+ bayy') (box + bayy )y (37)
= (a(n+1) _ nB(nJrl)) + n(n + 1)B(n71)(bly/ _ b2)2

Thus we have the following.

Corollary 3. Let F? be a two -dimensional Finsler space with a special metriwdfrefer to an orthonormal coordinate
system(x,y) with respect taxr and by = %’, b, = g—gj for a scalar b, then the differential space of geodesie y(x) of F?
is given by (37).
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