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Abstract: In this paper, two finite iterative algorithms for finding the reflexive and Hermitian reflexive solutions of coupled complex
of conjugate and transpose matrix equations are constructed. With these two iterative algorithms, for any initial reflexive and Hermitian
reflexive matrices, the solutions can be obtained within finite iterative steps in the absence of round off errors. Some needed lemmas and
theorems are stated and proved to investigate the convergence of the proposed algorithms. Finally, we report two numerical examples
to verify the theoretical results.
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1 Introduction

Matrix equations are often encountered in many areas of computational mathematics, control and system theory. Iterative
approaches for solving matrix equations have given much attention from many researches. In [1], an iterative method for
solving the linear matrix equation AXB = C over a skew-symmetric matrix X was proposed. In [2], a finite iterative
algorithm was presented to solve the pair of linear matrix equations (AXB,CXD) = (E,F). In [3], by using a real inner
product in complex matrix spaces, an iterative algorithm is constructed for solving coupled Sylveter-conjugate matrix
equations. In [4], two iterative algorithms to obtain the reflexive and Hermitian reflexive solutions to the generalized
Sylvester matrix equation AV +A,V + B\W + BoW = E|VF, + E,VFE, + C are presented. In [5], two new iterative
algorithms based on a two-dimensional projection technique for solving
AV +AV +B\W +BW = E|VF, + E;VF, +C over reflexive and Hermitian reflexive matrices are developed. In [6],
an iterative algorithm to solve the generalized coupled Sylvester equations (AY —ZB,CY — ZD) = (E, F) over unknown
reflexive matricesY,Zare presented. In [7], two gradient based iterative (GI) methods extending the Jacobi and
Gauss-Seidel iterations for solving the generalized Sylvester-conjugate matrix equation
A1XB| +AXBy + C\YD; + CYD, = E over reflexive and Hermitian reflexive matrices are presented. In [8], the
necessary and sufficient conditions for the solvability of the matrix equation A” XB = C over reflexive and anti-reflexive
matrices are given, and the general expression of the reflexive and anti-reflexive solutions for a solvable case is obtained.
In [9], an iterative algorithm is presented for solving a class of complex matrix equations, in which there exist the
conjugate and the transpose of the unknown matrices. In [10], the reflexive and anti-reflexive solutions of a linear matrix
equation and systems of matrix equations are presented. In [11], two iterative algorithms for finding the Hermitian

reflexive and skew-Hermitian solutions of the Sylvester matrix equation AX + XB = C are presented.
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This paper is organized as follows: First, in Section 2, we introduce some notations, definition and a theorem that
will be needed to develop this work. In Section 3, we propose two finite iterative algorithms for finding the reflexive
and Hermitian reflexive solutions of coupled complex of conjugate and transpose matrix equations and their convergence
analysis is also given. In Section 4, two numerical examples are given to explore the simplicity and the neatness of the

presented methods.

2 Preliminaries

The following notations, definition and theorem will be used to develop the proposed work. We use A7, A, A" and tr(A) to
denote the transpose, conjugate, conjugate transpose and the trace of a matrixA, respectively. We denote the set of all m x n
complex matrices by C"*"; Re(a) denote the real part of the number a. A matrix P € C"*" is called generalized reflection
matrix if P = P! and PP = I. The Frobenius norm of the matrix A is denoted by ||A| = \/(A,A) = \/Re(tr(A#A)). An
n X n matrix A is said to be reflexive with respect to P if A = PAP. C?*" (P) denotes the set of all n x n reflexive matrices
with respect to P. An n x n matrix A is said to be Hermitian reflexive with respect to P if A = A# = PAP. H C" (P)
denotes the set of all n x n Hermitian reflexive matrices with respect to P.

Definition 1. [ /2] A real inner product space is a vector space V over the real field R together with an inner product that

is withamap (.,.) : V x V =R Satisfying the following three axioms for all vectors x,y,z € V and all scalars a ER

1.Symmetry: (x,y) = (y,x).
2. Linearity in the first argument:

(ax,y) = a(x,y),(x+y,2) = (x,2) + (1, 2) -

3. Positive definiteness :{x,x)> 0 for all x # 0.
The following theorem defines a real inner product on space C"*" over the field R.

Theorem 1. [13] In the space C"™*" over the field R, an inner product can be defined as

(A,B) = Re[tr(A"B)]. (D

3 Main Results

In this section, we propose two finite iterative algorithms to obtain the reflexive (Hermitian reflexive) solutions,

respectively, and their convergence analysis is also given to the system of matrix equations of the form

AWVAB +C WD + AV By + WDy = Ey,

2
AVIB3 +CsWHD3 + AV By +CiWTDy = E5, @

where A1,Az,A3,A4 €C™, By,By,B3,Bs €C™*", C1,C5,C3,C4 €C™*9, Dy,D;,D3,D4 €CT" and Ey,E, €C™*" are
given matrices, while V €CS**(P) and W €C!*?(Q) (V €H C**(P) and W €H C{*?(Q)) are matrices to be

determined.

Let f(V,W) =AVHB +CiWHD| +A VT By + C;WT Dy, and g(V,W) = A3V B3 + CsWH D3+ AyVT B4+ C,WT Dy
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We introduce the following finite iterative algorithm to obtain the reflexive solution to the system of matrix equations (2).

Algorithm I

I.Input matrices Aj,Az,A3,A4 €C™ B|,By,B3,By €C™", C,C,,C3,C4 €C™4, Dy,Dy,D3,D4 €C?" and
El,Ez eCmxn,
2.Choose arbitrary initial reflexive matrix pair [V}, W] with V; € C$** (P) and W} € C{*?(Q);
3.Set
Ry =diag(E\ — f(Vi,W1),E> — g(Vi,W1));

St =3 [Bi(E1 — f(Vi,W0))# Ay + By (Ey — f(Vi,W1))TAz + B3(Ez — g(Vi,W1))H A3
+B4(Ey — g(Vi,W1))T Ay + PBi (E) — f(Vi,W1))A P+ PBy(E) — f(Vi,W)))T AP
+PB3(Ey — g(Vi, W) AP+ PB4(Ey — g(Vi,W1))TA4P);

Ty = 3[Di(E1 — f(Vi,W1))C1 + D2 (Ey — f(Vi,W1))"Ca + D3 (Ey — g(Vi, W) C
+D4(E> — g(Vi,W1))T Ca+ OD1 (Ey — f(V1,W1))C10+ 0D, (E1 — f(Vi,W1))T G20
+0D3(Ey — g(Vi,W1))1C30 + OD4(E2 — g(Vi,W1))T C4Q);

k=1,

4.If Ry = 0, then stop and V;, W, are the solutions ; else let k := k+ 1 go to STEP 5

5.Compute
2
Virr = Vi + IR k
- 2 27k
1Skl + 1| T
2
Wir1 =W+ L k
= 2 3 ks
[[Skll~ + 11 Tl
Riy1 = diag(Ey — f (Vir 1, Wir1), E2 — §(Vir 1, Wier1))
2
— Re— R diag(f(Sk, Th), g(Sk, Tv));
k™ s+ 28 (S T).£(Se: i)

