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Abstract: A new matrix method based on polynomial approximation, gisiamplex Fourier polynomial basis is presented for the
solution of Riccati differential equations (RDE). The pogpd method converts the governing differential equatfdheosystem into a
matrix equation, which corresponds to a system of nonliatgbraic equations with unknown coefficients. The sotuisocalculated

in the form of a series with easily computable componentsn&Soumerical examples are included to demonstrate theityadidd
applicability of the technique.
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1 Introduction

In this paper, a numerical method using Fourier polynomaai®is presented for the following RDE
U'(t) = p(t) +a(t)u(t) +rt)u(t), 0<t<T (1)

with the initial value
u(0) = a (2)

wherep(t),q(t)andr(t) are given functions and is an arbitrary constant, are a class of nonlinear difféaéatuations

of much importance, and play a significant role in many fielfisplied science [1]. For instance, solitary wave
solutions of a nonlinear partial differential equation dam expressed as a polynomial in two elementary functions
satisfying a projective Riccati equation [2]. Such probdesiso arise in the optimal control literature. Howeverj\udeg

an analytical solution in an explicit form seems to be urjike be achievable except for certain special situatiofs [3
Of course, if one knows a particular solution, then the galrsrlution can be easily derived. For general cases, one mus
appeal to numerical techniques or approximate approaohgefting the solutions. Therefore, the problem has a#dac
much attention and has been studied by many authors (s4d-€1d] and the references cited therein).

In mathematics, a basis function is an element of a partitidsis for a function space. Every continuous function & th
function space can be represented as a linear combinatimaseffunctions. By using this property different polyndmia
approximation method using matrices studied by severahbrebers for the solution of ordinary and partial differant
equations In Literature different polynomial basis usethsas Taylor, Chebyshev, Legendre, Laguerre and Bessebseri
for matrix method [12-20]. But there is no paper used Foig@gies basis.

It is obvious that Fourier series has significant advantage the mentioned polynomials, Theorem 1 shows that the
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Fourier polynomial gives the best mean square approximatio

The method presented in this paper converts the given proiol® a nonlinear algebraic system. By solving this system,
the solution follows immediately. Our proposed methodwdi@s to obtain an approximate solution of the given problem
in a truncated Fourier series form. Our present approacidswbe tedious work needed by traditional techniques and
existing numerical methods. It also avoids provides a smluvith high accuracy, minimal calculations, and avoidanc

Theorem 1. If @(x), i = 1,2,... form an orthonormal set of functions defined ofeeb)then among all polynomials

mmi%%m

of given degree n, that which gives the best mean square sippation to a function x) defined in(a, b)is the Fourier
polynomial

00 = 3 (F.aman(s).

Proof. See ref. [21].

2 Method of solution

In mathematics a Trigonometric series is any series of tha:fo
ap+ Z an cosnx-+ by sinnx (3)
n=1

by means of the formule8] the assumed solutiant) can be defined by the truncated Fourier polynomial as

2N
un (t) = Z; fi(t)ay (4)

Note thata; (i = 0,1,...,2N) are unknown coefficients which will be determined by the hodt In general, the
coefficientsa; of the approximation are not equal to the Fourier coeffigpanly if we obtain the exact solution of the
problem will they be equal.

In the numerical solution of Eq1) with presented method, it is necessary to evaluate matrir bf (4).
an () = F(H)A (5)

where
F(t) = [fo(t) fu(t) ... fan(t)]1consa)2s

fo(t) = ao

i = i a

()= ) =cosit) 5o A |
foi(t) = sin(it)

0 other aon

The relation between the mattnigy (t) and its derivativer,(t) is

Upn (1) = F/(1)A = F(t)KA (6)
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where
kok 2kt1 =K
K :[ki,j] = k2k+1,2k: —k k= 0,1,2,...,N; i,j 20,1,...,2N.
0 other

By using the production of series, the matrix form of tifét )is obtained as

uan?(t) = F(t)A (7)
where
F(t) = [Fo(t) Fa®) .. Fan(®)]y, onap2s
Fi(t) = [fi(t)fo(t) fi(t)fa(t) - fi(t)fan(t)]
and

A = [Ao Al AZN}T (2N+1)2><1;Ai = [aiao aa; --- aazN]T ,i = O, 1,...,2N.

