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Abstract: LetG = (V, E) be a simple connected undirected graph. In this paper, wesdgéineralized Euler®-Function of a graph
which is the summation of the Eulerfs—function of the degree of the vertices of a graph and it is tehby ® (G). It is determined
the general form of Euler'®-function of some standard graphs. Finally, some importsilts and properties are studied.
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1 Introduction

The Eulerg —function, which is also called the totient function or inalior function where Gauss introduced the symbol
¢ (n), is counted as one of the typical area in number theory defingtle number of positive integers less thamhich

are relatively prime (or co-prime) to [5]. For instance, there are 8 positive integers less than d6hndre relatively
prime to 20. Also, there are 18 positive integers less thawli@h are relatively prime to 19. So, the above example is
denoted byp (20) = 8 and¢ (19) = 18, respectively. Also, from the above example it is obtditmat if (n = p) is prime,
theng (p) = p— 1 and in generalp (p¥) = pk — p*~1 for any positive integek. For any positive integet we have that

¢ (n)=n (1— %) (1— %) (1— é) wheren= p1&p,®2 ... p [1,4,6,8,9].
The Mobius function was defined id][and denoted by (n) which is defined to be

1, ifn=1
p(n) =< (=1)', ifn= pyp2... p where the pare distinct primes

0, otherwise

A function f is said to be multiplicative if for all positive integers,n such thatm,n are relatively prime, then
f (mn) = f(m) f(n). Both the Eule — function and the Mobius function are multiplicativé.[

Providing an interesting connection between number thandygraph theory can be found and given2r3[7,10]. In
this paper, we attempt to use a number theory function calledeuler's¢ —function into graph theory. LeG be a
simple connected undirected graph. We define generalizézt Bufunction @ (G) of any graph as the sum of the
Euler's ¢ — function for the degree of vertices of the graphlt is shown that for alv € G, dedqv) > 1 such that degy)
with at most 8 distinct prime factors, we have tldatG) > %zvgv(G) degv) . Itis also shown that a relation the Euler’s
¢ — function and the Mobius function.
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2 Generalized Euler's®— function of some standard graphs

In this section, we define generalized EulePs- Function of a graph and determine generalized Eulgrsfunction of
some standard graphs in graph theory which are the path &ap¥cle graptC,, complete grapl,, complete bipartite
graphKmn, completek— partite graptim, m,,...m,, Star grapts, and wheel grapiv,.

Definition 1. Let G be a simple connected graph and@efdeqv)) be defined as the Eulerfs— Function for the degree
of vertices v of any graph G which denoted®yG). Then®(G) = ¥ ey () ¢ (degVv)).

For example, generalized Euleds—function of a graptG = K4 is given by

O(Ka)= 3 ¢(degv)) = ¢(degvi)+ ¢ (degvz) + ¢ (degvs) + ¢ (degva)

VEV(K4)
=2+2+2+42=8

Proposition 1.For all v € V(G), degv) > 1, and a graph G consists of n componenis.G.,Gp, then
n
P(G) =Y P(G).
2

In the following proposition, we determine the general faihgeneralized Euler'@—function of some standard graphs.

Proposition 2.(1) The Euler's@—function of the path graphPfor n > 2 vertices, is®(P,) = n.
(2) The Euler's@—function of the cycle graphCfor n > 3 vertices, is®(Cy) = n.
(3) The Euler's®-function of the complete graph,Kfor n > 3 vertices, is

®(Kn) =n¢(n—1).
(4) The Euler's@—function of the complete bipartite graphylg, for any positive integers m vertices, is®(Kmnn) =

(M ¢ (n) + (nx $(m)).

(5) The Euler's@—function of the star graphsfor n > 2 vertices, is
®(S)=¢(n-1)+(n-1).

.....

D (Kmymp,...my) = (Myk @ (Mp + Mg+ -+ + M) + (M (Mg + Mg+ -+ + M) + -+ (M x ¢ (Mg + Mp -+ - - 4 1My )

2leelan))

(7) The Euler's@—function of the Wheel graph)\for n > 4 vertices, is
dWh) =¢(n—1)+2(n—1).

Proof.