Skt = 3[B1(E1 — f (Vs 1, Wi 1)) A1 + B2 (E1 — f (Vis1, Wer1)) A2 + B3 (B2 — 8 (Viep 1, Wiy 1)) As
+B4(Ezy — g(Vir1,Wi1)) T As+ PB1 (E1 — f (Vi1 Wi1 ) A1P+ PBy(E1 — f(Vir1, Wit )T AoP

P - 2
+PBs(Ex — §(Vick1, Wit 1)) AsP -+ PBy(Ex — g(Viern, W) AaP] + 0y

i1 = 3 [D1(Ey = f(Vir 1, Wes1 ) C1+ Do (Er — f(Vier1, Wi 1)) Ca + D3 (Ez — g(Vip 1, Weer1)) G
+D4(Ex — 8(Vir1, Wies1)) T Ca + QD1 (Er — f (Vies 1, Wi1))HCL1Q + QD2 (Ey — f(Vir 1, We1)) T G0

2
Rk 1ll” .

+0D3(E2 = 8(Vis1, Wie1)) €30 + OD4(Ez = (Vi1 W1 )T Ca Q] + ST

6.If Ry.1 = 0, then stop and Vi, W, are the solutions; else let k = k+ 1 go to STEP 5.

We introduce the following finite iterative algorithm to obtain the Hermitian reflexive solution to the system of matrix

equations (2).

Algorithm IT

LInput matrices Aj,Az,A3,As €C™.By,By,B3,Bs €C™", C1,C5,C3,C4 €C™ 4, Dy,Dy,D3,D4 €C*" and

E\,E, eC™,
2.Choose arbitrary initial Hermitian reflexive matrix pair [V;, W;] with V; € H C$** (P) and W; € H C™(Q);
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3.Set
Ry = diag(E — f(V1,W1),E2 — g(V1,W1));

S1 = 3[BiI(E1 — f(Vi,W1))# A1 + B2 (E1 — f(Vi,W1))T Ay + B3(E> — g(Vi,Wh))H A3
+Ba(Er — g(Vi,W1))TAg + AT (Ey — f(Vi,W1)BY + AT (E1 — f(Vi,Wh))BS,

+AY (Ey — g(Vi,W1))BY + A} (E; — g(Vi,W1))BY + PBy(E1 — f(Vi,W1)) AP
+PBy(E1 — f(Vi,W)))TAyP + PB3(E; — g(Vi,W))) A3 P + PB4 (E> — g(Vi,W))) T A4P
+PAY(Ey — f(Vi,W))BY P+ PAT (E1 — f(Vi,W1))B] P+ PAY (E2 — g(Vi,W1))BY P
+PA} (E2 — g(V1,W1)) B} P);

Ty = 3[Di(E1 — f(Vi,W1))HC1 + Do (E1 — f(V1,W1))TCa + D3(E> — g(Vi,W1))C5
+D4(Ey — g(Vi,W1))  Ca+ CY (E1 — f(Vi,W1))DY +CF (Ey — f(Vi,W1)) D}

+C{ (Ey — g(Vi,W1))D¥ + CJ (E2 — g(Vi,W1))D} + QD1 (E1 — f(Vi,Wh))?C1Q
+0D>(E1 — f(Vi,W1))T C,0+ QD3 (E> — g(Vi,W1))C30 + OD4(E, — g(Vi,W1)) T C4Q
+OCH (Ey — f(Vi,W1))DY @+ QC3 (Ey — f(Vi,W1)) D] Q + OC¥ (E> — g(Vi,W1)) DX Q
+QCj (Ex — g(V1,W1))D} Q)

k:=1;

4.1f Ry = 0, then stop and V., W;, are the solutions; else let k := k+ 1 go to STEP 5

5.Compute
2
Vier1 = Vi 7”&“ k
= 2 2
(1Swl|” =+ [ T |
2
Wi — R
ISkl + 171
Riv1 = diag(Er — f(Vie1, Wir1), E2 — 8(Vig 1, Wiet1))
2
=R — R diag(£(Sk,Th), &(Sk, Th)):
k HSkH2+HTkH2 lag(f( ks k)7g( k> k))

Skt = 3 [B1(E1 = f (Vier 1, Wi 1)) A1 + Bo(Ey — f (Viw1, Wie1)) T Az + B3 (Ex — g(Vier1, W) 7 As
+B4(E2 — g(Vig1, Wi 1)) Aa + AT (Ey = f(Vis 1, Wi 1)) BY + AT (E1 — f(Vig1, Was1)) BY

+AY (Ey — g(Vier 1, Wies1))BY + AL (E2 — g(Vig1, Wir1)) B, + PB1(EL — f (Vir1, Wier1)) AL P
+PBa(Ey — f(Vir1, Wi 1)) T AoP + PB3(Ex — §(Vier 1, Wi 1)) A3P + PB4 (Ey — 8(Viey 1, Wir1)) T A4 P
+PAT(Et — f (Vir 1, Wi 1)) BT P+ PAS (Et — f (Vi 1, Wi 1)) B3 P+ PAY (Ex — g(Viey 1, Wier1))BY P

R
+PAL (B = gV, Wi ) B P+ sy

Ties1 = 3[D1(E1 = f(Vie1, Wi 1)) CL 4+ Do (Ey — f(Vis1, Wie1)) T Co 4+ D3(Ez — 8(Viey 1, Wiy 1)) C3
+D4(Er — 8(Vir1, Wier1)) Ca+ CH (Ey — f (Vir1, Wies1) ) DY 4+ CF (E1 — f (Vig1, Wer1)) DY
+C§ (B — g(Vip1, Was 1)) DY +CJ (B2 — g(Viy1, Wy 1))D) + QD1 (Er = f (Vi 1, Wir1))C1O

(E1 = f(Vir1, Wir1)) 20 + OD3 (E2 — g(Vir1, Wiy 1)) G50

Dy (Ez — (Vi 1, Wi 1)) CaQ+ QCY (E1 — f (Vir1, Wt 1)) DY Q
+0C3 (E1 — f(vk+1»Wk+1))DgQ+QCH(E2_ (Vi 1, Wern)) DY Q

( ( ))Dj,

+OC] (B2~ g 0]+ Moy,

Vier1, Wit
6.If Ry1 =0, then stop and V;, W, are the solutions; else let k = k+ 1 go to STEP 5.

To prove the convergence property of Algorithm I, we first establish the following basic properties.
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Lemma 1. Suppose that the system of matrix equations (2) is consistent and let V*,W* be its reflexive solutions. Then for
any initial reflexive matrix pair [Vi,W;]| with V| € C2** (P) and W, € CI*(Q), we have

(Si,V* = Vi) + (T, W* = W;) = ||Ri|1%, 3)

where the sequences {V;},{Si}, {Wi} , {T;} and {R;}are generated by Algorithm I fori =1,2,...

