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Abstract: A new matrix method based on polynomial approximation, using complex Fourier polynomial basis is presented for the
solution of Riccati differential equations (RDE). The proposed method converts the governing differential equation of the system into a
matrix equation, which corresponds to a system of nonlinearalgebraic equations with unknown coefficients. The solution is calculated
in the form of a series with easily computable components. Some numerical examples are included to demonstrate the validity and
applicability of the technique.
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1 Introduction

In this paper, a numerical method using Fourier polynomial basis is presented for the following RDE

u′(t) = p(t)+q(t)u(t)+ r(t)u2(t), 0≤ t ≤ T (1)

with the initial value

u(0) = α (2)

wherep(t),q(t)andr(t) are given functions andα is an arbitrary constant, are a class of nonlinear differential equations

of much importance, and play a significant role in many fields of applied science [1]. For instance, solitary wave

solutions of a nonlinear partial differential equation canbe expressed as a polynomial in two elementary functions

satisfying a projective Riccati equation [2]. Such problems also arise in the optimal control literature. However, deriving

an analytical solution in an explicit form seems to be unlikely to be achievable except for certain special situations [3].

Of course, if one knows a particular solution, then the general solution can be easily derived. For general cases, one must

appeal to numerical techniques or approximate approaches for getting the solutions. Therefore, the problem has attracted

much attention and has been studied by many authors (see e.g.[4–11] and the references cited therein).

In mathematics, a basis function is an element of a particular basis for a function space. Every continuous function in the

function space can be represented as a linear combination ofbase functions. By using this property different polynomial

approximation method using matrices studied by several researchers for the solution of ordinary and partial differential

equations In Literature different polynomial basis used such as Taylor, Chebyshev, Legendre, Laguerre and Bessel series

for matrix method [12-20]. But there is no paper used Fourierseries basis.

It is obvious that Fourier series has significant advantage over the mentioned polynomials, Theorem 1 shows that the
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Fourier polynomial gives the best mean square approximation.

The method presented in this paper converts the given problem into a nonlinear algebraic system. By solving this system,

the solution follows immediately. Our proposed method allows us to obtain an approximate solution of the given problem

in a truncated Fourier series form. Our present approach avoids the tedious work needed by traditional techniques and

existing numerical methods. It also avoids provides a solution with high accuracy, minimal calculations, and avoidance.

Theorem 1. If φi(x), i = 1,2, ... form an orthonormal set of functions defined over(a,b)then among all polynomials

φn(x) =
n

∑
n=1

cmφm(x)

of given degree n, that which gives the best mean square approximation to a function f(x) defined in(a,b)is the Fourier

polynomial

fn(x) =
n

∑
m=1

( f ,φm)φm(x).

Proof.See ref. [21].

2 Method of solution

In mathematics a Trigonometric series is any series of the form:

a0+
∞

∑
n=1

ancosnx+bnsinnx (3)

by means of the formula (3) the assumed solutionu(t) can be defined by the truncated Fourier polynomial as

u2N(t) =
2N

∑
i=0

fi(t)ai (4)

Note that ai (i = 0,1, ...,2N) are unknown coefficients which will be determined by the method. In general, the

coefficientsai of the approximation are not equal to the Fourier coefficients; only if we obtain the exact solution of the

problem will they be equal.

In the numerical solution of Eq. (1) with presented method, it is necessary to evaluate matrix form of (4).

u2N(t) = F(t)A (5)

where

F(t) = [ f0(t) f1(t) . . . f2N(t) ]1×(2N+1)2 ;

fi(t) =



















f0(t) = 1

f2i−1(t) = cos(it )

f2i(t) = sin(it )

0 other

, i = 1,2, ...,N,A =













a0

a1
...

a2N













.

The relation between the matrixu2N(t) and its derivativeu′2N(t) is

u′2N(t) = F′(t)A = F(t)KA (6)
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where

K =[ki, j ] =











k2k,2k+1 = k

k2k+1,2k =−k

0 other

, k= 0,1,2, ...,N; i, j = 0,1, ...,2N.

By using the production of series, the matrix form of theu2(t)is obtained as

u2N
2(t) = F̃(t)Ã (7)

where

F̃(t) =
[

F̃0(t) F̃1(t) . . . F̃2N(t)
]

1×(2N+1)2 ,

F̃i(t) = [ fi(t) f0(t) fi(t) f1(t) · · · fi(t) f2N(t) ]

and

Ã =
[

Ã0 Ã1 ... Ã2N
]T

(2N+1)2×1, Ã i = [aia0 aia1 · · · aia2N]
T , i = 0,1, ...,2N.