(1) The path graphP, of order n, if n = 2, we have two vertices of degree one, then we have
D(P2) = Yvev(p,) ¢ (dedV)) = ¢ (degvi)) + ¢ (degvz)) = 1+ 1= 2. If n> 3, we have two vertices of degree one
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andn — 2 vertices of degree two, then we have

OF)= ) ¢(degv))=1+1+n-2=n.
VeV (P)

(2) In a cycle graple, of ordern, we have n vertices of degree two, and then we have:

®(Cn) = ¢ (degv)) = ¢ (degv1)) + ¢ (degv2)) + -~ + ¢ (degvn))
veV(Cn)

=1+1+---+1=n

(3) In a complete grapkK, of ordern, we have n vertices of degree- 1, and then we have:

O(Kn)= 3 ¢(degv)) = ¢ (degvi))+ ¢ (degvz)) + - + ¢ (degvn))

VeV (Kp)
= $(n=1)+9(n—1)++@(n—1)
=n¢(n—1).

(4) In a complete bipartite gragfmn of orderm+n, we haven vertices of degrem and we haven vertices of degree
n, and then we have:

®(Kmn) = >  ¢(dedv)) = ¢ (degvi))+ ¢ (deqVz)) +---+ ¢ (degvn))

veV (Kmn)
+ ¢ (degqvi)) + ¢ (degvz)) + - - + ¢ (degvim))
=) +¢(n)+---+¢(n)+ (M) + (M) +---+ ¢ (m)
= mg(n) +ng(m).

(5) Ina star grapls, of ordern, we haven— 1 vertices of degree one and we have one vertex of degrele sayvy, and
then we have:

O(S) = ) ¢(degv)) = ¢ (degvi))+ ¢ (degVa))+:-- + ¢ (degvn))
veV(Sh)

=¢p(n—-1)+1+---+1
=¢(n—1)+(n-1).

(6) Inacomplete k-partite gragfin, m,,...m, Of ordermy +n +--- + my, we havemy vertices of degreg j..; m; where

j,i=1,2,....n, and then we have:

O (Kmy mp....my) = > ¢ (degv))
VeV (Kmy my,...,mn)

=(mx@(Mp+mg+---+my))+ (Mpx (M +mg+---+my)) +--+ (Myxd(My+Mp+ -+ +my_1))

2mee(zm))

S
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(7) In a wheel graph\, of ordern, we haven — 1 vertices of degree three and we have one vertex of degrel say
v1, and then we have:

OWh)= > ¢ (dedv)) = ¢ (degvi))+ ¢ (degvz)) +---+ ¢ (dedvn))

veV (Wh)
=¢(n-1)+¢(3)+---+¢(3)
=¢(n—1)+2(n—1).
In the following proposition, we introduce generalizedéitd @ —Function of the corona product of some special graphs.

The corona produds; o G, of two graphsG; andG; is obtained by taking one copy & and|V(Gs) | copies ofGy;
and by joining each vertex of the-th copies ofG; to thei-th vertices 0fG1, where 1< i <|V(G) |.

Proposition 3.

(1) ®(PhoKy) = 2n
(2) #(ChoKy) =
(3) P(KnoKy) = n<¢( )+1).
(4) ®(KmnoKi) =m@(n+1)+n¢p(m+1)+m-+n.
(5) @(SioKy) =¢(n)+2n+1.
(
(

(6) ®(Kmym,.... m oK) = Zin:l((m*(p(Zj¢i(mj+1)))+m).
(7) @(WhoKy) =¢(n)+3n—-2.

ProofThe proof is similar to the proof of Propositi@n

3 Generalized Euler's @ —function of graphs

In this section, it is shown that for al€ G, degv) > 1 such that defy) with at most 8 distinct prime factors, we have
that®(G) > %ZVGV(G) degVv). Itis also shown a relation between the Euler’sfunction and the Mobius function.

The following lemma is the most useful properties of Gerieedl Euler's®@—function for the divisor sum of the degree
of the vertices in graph.

Lemma 1Forallv e V(G), degv) > 1, we have

®C)= Y T =3 degy)

d|degv) for all veV(G) veV(G)d|degv) veV(G)
where d is the divisor of the degree of vertices in a graph G.