Proof. We prove this lemma by mathematical induction. When i = 1, from Algorithm I, we have

(S1,V* =Vi) +(T1,W* = W) = Re{tr[(V* —V))H (3 [B1(E1 — f(Vi,W1)) A, + Bo(E1 — £(Vi,W1))T Ay
+B3(Ex — g(Vi,W1)) A3 + B4(Ey — g(Vi,W1))"Aq + PB1 (E1 — f(Vi, W) A, P

+PBy(Ey — f(Vi,W1))T A2P+ PB3(Ey — g(Vi,W1))" A3P+ PB4(Ey — g(V1,W1))" A4P))

+(W* = W) (3D (E1 — fF(Vi,W0) C\ + Dy (Ey — f(Vi,W1))" Ca + D3 (Ex — g(Vi,W))" C

+D4(Ey — g(Vi,W1)) Cs + QD1 (E1 — f(Vi,W1))HC1Q+ 0D (E1 — f(Vi,W1))T G0

+0D3(Ey — g(Vi,W1))" C30 + OD4(E> — g(Vi,W1)) G4 0))]}

= Re{tr[(E; — f(Vi, M)A (V¥ =V B + (E1 — f(Vi,W)))TAx(V* —V})HB,
+(Ex — g(Vi,W1)A3(V* = V1) B3 + (Ex — g(Vi,W1))TA4(V* — V1)1 By

+(Er = f(Vi, W) C (W* = W) Dy + (Ey — f(Vi,W1))TCo(W* = W1 ) D,

+ (B2 —g(Vi,W1)C3(W* = W1)" D3 + (E2 — g(Vi,W1))TCa(W* — W1)H Dy}

= Re{tr[(E1 — f(Vi,W))¥ (A V*HB) — A\ VIIB) + AV T By — AV By +C\W*H Dy — C\WH D,y
+CoW* T Dy — WD) + (Ey — g(Vi,Wh))H (A3V*H By — A3V B3 + AsV*T By — A4V By
+C3W* Dy — CGsWH D5 + CuW*T Dy — C4W] D4)]}

= Re{tr[(E1 — f(Vi, W))2 (A1 V*H By + A;V*T By + CYW* Dy + CW*T D, — (A1VE B + A2V B,
+C WD, + W Dy)) + (Er — g(Vi,Wh)) (AsV*H B3 + AsV*T B4+ CGsW*H D3 + C4W*T Dy
—(A3VE B3 + AsVI B4+ CWHDs + C4W] Dy))]}

= Re{tr[(E1 — f(Vi,W1))" (E1 — fF(Vi,W1)) + (B2 — g(Vi,W1)) " (E2 — g(Vi,W1))]}

E]*f(V],W]) 0
0 Ey —g(Vi,W)

—f(Vi,W1) 0

0 E, —g(Vi,W1) I} =Re{tr[RI'R1]} = IR |

= Re{tr]

This implies that (3) holds for i = 1. Now, assume that (3) holds for i = k . That is,
(S, V" = Vi) + (Ti, W* = W) = | Rl

Then we have to prove that the conclusion holds for i = k+ 1. It follows from Algorithm I that
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(Skrt, V= Vir1) + (Test, W* = Wirt) = Re{tr[(V* — Vi) (3 [B1(E1 — f (Visr1, Wie1) Ay
+B2(E1 — f(Viey 1, Wir1)) Az + B3 (Ez — 8(Vies 1, Wi 1)) A3 + Ba(Er — §(Vir1, Wi 1)) Ay
+PB(Ei — f(Vir1, W) ALP+ PBy (Ey — f (Vir1, Wier1)) T AP

+PB3(Ey — g(Vis 1, Wit 1)) A3P + PB4 (Ex — (Vir1, Wiet1)) TA4P] + Hﬁﬁ” Sk)

+(W* = Wi )2 (S [D1(Er — f Vi1, Wi 1)) CL + Do (Ey — f(Vig1, Wi ) TG
+D3(Ey — (Vi 1, Wit 1)) C3 + Dy (Ez — (Vi 1, Wies1)) T Ca + QD1 (E1 — f (Viw1, Wies1)) 7 C1Q
+0D>(E; — f(Vk+1,Wk+1))TC2Q+QD3(E2— (Vier1, W) G50

+0Dy(Ex — g(Vir1,Wis1)) CaQ] + Hfﬁ! To)|}

= Re{tr[(Ex = f(Vis 1, War1)TAL(V* = Vi )" By + (Ey = f (Vi 1, Wa 1) T A2 (V= Vi ) By
+(E2 — g(Virt, Wi ) A3 (V* = Vi 1) B3 + (E2 — g (Viey 1, W1 )) TA4 (VF — Vi 1) By

+(E1 = f(Vir 1, War ) CL W™ = Wi ) D1+ (Er — f(Vig1, Wi1)) T Co(W* — Wi 1) Dy
+(E> *g(Vk+1,Wk+1))HC3(W* — Wi 1) D3 + (B2 — g(Vip 1, Was 1)) T Ca(W* — Wiy 1) Dy}

+”’T;+‘1‘! Re{tr[(V* = Vip )P S+ (W* — Wiy ) )P TR}

= Re{tr[(E1 — f (Vir1, Weer)? (A VB — AWV B+ AV T By — AV By +C1W*HD1
—CIWH DI+ CW T Dy — W] D2) + (Ey — g(Vir1, Wi1)) (AsV*H B3 — A3V | B

+AsV T By — AV B4+ Cs W D3 — CWH D3+ CaW* Dy — C4Wk L 1D4)]}

+\\Rk+1|\ Re{tr[(V* — Vi — IR S )HSk+(W*—Wk— IR T) T}

2 29k 2 21k
IRe]I* [Si =+ Zel Sk ll” -+ Zil

= Re{tr[(E1 — f(Vk_H , Wk+1))H (AIV*HBl +A2V*TBZ JrC]W*HDl +C2W*TD2 — (AlvkliIHBl +A2Vk1132
+C\WE D1+ CoW/ Do) + (B2 — 8(Vier 1, Wies 1)) (A3V*H By + AV T By + G W D3 + W Dy

—(A3V{L1 B3 + A4V Ba+ CWE D3+ CaW/  Da)) ]}

R Rl IR
” k+l|| Re {l [( Vk)HSk+(W*_Wk)HTk]}_ ” k+1H || k”

LT 3 3
IR I? IREll” 1[Skll” =+ 1Tkl

sRe{tr[S{' e+ T Ti]}
In view that V*,W* are solutions of the system of matrix equations (2), with relation (4) one has

k+15 — Vi+1 k+15 k+1) == Redr|(L1 — k+15 Wi+1 1— k+15 Wk+1
(01, V" = Vi) (Tt W = Weg) == Re{tr{(Ey = f (Viers, Wi )" (By = f (Viers. Wi 1))
2 2
H(Es — 8V 1, i) (B2 — 8 (Vieg1, Wies )]} + LRt Ry 2 — [Reet P IRA® (112 17,2
(IR IRell= 1Sk lI=+ I Tl
Ey — f(Vitr1, Wet1) 0

= Re{tr|
0 Ey — 8(Vir1, Wit1)

H
E1 — f(Vig1, Wis1) 0

0 E> — 8(Viey 1, Wiet1)
+ IRt > = [ Res1 |

2
= Re{tr(R{\ |Res1)} = |Res1 |

So, (3) holds for i = k+ 1 . Hence relation (3) holds by the principle of induction.