The method is based on computing the unknown coefficients by means of the collocation points. Two types of collocation

points are used. Equally spaced points and Chebyshev-Gauss-Lobatto points (Unequally spaced points). A natural, and

often convenient, choice for the collocation points is thatof the equally spaced points given byts = sh, h = T
2N , s=

0,1, ..,2N, (??). Quite frequently, present method deliver more accurate solutions with the unequally spaced points which

is defined as

ts =
1
2
(1− cos(

s
2N

π))T, s= 0,1,2, ...,2N (8)

for a domain[0,T]. To obtain numerical approximation to Eq. (1) under the given condition (2), we can reduce the Eq. (1)

and (2) to the matrix equations as follows:

F(t)KA = p(t)+q(t)F(t)A + r(t)F̃(t)Ã

or briefly

W(t)A −S(t)Ã=p(t); (W(t) = F(t)K−q(t)F(t), S(t)=r(t)F̃(t)) (9)

By substituting the collocation points defined by (??) and (8) into Eq. (9) we have

W(ts)A −S(ts)Ã=p(ts), s= 0,1,2, ...,2N

or in the compact form

WA −SÃ= P (10)

where

W =













W(t0)

W(t1)
...

W(t2N)













,S=













S(t0)

S(t1)
...

S(t2N)













,P=













p(t0)

p(t1)
...

p(t2N)













.

Next, by means of relation (5) we can obtain the matrix form corresponding to the initial condition (2) as

F(0)A = α.
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Table 1: Comparison of the absolute error in Example 1.

Present method
ti Exact Equal

coll.
(N = 6)

Unequall
coll.
(N = 6)

Equall
coll.
(N = 9)

Unequall
coll.
(N = 9)

0.1 0.110295196 0.436e-7 0.301e-10 0.385e-10 0.541e-13
0.2 0.241976799 0.467e-7 0.470e-9 0.453e-10 0.784e-13
0.3 0.395104848 0.543e-7 0.509e-9 0.892e-10 0.124e-12
0.4 0.567812165 0.606e-7 0.219e-8 0.228e-10 0.318e-12
05 0.756014392 0.663e-7 0.329e-8 0.135e-10 0.423e-12
0.6 0.953566215 0.654e-7 0.212e-8 0.440e-10 0.422e-12
0.7 1.152948966 0.626e-7 0.424e-8 0.123e-10 0.210e-12
0.8 1.346363655 0.850e-7 0.555e-9 0.438e-10 0.283e-12
0.9 1.526911312 0.998e-7 0.814e-9 0.548e-10 0.267e-12
1 1.689498390 0.569e-7 0.124e-10 0.155e-10 0.436e-12

To obtain the solution of Equation (1) under condition (2) fundamental solution matrix is formed as follows:

W̄A−S̄Ã= P (11)

where

W̄ =













W(t0)

W(t1)
...

W(t2N)













, S̄=













S(t0)

S(t1)
...

0













,P=













p(t0)

p(t1)
...

α













,

by solving (11), the unknown Fourier coefficientsan (n= 0,1, ...,2N) are determined. Thus we get the solution.

3 Numerical examples

To give a clear overview of the content of this study, severalRDEs will be tested with the above-mentioned method, which

will ultimately show the efficiency and accuracy of this method. All the results here are computed using Maple v 14.01.

Example 1. As the first example, we consider a RDE as follows [6,7,9,11]:

{

u′(t) = 1+2u(t)−u2(t), 0≤ t ≤ 4

u(0) = 0.

the exact solution of this problem is

u(t) = 1+
√

2tanh





√
2t +

log
(

−1+
√

2
1+

√
2

)

2



 .

The Fourier solution was obtained forN = 6 andN = 9. Numerical results are given in Table 1. The comparisons for

equally spaced points and unequally spaced points, for present method have also been done.
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Table 2: The norms‖u−u2N+1‖1 ,‖u−u2N+1‖2 ,‖u−u2N+1‖∞ for N = 8,9,10 in Example 2.

N ‖u−u2N+1‖1 ‖u−u2N+1‖2 ‖u−u2N+1‖∞
8 0.45474784e-9 0.14555323e-9 0.57839634e-10
9 0.34538352e-10 0.10997112e-10 0.42005775e-11
10 0.32572292e-11 0.82641502e-12 0.37841498e-12

Example 2. Consider the equation (1) with


















p(t) = 1/(1+ t),

q(t) = 1,

r(t) =−1,

α = 1.

The exact solution of this problem is

u(t) =
1

1+ t
.

Fig. 1: Plot of the exact solution, the approximate solution and theerror function in Example 2.

Table 2 represents different error norms obtained in solving Example 2. Figure 1 support the efficiency and the accuracy

of the present method. From Fig. 1 we see that we can achieve a good approximation with the exact solution.

4 Conclusions

A matrix method has been presented for the RDEs. The applicability of the method is demonstrated by numerical examples

which show good agreement with the exact solutions. The major advantage of the present method is that it is simple,

straightforward and systematic when compared with other techniques.
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