Proof. Let, forv e V(G), F(deqv)) = ¢(d1) + ¢ (d2) +--- + ¢(ck), whered; is any divisor of(degv)) and degv) =
p3lp%... pft. Then, by using the telescoping series, we havefiipt) = 1+ (p—1) + (p?— p) + (p* — p?) +--- + (p* —
pk1) = pX, where(1, p, p?, p3, ... ) are the divisors op¥. SinceF is multiplicative, so

F(degv) = 3 F(ptp32...p0) = > (F (P3) = F (p32) -+ F (p{*))

veV(G) d|deqv) d|degv)
= Z (pil*pgz*---*pta‘): z degv)
didegv) d|degv)
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Lemma 2.For allv € V(G), dedv) > 1, we have

1
vor g o 3, (oo 0, (-3)

veV(G) veV(G)

where(degv)) = pi*p32... pit.

Proof.Letv e V(G), (degv) = pf*p2... pi*) > 1 and sincep is multiplicative, thus

*G) = 3 ¢(degv)) = ¢ (pIp2...p) =3 (¢ (p1")xo(PF)---0(P))

veV(G) veV(G veV(G)

*(pzﬂo2 ) .*(ptatfptaﬁl))
(o) e(-3)
o) (15) (1 5) (5))
(deats (1——) (%) (-3)
(de@‘”*pdeﬂgw@%))-

From the definition of Generalized Euler8—function of graph, a relation between the Eulep’s-function and the
Mobius function is given in the following lemma:

|
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Lemma 3.For allv e V(G), dedgv) > 1, we have

@)= Y gldegv)= ¥ < 3 <u<d>*deT‘9‘V))>,
) \dldegv)

veV(G) veV (

wherep is the Mobius function.

Proof.Letv e V(G), dedv) > 1. Then by lemm2&, we have

1
d = d * 1——
vevz<e>¢( eV vevz<e>< e pdl;!m( p)>

pACT (1—%) (%) (-3)
VG\%@(deqv <1 25 ;plpj 1)tm>>

If we denote(l it Yt o [Tt Vs

product of distinct primes. The S|gns in front of each termaternated bY(—l) accordmg to the number of primgés

®(G)

) A, so each term il is £, whered is 1 in the first term or a
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which is exactly what is done by the Mobius function. So

O0)= Y o(degv)= ((deqv» 3 @)

veV(G) veV(G) d|deqv)

dedv) )

= Z ( D H(d)x—,
veV(G) \d|deqv)

Theorem 1.For all v € V(G), degv) > 1 such thaidedv) with at mosi8 distinct prime factors, we have that

PG)= > ¢(degv))>= 5 degqv).

veV(G) veV(G)

(20

Proof. Firstly, the proposition for a d€g) with 8 distinct prime factors will be proved. Let dgg = p121p®2... pi&,
then, for generalized Eulep—function, we use Lemm2and we realize that

1
@)= ¥ b(deqy) <deg(v>* 2 )
VEVZ(G) ve\/Z(G) p\dl;liv) < p>

oo v<(-2) (-2 (-3

Because of the 8 distinct prime factorsmf p2, ps, P4, Ps, Ps, P7, Ps, We realize thap; > 2,p2 > 3,p3>5,p4> 7,ps >
11 ps > 13, py > 17, pg > 19, since the first 8 primes are distinct.

Thus,
1 11 11 11 11 11 1 1 1 1 1
_S_)_S_)_S_)_S_ _S__§_5_§_7_§_ (1)
Pr= 2 p2 3 P35 pa” 7 ps 1l'pg ~ 13" p; ~ 17" pg ~ 19

andthen1—3) > (1-3) (1-3)...(1— %) > (1— 7). We are now able to substitutd) in the equation for>(G)

Yvev(c) ¢ (degv)), we will obtain that

@(6)= ¥ #degu)z 5 (degy)- (1— %) (1_ %) (1_ 1_19)
( 4 10 12 16 18)
5

(degVv)) x Kk ok = —
ve\/z(G) 11 13 17 19

1658880
= (degv)) =0.171x (degv)).
9699690V€\/Z(G) VGVZ(G)