“
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Lemma 2. Suppose that system of matrix equations (2) is consistent and the sequences{S;}, {T;} and {R;} are generated
by Algorithm I, such that R; # Ofor alli=1,2, ..., then

(Ri,R;)=0 (5)
and
<SlaS]>+<T;7TJ>:07f0rl7.]:172a7kvl7£.] (6)
Proof. We prove the conclusion by induction,
Step 1: We prove
(Ri;Rit1) =0 @)
<Si7Si+1>+<TivT}+1>:Oafori:1727"" (8)

First from Algorithm I, we have

Ri1 = diag(Ey — f(Vit 1, Wir1), E2 — 8(Vier 1, Wie1))
=diag(E1 —A\VE B —CIW D\ — A V] By — oW Dy Ey — AsVE B3 — CW/ D3 — A4V | By — CaW[  Dy)

2
IRkl

— diag(Ey — Ay (Vi + —BL gy By — ¢y (W + — 8L 1y, ay v+ R g7
A 1SeIP=+I1T] ol ISl ol IS¢l
—C (W + — BT D,y By — A3 (Ve + — R g)\Hpy — Cy (W + —Rd”__1)Hp
2( "+Hskd|2+”m\\2 &) D2, By = As "+H||sk”\2+|mu2 W78 = G (Wt ozl e 1) Ds
Ay (Vi + R o\, Cy(W, + R 7HT D
Wit gz S Be = Wt gz T Da)

= diag(E\ —A1\VIB) — C\WHD, — AV B, — oW/ Dy, Ey — A3V By — CGsWH D3 — AV By — C4W[! Dy)
2
— _BIE_ diag(A1SH By +C\ T D) +A2ST By + Cy T D, A3SH By + C3THDs + AyST By + C4TE D)

RAREAR
. R>
= diag(Ey — f(Vi, W), E2 — g(Vi, We)) — %dlag(f(skaTk)ag(Ska Ti))
[1Skl” + |l
e R g5, 8050 ©)
[1Skll” + 11 Tl

For i = 1, it follows from (9) that
(Ri,R2) = Re{tr[RY R}

IR | . -
= Re{tr[(R1 — —5———diag(f(S1,T1),8(S1,T1))) "R}
IS0+ 173 )17
Ri|? S1,T, 0 Ei — f(Vi,W, 0
:Re{"[R{{RI]}_%Re{tr[ f(S1.1) 1 —f(Vi,Wy) I

[S1lI"+ (17| 0 g(S1,1) 0 Ey —g(Vi,W))

2

= |R|* - %Re{n[(ms{’& +C 1 THD, +AyST By + T DY) (Ey — f(Vi,Wh))

+(A3SH B3 + C3T D3 + AuST By + C4 T D4) (E2 — g(Vi,W1))]}

2
= [IRy[|* — i Reer(SY By (B — (v, W) Ar + T Dy (E1 — (v, W) Gy

+STBy (E1 — f(Vi,W1))H Ay + T D> (Ey — f(Vi,W1))HCa + ST B3(Ex — g(Vi,W1))H A3
+T{D3(Ex — g(Vi,W1))" C3 + ST Ba(E2 — g(Vi,W1))H Ay + T Da(E2 — g(Vi,W1)) C4]}

(© 2019 BISKA Bilisim Technology
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— Rl = B Re{er(ST (B (B1 — (v, Wa)) A1 + B (B — £ (Vi W) A
+B3(E> — g(Vi,W1))1 A3 + B4(E2 — g(Vi, W) TAg) + TH (D1 (Ey — f(Vi, W) Cy
+Da(E1 — f(V1,W1))" Co + D3(E2 — g(Vi,W1))"C3 + Da(E2 — g(V1,W1))" C4) ]}

= R = o Reur(s{ (3181 (B1 = £ (Vi, W) A1+ BaE1 — S (i, W) A

+B3(Ey — g(Vi,W1))1 A3 +By(Ey — g(Vi,W1))T Ag + PB{(Ey — f(V1, W) A1 P

+PBy(Ey — f(Vi,W1))" A2P + PB3(E2 — g(Vi,W1))" AsP+ PB4(E> — g(Vi,W1)) T A4P))

+T (3 (D1 (Er — f(Vi,W1))C1 + Dy (E1 — f(Vi,W1))TCo + D3 (Ey — g(Vi, W) Cs
+D4(Ey — g(Vi,W1)) ' Cs + QD1 (E1 — f(Vi,W1))HC1Q+ 0D (E1 — f(Vi,W1)) G0
+0D3(Ey — g(Vi,W1))" C30+ OD4(E> — g(Vi,W1)) " C40))]}

2 Ry
2 R 2 2
= IRi[|* — gzt 181+ 1737 = 0

This implies that (7) is satisfied for i = 1. From Algorithm I, we also have

(S1,82) + (T1, 1) = Re{tr[SH S + TS T1]}

= Re{tr[(3[B1(E\ — f(Vo,W2))H A1 + B2 (E1 — f(Va,W2)) Ay + B3(E> — g(Va, W2))H A3
+By(Ey — g(Vo,W2))T Ay +PB(E1 — f(Vo, W2) ) A1 P+ PBy(E| — f(Vo,W5))T Ao P

_ N 2
+PB3(Ey — g(Va,Wa))# AsP + PB4 (Es — g(Va, Wa)) T A4P] + LR2 g, )i,
IRl

+(3[D1(E1 — f(Vo,Wo))ICy + Dy (Ey — f(Va, W2)) T Co + D3 (E> — g(Va,Wa))HC5
+D4(Ez — g(V2,W1)) T Ca + QD1 (Ey — f(V2,W2))IC1Q+ QD (E| — f(V2,W1))T C20

+0D3(Ey — g(V2,W2))C30 + OD4(E» — g(V2, W) C4 0] + %TI)HW}

= Re{tr[(E1 — f(Vo,W2))HA1SH By + (E1 — f(V2,W2))TA2SH By + (E» — g(Va,W2) ) H A3 S Bs
+(Ex — g(Vo,Wo))TA4S" By + (Ey — f(Va,Wo ) IO\ TE D) + (E1 — f(Va,W2)) TG THD,

— — 2
H(Ex— g(Va, W) C3TH D3 + (Ey — g(Va, Wa) ) TCaTH D3} + 2L Re{ur(st 5, + THTi]}

2
IRyl

= Re{tr[(E) — f(Vo,W)) (A1SH B) + A,ST B, + Ci TH Dy + G T D5)

+(Ex — g(Va, W2) ) (A3SH B3 + AsST By + C3TH D3 + C4 T Dy) |}
2
+—H£T”2 Re{tr[S{iSl + TIHTI 1}

H
— Re{tr| El— f(V2,W2) 0 ] lf(SuTl) 0 )]]}

0 E, —g(Vo,Wh) 0 g(S1,T

2
i Re{1r(ST S + T/}
1

St112+173 112 Ryl 2 2
= LI (Reor(RY (Ry — Ra))} + L2l (111 + 173 )

Sy[P+H|7 21 IR 2 2
= — B IR+ 2 (13117 + 173 7) =0
IRl (IRl

Thus, (8) satisfied for i = 1.