The method is based on computing the unknown coefficientsdansiof the collocation points. Two types of collocation
points are used. Equally spaced points and Chebyshev-&Gabssto points (Unequally spaced points). A natural, and
often convenient, choice for the collocation points is thiathe equally spaced points given ky=sh, h= % , S=
0,1,..,2N, (??). Quite frequently, present method deliver more accumatgisns with the unequally spaced points which
is defined as 1 S

ts= 5(1—coszum)T, 5=0.1.2....2N ®)

for a domain0, T]. To obtain numerical approximation to E4) inder the given conditior2}, we can reduce the EdL)
and @) to the matrix equations as follows:

F(t)KA = p(t) +q(t)F(t)A +r(t)F(t)A

or briefly
W(HA — S(t)A=p(t); (W(t) =F(t)K—q(t)F(t), S{t)=r(t)F(t)) 9)

By substituting the collocation points defined I#?) and @) into Eqg. ©) we have
W(ts)A — S(ts)A=p(ts), s=0,1,2,...,2N

or in the compact form

WA — SA=P (10)
where
W(to) S(to) p(to)
W W(ty) 5= .S(tl) P p(t1)
W(tz,\,) é(tZN) b(tZN)

Next, by means of relatiorbf we can obtain the matrix form corresponding to the init@mhdition ) as

F(O)A=a.
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Table 1: Comparison of the absolute error in Example 1.

Present method
t Exact Equal Unequall Equall Unequall
coll. coll. coll. coll.
(N=6) | (N=6) (N=9) (N=9)
0.1 0.110295196 0.436e-7| 0.301e-10 0.385e-10 | 0.541e-13
0.2 0.241976799 0.467e-7| 0.470e-9 0.453e-10 | 0.784e-13
0.3 0.395104848 0.543e-7| 0.509e-9 0.892e-10 | 0.124e-12
0.4 0.567812165 0.606e-7| 0.219e-8 0.228e-10 | 0.318e-12
05 0.756014392 0.663e-7| 0.329e-8 0.135e-10 | 0.423e-12
0.6 0.953566215 0.654e-7| 0.212e-8 0.440e-10| 0.422e-12
0.7 1.152948966 0.626e-7| 0.424e-8 0.123e-10 | 0.210e-12
0.8 1.34636365% 0.850e-7| 0.555e-9 0.438e-10 | 0.283e-12
0.9 1.526911312 0.998e-7| 0.814e-9 0.548e-10 | 0.267e-12
1 1.68949839() 0.569e-7| 0.124e-10 0.155e-10 | 0.436e-12

To obtain the solution of Equatiod) under conditionZ) fundamental solution matrix is formed as follows:

WA—-SA=P (11)
where
W(to) S(to) p(to)
W W(tl) 5 .S(tl) P P(tl) 7
W(tZN) 0 C{

by solving (1), the unknown Fourier coefficients (n=0,1,...,2N) are determined. Thus we get the solution.

3 Numerical examples

To give a clear overview of the content of this study, sevefaEs will be tested with the above-mentioned method, which
will ultimately show the efficiency and accuracy of this nedhAll the results here are computed using Maple v 14.01.
Example 1. As the first example, we consider a RDE as follows [6,7,9,11]:

u'(t) =1+2u(t) —uit), 0<t<4
u(0) =0.

the exact solution of this problem is

I =1+v2
ut) =1+ \/itanh(\/ét + M) .

The Fourier solution was obtained fbk= 6 andN = 9. Numerical results are given in Table 1. The comparisons fo
equally spaced points and unequally spaced points, foeptesethod have also been done.
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Table 2: The normg|u— ugnalg, [|U— Uzanallo s U — Uant]l fOr N =8,9,10 in Example 2.

N

llu—uanally

llu—uanall,

[[U—Uanialle

8

0.45474784e-9

0.14555323e-9

0.57839634e-10

9

0.34538352e-10

0.10997112e-10

0.42005775e-11

10

0.32572292e-11

0.82641502e-12

0.37841498e-12

Example 2. Consider the equatiori) with

The exact solution of this problem is
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Fig. 1: Plot of the exact solution, the approximate solution ancetiner function in Example 2.

Table 2 represents different error norms obtained in sglErample 2. Figure 1 support the efficiency and the accuracy
of the present method. From Fig. 1 we see that we can achievedapproximation with the exact solution.

4 Conclusions

A matrix method has been presented for the RDEs. The appitgaif the method is demonstrated by numerical examples
which show good agreement with the exact solutions. The nagjuantage of the present method is that it is simple,
straightforward and systematic when compared with othentigues.
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