However,

Z degV) ~ 0.167x z degv).

veV(G) veV(G)

ol

This means that

®(G) = z (degv)) } degqv).
veV(G) 6 veV(G)

Each of the following factorg 1 — —) (1— —2) (1— —) is less than one because two is the smallest possible prime,
so each of the term in the bracket will be less than one, that $ay that once the product is multiplied by it, its value
will be decreased. Therefore)ife V(G), dedv) has less than 8 distinct prime factors, the value for its gized Euler
®—function will be greater than the value of generalized Edberfunction of degv), for all v e V(G), with at most 8
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distinct prime factors. Thus, for alle G, degv) > 1 such that dey) with at most 8 distinct prime factors

G = ) ¢(deg(v))>é > deqv).

veV(G) veV(G)

Theorem 2.For all v € V(G), we have that

degv) _ H
veV(G) ¢(degv)) ve\/Z(G)d\dequ) o(d)

Proof. By lemma2, we have that for eache V(G) degv) = p1®p,®... p® we have

1

¢ (degv)) = dedVv) x 1_=
p\dl;lm ( p)

gy« (1- ) e (1- L)oo (1 1)

:dGQV)*(pl—1)*(p2f1)*...*(ptf1)

P1* P2k Py
Hence, for each € V(G), we have that
degv) _ degv)
¢ (degv)) de@(")*(pl;i—j;éﬁ%;]gt*"‘*(plfl)
PLk P2k * P

(pr—1)*(p2—1)*---x(pt—1)

By taking summation over the vertices V (G), then

LQV)Z Pr* Pok---x Pt
veV(G) ¢(de£XV)) pi|degv) (pl— 1) (pz— Dx---x (pt — 1).

This is what we have obtained from the left hand side of ountithe above. From now on in this prove LHS will be

represented B vev(c) 4,?;3@;’\),))-

For the right hand side (RHS) of our identity above. It is kmofkom the definition of the Mobius function, where
deqV) = p1p2... pt, u(degv)) = (—1)' andu(degv)) = 0 if deg'v) has a square term. Hengé(d) = 1 if d does not
have a square term ane’(d) = 0 if d has a square term. Thus, we only have (ggvhich can be factorised as the
product of distinct primes or we also call the product ofidistprimes as square-free. From now on in this pio#ill
be represented as a square-free. Thus,
p3(ds) _ 1
ds|/degv) ¢(ds) ds|degv) ¢(ds)

Sinceds is square-free, so each prime in the factorisation of \@eig used once. Therefore, the above expression means
that each of the value, I(p1, p2,...,Pt), (P1* P2, P2 P3,- .-, Pr—1 % Pr), (P1* P2 - - * py) is taken byds. Therefore, the
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RHS is becoming

N SR SR SR 1
e 96 80 o0 T eperr) T Blpreper )
1 1 1
B R o VR e R s VR [ Ve e )
(P (B D) (P D) (B D)) oot (= 1) oo )
Mica(pi— 1)
(Dt -+ (- Dx(P— D+ (P D x (P - Dx- (B — 1)
Mia(Pi—1)
_ 9D+ 4+ () + (Pr) *P(P2) + -+ $(P1) x P (P2) -~ * P ()
Mi-a(pi—1) '

Since¢ is multiplicative as all primes are relatively primes, se RHS will become

1 _ 0@ +é(P)+--+9(P) +P(Prxpe) +- -+ P(PrxPox---* )

as/fgy) 9 (0s) Mi-a(pi—1)

_ Dl(prrppr-+p) P (AN)
Mi—i(pi—1)

Therefore, for each € V(G) we have, from lemma, that

2 dn|(prxPar--+pr) ¢ (dn) degVv)

Moi(pi—1) Miapi—1)

By taking summation over all verticesz V(G), we have

1 degv) B (PL* P2 pr)

. = ——
vete aifeuy (99 vev(o/Sideqy) M= (P —1) &gy Miza(Pi—1)

)

when de@v) = (p1* p2*---x pt), which is equal to the LHS. Hence,

degv) p2(d)

vev(G) ¢(degVv)) veV(G) ddegv) ¢(d)
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