(© 2019 BISKA Bilisim Technology


www.ntmsci.com/jacm

(_/
57 BISKA Ahmed M. E. Bayoumi: Diagonally implicit two derivative Runge Kutta Methods for solving...

Assume (7) and (8) hold for i = k — 1. From (9) and applying mathematical assumption, from Algorithm I one has

(Re,Rir1) = Re{tr[RY, | Ri]}

IR ;
= Re{tr{(Ry — ——5— ——diag(f(Sk, Tr),8(Sk: Tk)))" Ree| }
ISell® + 11Tl
= Re{tr[RIR;]} — &Re{tr[ fSeT) 0 Ey — f(Vie,Wi) 0 I
ISk + 171 0 g(SkTi) 0 Ey —g(Vi, W)
2
= ||1ek||2 _ MRe{tr[(AleBl +C1TkHD1 +A2SZB2 +C2TkTD2)H(E1 _f(Vk7Wk))

+(A3S B3 + C3 T D3 + AuST By + Ca T} Da) (E> — g(Vie, Wi)) ]}

2
= IR — it e Re{tr(SY By (Ey — £ (Vi Wi) P Ay + T D (B1 — f (Vi W)

+STBy(Ey — f (Vie W) )1 A2 + T D2 (Ey — f(Vie, W) ) Cy + SE B3 (E> — g(Vi, Wi)) 7 A3
+T,7' D3(Ey — g(Vi, W) )" C3 + S Ba(Ez — 8(Vi, i) )T Ag + T Da(Ez — g(Vi, Wi) ) Ca}

IR|? = R Rt (SH By (Ey — £ (V. W) H AL +Ba(E1 — (Vs We)) Ay
IRl = o7 e Re 7Sk (Bu(Er — £ (Vi, Wi)) " A1 + B2 (Ev — f (Vie, Wa))" A2

+B3(E2 — 8(Vi, Wa))" A3 + B4(Ea — g(Vi, W) As) + T (D1 (E1 — f (Vi, W) Cy

+Dy(E1 — f (Vi, Wi))T Co + D3 (Ey — g(Vi, W) C3 + Da(Ez — g(Vie, Wi)) T C4) ]}
= Rl = el Re{or1SH (4B (B — £ (Ve Wicr) /A1 + BBy — £ (Ve Wi )) T A
+B3(E2 — 8(Viy1,Wi1)) " A3 + Ba(Ex — 8 (Vi 1, Wi 1))  Aa + PB1(E1 — f Vi1, Wai1)) AL P
+PBy(Ey — f (Vir 1, Wir1)) T A2P + PB3(Ez — 8(Viey 1, Wi 1)) A3P + PB4 (Ez — g(Vir1, Wat1)) T AsP))
+TH (3[D1(Er — f (Vie1, Wis1))!CL 4+ Do (Ey — f (Vie1, Wi1)) T Co + D3 (Ez — 8(Vier 1, Weer1))H C3
+D4(Ez — 8(Vir1, Wit1)) T Ca+ QD1 (Ey — f (Vi 1, W) C1Q + OD3 (E) — f(Vip1, Wiet1)) T C20
+0D3(Ey — 8(Vir1, Wit 1)) C30 + OD4 (Er — 8(Vir 1, Wer1)) G2 0))]}

IR H R H IR|?
= [IRel|* = ——5——— Re{tr[S (Sk — 3Sk-1) + T (T — 5 Ti-1)]}
[1Swl” + I 7| [|Rk—1l [|Rk—1l
2 2
2 || Ri || 2 2 IRl
= [|Rx]| _7“5 T ||2[||Sk|| +[ITl|” — IR HQRe{tr[SkHSkfl"‘TkHkal]} =0.
& k 1

Thus, (7) holds for i = k.

Also, from Algorithm I one also has
(Sk:Sks1) + (Ti, Taes1) = Ref{er(SE S+ T T}

= Re{tr[(5[B1(Ey — f (Vi1 , W) A1 + Bo(Ey — f (Vie1, Wir1)) TA2 + B3 (B2 — 8(Vir1, Wir1)) A3
+B4(Ex — 8(Vig1,Wir1)) Ay + PB1(E1 — f (Vig1,Wir1))?A1P+ PBy(Ey — f (Vig1,Wer1)) Ao P

P R 2
+PB3(E> — g(Vir 1, Wit 1)) AsP + PB4(Ez — g(Vies-1, Wir1 ) ) TA4P) + %Sk)f]sk

+(3[D1(E1 = f (Vi 1, W1 )2 C1 4+ D2 (Ey — f(Vier1, Wi 1)) T Co + D3 (Eo — 8(Vir1, Weer1)) G
+D4(Ez — 8(Vir1: Wi 1)) Ca+ QD1 (E1 — f (Vi1 Wies1)) 7 C1O + OD3 (E1 — f (Vip1,Wer1)) G20

- - 2
+0D3(E> — §(Vir 1, Wir1))? C30 + OD4 (Ex — g(Vier 1, Wier1)) T CaQ] + %Tkwm}
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= Re{tr[(Ey — f(Vig1, Wi )" ALST By + (Et — f(Vir1, Weer1))TA2SE By + (B — 8(Viy 1, Wiy 1)) A3 SY B
+(E2 — 8(Vir1, Wi 1)) TA4SHBy + (E1 — f (Viy1, Wt )OI TED, + (E) — f(Vk+1,Wk+1))TC2QHﬁ2

+(E — §(Vir1, Wies 1)) C3TE D3 + (Ey — 8(Vier1, Wi1)) T CaTH D4} + Hﬁ“ﬁ! Re{tr[SE Sk + THT]}

= Re{tr[(E\ — f(Vir1, W) (A1SE By +A2ST By + Ci TH Dy + G T Dy)
+(E> — 8(Viep 1, Wir1))H (A3SH B3 + AyST Bs + G TH D3 + C4TI Dy)]}

R 2 2
P AT

AR
E Vi W 0 f S, Th 0
:Re{tr[ 1_f( k+15 k+1) f( ks k) ]}
0 Ey — &(Vir1, Wis1) 0 &(STk)
R
LB (15 + 172 )

2
—Wwe{rr[ 1 (R Rk+1>]}+”f;+ﬁ” (IISell> +1721)

SelP T IR
= — I Ry )+ LRl )2+ 5 )

This implies that (7) and (8) hold for i = k. Hence, the relation (7) and (8) hold for all 1 <i <k.

Step2: We want to show that,
(Ri;Ri11) =0, (10)

and

<Sl‘aSi+l>+<Tl‘aTi+l> :05 (11)

hold for integer [ > 1 . We prove these two equations given by (10) and (11) by using induction. The case of [ =1 is
proved in Step 1. Now we assume that (10) and (11) hold for [ < g,g > 1 the aim is to show

(Ri;Rizq1) =0, (12)
and
(Si,Sivgr1)+ (T, Tivgs1) = 0. (13)
First, we prove the following,
(Ro,Rg+1) =0, (14)
and
(S0,8q1) + (To. Ty ) = 0. (15)

According Algorithm I, from (9) and induction assumption one has

(Ro,Ry11) = Re{tr[RY, | Ro]}

= Re{tr[(R;— & (f(Sq>Tq)ag(Squ)))HRO]}
141" + 171
O N L7 P I % A —f% W) 0
R w0 ssm) 0 Es)
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IIRqII
sl lzIP
+(A3SH B3 + C3T D3 + AyS] By + C4T,] Dy)! (E2 — g(Vo, Wo)) ]}

sRe{tr[(A1SI By + C\ T} Dy + AyS] By + Co T, D2)" (Ey — f(Vo,Wo))

— ||S H ‘1|||| ” Re{tr[Slq'IBl(El —f(VO’WO))HAlJrTqHDl(EI *f(V07W0))HC1
q Ty

+SBa(E1 — f(Vo,Wo))T A2+ T Do (E1 — f(Vo,Wo))Ca + S}/ B3 (E2 — g(Vo, Wo)) A3
+T,'D3(E2 — §(Vo,Wo))" C3 + S Ba(E2 — g(Vo, Wo)) A4 + T Da(E2 — §(Vo,Wo)) Cu] }

2
R P —
= —%Re{tr[%{ (Bi(Ey — f(Vo,W0)) A1 + B2 (E1 — £(Vo,W0))" Az
q q
+B3(Ex — g(Vo,Wo))" A3 + Ba(E2 — g(Vo,Wo)) " Aa) + T (D1 (E1 — f(Vo, Wo))H Cy

+D5(E1 — f(Vo,Wo))" C2 + D3(E2 — g(Vo, W) C3 + Dy (E2 — g(Vo, Wo)) " C4)]}

=—%Rm (L[B1(E1 — £ (Vo, Wo)H A +Ba(Er — £ (Vo, Wo)) T Az

+B3(Ey — g(Vo,Wo)) A3 + B4 (E2 — g(Vo, Wo)) T Ag + PBy (E1 — f(Vo,Wo)) A1 P
+PBy(E1 — f(Vo,Wo))" A2P + PB3(E> — g(Vo,Wo)) A3 P + PB4 (E2 — g(Vo, Wo)) " A4 P))
+TH(3ID1(Er — f(Vo, W0))" C1 + D2 (E1 — f(Vo, Wo))" C2 + D3(E2 — 8(Vo, Wo)) " C3
+D4(Ex — 8(Vo,Wo)) Ca + QD1 (Ey — f(Vo, Wo))C1O+ QD1 (E1 — f(Vo,Wo)) G20
+0D3(Ex — g(Vo, Wo)) C30 + QD4 (Ex — g(Vo, Wo)) " C4Q])]}
= —%Re{trbﬂ&) +THT)} =0,
I + 117 B
and
(S0,8q+1) + (To, Ty1) = Re{tr[Sgly 1 So + T, To]}

= Re{tr[(3[B1(E1 — f(Va1,Was1))# AL + B2(E1 — f(Vgr1, Wy )) " A2 + B3 (Ex — g(Vgs1, Wor1)) A3

+B4(Ey — g(Vys1,Wyi1))TAs+ PBy (E1 — f(Vys1,Wyi1)) AP+ PBy (E) — f(Vq+1, W,i1)) AP
_ —_ R

£ PB (B — g(Vyr 1, W) P AsP+ PBR(Ex — g(Vyyr W) AP+ Lot s,

[[Ry|*
+(3[D1(E1 — f (Vs 1, Was 1) C1 + D2 (Er — f(Vgs1, Wys1)) T Co + D3 (Ez — g(Vy1, Wy1)) 2 C3

+D4(Ex — 8(Vys1,Wy11)) T Ca+ OD1 (E1 — f(Vyi1,Wyi1))2C1Q + OD2 (Ey — f(Vq+17Wq+1))T6Q
+0D3(Ey — g(Vys1,Wys1))1C30 + QD4 (Ez — §(Vyi1,Wys1)) T C2Q) + ””ﬁh” )Ty}
‘1
= Re{tr[(Ey — f(Vgs1,Wys1 ) HALSEB1 + (E1 — f(Vyy1, Wyi1))TALSE By + (Ey — g(Vgs1, W1 ) ) A3 SE B
+(E2 — 8(Vgi1, Wy 1)) TA4SE By + (E1 — f (Vgy1, Woi1)) O T Dy + (Ey — f(VquWqH))TCizToHDT

+(E2 - g(Vq+1 , Wq+1))HC3 T()HD3 + (EZ - g<Vq+1 s Wq+1))TaTOHﬁ4]} + ”1;?\1\! Re{tr[S(I;SO + TqHTO]}

= Re{tr[(E1 *f(Vqu] s Wot1 ))H(A1S0HB] +A2$€Bz +C TOHD1 +C2T0TD2)
+(Ex — g(Vyr1,Wyi1)) 1 (A3SE B3 + AsSTBs + G T D3 + C4 T Dy}

_ pefor | 1 Ve W) 0 om0
0 Er —g(Var1,Wy+1) 0 g(So,To)
2
IS Tl oyt Ry — Ry =0
(| Rl

Then (14) and (15) hold.
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From Algorithm I and (9), induction assumption one has
(SisSivgi1) + (T, Tigr1) = Re{tr[SE 1 Si+ T 1 T}

= Re{tr[(3[B1(E1 — f(Vitgi1, Wisgi1)) T AL + B2(E1 — f(Visgi1, Wisgi1)) A2 + B3 (E2 — 8(Vis g1, Wi g41)) A3
+B4(Ez — §(Vitqr1,Witqr1)) As+PBi(E1 — f(Viggr1, Wirgs1))?A1P+ PBy(E| — f(Vz+q+17Wz+q+l))TA2P

Py (Es — §(Virgi1. Wisgi))!AsP+ PB3(Ex — 8(Vii g Wirgi1)) AsP] + 'm*“m'&+a s,
1+q

+(3D1(Er = f(Virgi1,Wirq1))2CL+ D2 (Er — £ (Virgi1, Witgr1)) Co 4+ D3(Ex — 8(Vit g1, Wit g41)) 1 C

+D4(Ez — 8§(Visgi1,Witg+1)) Ca+ OD1 (E1 — f(Vitgi1,Witg+1))1C1Q + QD2 (Ey — f(W+q+1,W+q+1))T€2Q
+0D5(Ex — §(Vis g1, Wit gs1))* C30+ 0D (Ez — 8(Vig g1, Wirgs1)) Co0] + MTIW) 7))

IRil|”

= Re{tr[(El _f(‘/i+q+l aW/i+q+1))HAlS;HBl + (El _f(‘/i+q+l aW/i+q+1))TA7251HBiZ
+(Er — 8(Vis g1, Wit 1)) A3SHBs + (Ex — (Vi g1, Wi g+1)) TA4SH By
+(Ey — f(Virgs1:Wirg11))ICITED + (Ey — f(Vitgi1, Wit g11))TC2THD,

T — R;
+(E2 = (Vg 1, Witg+1)) T D3 + (B — §(Vieg1, Wig+1)) T Ca T Da) } + %Re{”’[ HgSi+ T T}
l+q

= Re{tr[(E1 — f(Viygi1,Witg1)) T (A1SHB) +A2ST By + C1 T Dy + G T D)
R;
H(Ex — 8(Vit g1, Witg1))? (A3S7 B3 + AyST B4 + G TH D3 + C4T; Dy} + ! “’“” Re{tr[S l+qS + l+qT}}

[Tk

H
_ Re{tr| Er — f(Viegs1,Wirg+1) 0 f(Si,T;) 0 I
0 Ey — g(Viggr1, Wirgr1) 0 g(S,T)
2
; T;
L e —
(R
IS: 1% + 17317
= P PE Reir(RIL, . R} (16)
[|R:l
In addition, from (9) it can be shown that
2
H ||Ri+4H . H
<R,',R,-+q+1>=Re{tr[R[+q+1R,~]}:Re{tr[(Ri+q—HS HZ+HT szlag<f(5i+qvTi+q)vg(si+q7Ti+q))) Ril}
i+q i+q
2 H
— Reftr(®? Ry — WRial” g [ SiaTig) 0 Ev—f(V,W) 0 N
= i+
T s P+ | TP 0 g(Siig:Tieg) 0 Ey-g(VaWy)

2

R;

:—7”5 H||2f||||r ” sRe{tr[(AiSH Bi + 1T D1+ AxS], By + o} Do) (E1 — £ (Vi, W)
i+q i+q

+(A3S,+qB3 +G3 ,+qD3 +A4S,+qB4 + G4 T i+q Dy)H (E; — g(Vi,Wi))]}
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1.9
[1Sisqll”+ |44l

+S7, B2 (Et — f(Vi, W) Ay + T Do (E1 — f(Vi, W) )HCo + S B3 (E2 — g(Vi, Wi)) A3

+T1 D3(Ey — g(Vi, W) C5 + ST, Ba(Ex — g(Vi,Wi) )H A4 + T Da(E2 — g(Vi, Wi) ) Cy] }

Re{tr[SE Bi(Ey — f(Vi, W)# Ay + TH D1 (E — f(Vi, W) C,

IR
[Sisal| "+ 75q]|”

+B3(Ey — g(Vi,Wi) A3 + Ba(E2 — g(Vi, W) TAg) + TH (D1 (Ey — f(Vi, W) Cy

+D1(E1 — f(Vi,Wi))" Co + D3 (Ez — 8(Vi, Wi) ) C3 + Da(E2 — g(Vi, W) Ca) ]}

Re{tr[SH  (Bi(Ey — f(Vi, W) 1A + By (Ey — £ (Vi,Wi)TAy

B L

B - o
+B3(Ez — 8(Vi, W) A3 + B4(E2 — g(Vi, W) A4 + PBy (Ey — f(Vi, W) " A P
+PBy(Ey — f(Vi,Wi))T A2P + PB3(E2 — g(Vi,W:)) AP+ PB4 (Ez — g(Vi, W;)) T A4P))
+TH (5ID1(E1 — £ (Vi, W) C1 + Do (Ey — f(Vi,Wi)) T Co + D3 (E2 — g(Vi, i) Cs
+D4(Ey — g(Vi,Wi)" Ca+ QD1 (Ey — f(V;, W) C1Q + QD3 (E1 — £(Vi, Wi) T C,0
+0D3(E; — g(Vi,W;))C30 + QD4 (E2 — g(Vi, W) T C4Q))]}

Re{tr[Sf (3 [B1(E1 — f(E1 — f(Vi, W) A1 + B2 (E1 — £(Vi, W) T A2

IR+ " IR . IR
= — Re{tr[S- (S'— S‘_l)-i-T (T'— T'_l)]}
ISiealP+ [ Teeal T IR R
IRial” IR Hoo  oH o e —
Ref{tr[Si Sio1 + T Ti1]} = (Sic1,Sivq) + (Ti-1, Trig) (17)

el T P TR T

Repeating (16) and (17), we can obtain, for certain o and 3

<Siasi+q+1> + <T;7 Ti+q+1> =a <S()7Sq+l> + <T07 Tq+1> y

and
(Ri,Rizq+1) =B (Ro,Rg+1) .

Combining these two relations with (14) and (15) implies that (10) and (11) holds for / = g+ 1 . From Step (1) and (2)
the conclusion holds by the principle of induction.

Remark. Lemma 1 implies that if there exist a positive number i such that S; = Oand 7; = Obut R; # 0, then the system

of matrix equations (2) is inconsistent.

With the above two lemmas, one has the following theorem:

Theorem 2. [13] If the system of matrix equations (2) is consistent, then for any initial reflexive matrix pair [V, W] with
Vi €C5(P) and Wy €CL*(Q) a reflexive solution pair can be obtained with a finite number of iteration steps by using
Algorithm .

Proof. Suppose that R; # 0 for i = 1,2,3,...,2mn, by Lemma 1 and the previous remark, we have S; # 0 or T; # 0. Then
we can compute Vouuti, Wamnt+1,Romnt1 by Algorithm I Also, from Lemma 2 we have (R;,Ryu,+1) = 0 and
(Ri,Rj) =0 fori=1,2,3,...,2mn,i # j So the set of R|,Ry,...,Romy is an orthogonal basis of the linear space Q of
dimension 2mn where Q = {U|U =diag(K;,Ky)where K|,K, €C™"} Which implies that Rp,,+; = 0 i.e.
Vomn+1, Wamn+1 1s the solution of the system of matrix equations (2).
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To prove the convergence property of Algorithm II, we first establish the following basic properties.
Lemma 3. Suppose that the system of matrix equations (2) is consistent and let V* \W* be its Hermitian reflexive solutions.
Then for any initial Hermitian reflexive matrix pair [Vy, W] with V; €H C5*5 (P) and Wy €H C}™?(Q), we have

(S, V= Vi) + (T, W* = W) = ||Ri||*, (18)

where the sequences {V;},{S:}, {W;} , {T;} and {R;}are generated by Algorithm II fori=1,2,...
The proof of Lemma 3 is similar to Lemma 1.

Lemma 4. Suppose that system of matrix equations (2) is consistent and the sequences {S;}, {T;} and {R;} are generated
by Algorithm Il , such that R; 20 foralli=1,2, ..., then

(Ri,R;) =0, (19)
and
<S17Sj>+<TlvT]>:Oaf0rla.]:1727’kal%.] (20)
The proof of Lemma 4 is similar to Lemma 2.

Theorem 3. [13] If the system of matrix equations (2) is consistent, then for any initial Hermitian reflexive matrix pair
[V, W] with Vi €H CS** (P) and Wy €H C™ (Q) a Hermitian reflexive solution pair can be obtained with a finite number
of iteration steps by using Algorithm II.

The proof of Theorem 3 is similar to Theorem 2.

4 Numerical Examples

In this section, we report two numerical examples to illustrate the application of our proposed iterative methods.

Example 1.In this example, we illustrate our theoretical results of Algorithm I for solving the system of matrix equations
(2) where,

—1 0 2—1 —3i 0 4 4 -3i 0 1+2i 43—
A = 1 -1 -3i Ay 14+2i 24+3i 144 Ay —1—i —1 4+ Ay 1 i 1+i 7
241 3+i —i 0 3—1 20 2 24i3+41i 3—71 0 1
—3i 1+2i4+i —1+3i 2i 0 2i 0 -3i i 2 =2
i —3il14+1i —14+i 1 2 20 4 —1-—i 2i 4 50
1-: 0 2 2+1 0 -2 1 2—i 3+1i -3 -1 -2
C = ' G = o ' ,G3 = P ,Cy = l ;
1+71 3 0 -3i —-1—-1 0 2 1 —3i 147 -3i 0
2 31 3i 0 1 i —i—1—-i -2 i 2—i 3
14+3i1+2i 1+i —i 1-3i2i =3i 0 3—il+i 0 -1 0 i 1420 1430
Bi=|2—-i -2 2-2i-3i|,B= 1 02+3i4i|.B3=|4+i —i 4 O |,Bs=|-3i—-1—i -2i —1—i
1+1i 1 3+i 0 1-2i2 1+i 0 0 0 242 —i 2 2i 0 0
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—14+i2+i 0 —1+2i 1 2i 0 —142i i 3+il1+2i2—i
Di=|1-2i i -34i O Do=|-24i0 —-1+3i —i ,D3 = 0 1+4+i 3i 2+i],
3i 1430 3i 2i 2 i 0 1 442i3—-i14+2i 141
-3 —1—-i01+44i 100 -1 00
Dy= 342 14+4i0 2 ,P=10-10]|,0=| 0 —-10/{,
3i 1+2i1 2 001 0 01
63 —26i —16+5i 15—25i —9-9i 36-87i 16—41i —28+10i —112+38i
= 25—4i —6—18i 1-2i 1-7i By — 14+17i —-3-9i 13—4i 23428
10+26i 8+48i —30+4+18i —6+24i |’ —33-77i —17-59i 38+12i —51+30i
30+34i 44—20i 65+7i —20+14i —24—-40i —5—-26i —2—17i —32—i
100
When the initial matrices are chosen as Vi =W; = | 0 1 0 | . We apply Algorithm I to compute Vi, W;.. After iterating 22
001
steps we obtain
1+i0 2i 142i—-142i 0
Voo=| 0 i 0 JWa = 2i —1-2i 0 ,
1—i0 14 0 0 1+

which satisfy the system of matrix equations (2). Moreover, it can be verified that PVP =V and QWQ = W. With the
corresponding residual
Ri1 = diag(Ey — f(Vir1, Wit 1), E2 — 8(Vier 1, Wit 1))
|Raz2|| = ||diag(Ey — f(Vaz, Waa), Ez — g(Vaz, W2))|| = 6.0203 x 10~ '2.
— VWi =[V

The obtained results are presented in Figure 1, where r; = ||R;||( Residual) & W]”W]H ( Relative error).

From Figure 1, it is clear that the error ; is becoming smaller and approaches zero as iteration number k increases. This

indicates that the proposed algorithm is effective and convergent.
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Figure 1. The residual and the relative error versus & (iteration number)
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Example 2.In this example, we illustrate our theoretical results of Algorithm II for solving the matrix equation (2) where,

3+2i 0 i 2i 1+3i 242i 142i i —i 0 1 2+3i
A= 0 —1+3i21|,A=| -3 -1—-i 0 1|,A3=|14+4i3+i 3 0 )
I+i 3i —i0 2i 0 5 3 i i 14+2i—1—i

0 3 142 2—i 1 -2 2i 3i 1 —2i
Ag= | i1-2i-142i3—i|,Ci=|3i1-2i0|.C=|-2 2i 0 |,
014i 2—i 0 0 —2+ii 0 1-2i —1
] ] o —3i 3 0
0o -2 0 —14+il142i 1 | 9 ]
G=|-1 0 3 |.G=[1-20 0 1-2i|.B=|_ = "1,
2142 —24i . 3 14 20 0 4-—i
—2zl — l l l
! 1 L ! 1 3+i —4
240 i 141 1 246 2i -1 1-i 3
i 2 0 1-2i 0 —1 2% -2 i
32: ,B3: 7B4: )
3 —i2+4i 301 i 3 i 0
i -1 0 | I 1 —242i 0
ii2—i 1-2ii 2 342 0 —2+4i i 0 ~10 0
Di=|-142i3 i |.Da=]| 1 3i3+i|.Ds=| 1 0 —1-i|,D4y=|3-10[,0=|010
2 0 -3 3i 0 0 2 —143i 0 2i 4i 2 00-1

—85—-23i 19-9i 39-34i

. . , 100 O
2+444i —65+22i —40—7i 010 0
Ei=|-29-62i 10—-6i —4+4+10i |,Ep=|40—-32i —5+38;i —1—-71i|,P= 00-10 |
—50+33;i —38—68i —12+48i 42 —78i —40—4i 33
00 0 —1
1000
0100 0o
When the initial matrices are chosen as V| = 0010 and Wy = [ 010 |. We apply Algorithm II to compute V., W;.
001
0001
After iterating 15 steps we obtain
1 =300
305
\% 3300 - lo—20
=1 o _34| "=
504
0 0 42

which satisfy the system of matrix equations (2). Moreover, it can be verified that PVP =V = V# and QWQ =W = W#
With the corresponding residual

Riv1 =diag(Er — f(Vie1, Wi1), E2 — 8(Vir 1, Wiet1)),

[Ris|| = ||diag(Ey — £ (Vis,Wis), E2 — g(Vis,Wis))|| = 8.0247 x 1073,
The obtained results are presented in Figure 2, where r; = ||R||(Residual), & = Ww

] ( Relative error).
(© 2019 BISKA Bilisim Technology
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From Figure 2, it is clear that the error J; is becoming smaller and approaches zero as iteration number k increases. This

indicates that the proposed algorithm is effective and convergent.

———Mog,
2 ~..___‘____’___- i Mg g F
S ———
~——_
a G = g
— 5 -‘_\‘\‘.__‘“-\"‘-\-\_

2 e ~.

T \
5 \ |,'lII -
8 %"
|

10

A2 N ; . L . f |
o 2 4 =] B 10 12 14

k {lteration number }

Figure 2. The residual and the relative error versus & (iteration number)
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5 Conclusion

Two finite iterative algorithms for finding reflexive and Hermitian reflexive solution to coupled complex of conjugate
and transpose matrix equations (2) are presented. We proved that the iterative algorithms always converge to the solution
for any initial reflexive and Hermitian reflexive matrices. We stated and proved some lemmas and theorems where the
solutions are obtained. The obtained results show that the methods are very neat and efficient. The proposed methods are

illustrated by two numerical examples.
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