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Abstract: Let G = (V, E) be a simple connected undirected graph. In this paper, we define generalized Euler’sΦ-Function of a graph
which is the summation of the Euler’sϕ−function of the degree of the vertices of a graph and it is denoted byΦ(G). It is determined
the general form of Euler’sΦ-function of some standard graphs. Finally, some important results and properties are studied.
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1 Introduction

The Eulerϕ−function, which is also called the totient function or indicator function where Gauss introduced the symbol

ϕ(n), is counted as one of the typical area in number theory definedas the number of positive integers less thann which

are relatively prime (or co-prime) ton [5]. For instance, there are 8 positive integers less than 20 which are relatively

prime to 20. Also, there are 18 positive integers less than 19which are relatively prime to 19. So, the above example is

denoted byϕ (20) = 8 andϕ (19) = 18, respectively. Also, from the above example it is obtained that if (n= p) is prime,

thenϕ (p) = p−1 and in general,ϕ
(

pk
)

= pk− pk−1 for any positive integerk. For any positive integern we have that

ϕ (n) = n
(

1− 1
p1

)(

1− 1
p2

)

. . .

(

1− 1
pt

)

wheren= p1
a1 p2

a2 . . . pt
at [1,4,6,8,9].

The Mobius function was defined in [1] and denoted byµ (n) which is defined to be

µ(n) =















1, i f n = 1

(−1)t , i f n = p1p2 . . . pt where the pi are distinct primes;

0, otherwise

A function f is said to be multiplicative if for all positive integersm,n such thatm,n are relatively prime, then

f (mn) = f (m) f (n). Both the Eulerϕ− function and the Mobius function are multiplicative [8].

Providing an interesting connection between number theoryand graph theory can be found and given in [2,3,7,10]. In

this paper, we attempt to use a number theory function calledthe Euler’sϕ−function into graph theory. LetG be a

simple connected undirected graph. We define generalized Euler Φ-function Φ (G) of any graph as the sum of the

Euler’sϕ− function for the degree of vertices of the graphG. It is shown that for allv∈ G, deg(v) ≥ 1 such that deg(v)

with at most 8 distinct prime factors, we have thatΦ (G) > 1
6 ∑v∈V(G) deg(v) . It is also shown that a relation the Euler’s

ϕ− function and the Mobius function.
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2 Generalized Euler’sΦ− function of some standard graphs

In this section, we define generalized Euler’sΦ− Function of a graph and determine generalized Euler’sΦ− function of

some standard graphs in graph theory which are the path graphPn, cycle graphCn, complete graphKn, complete bipartite

graphKm,n, completek− partite graphKm1,m2,...mn, star graphSn and wheel graphWn.

Definition 1. Let G be a simple connected graph and letϕ (deg(v)) be defined as the Euler’sϕ− Function for the degree

of vertices v of any graph G which denoted byΦ(G). ThenΦ(G) = ∑v∈V(G) ϕ(deg(v)).

For example, generalized Euler’sΦ−function of a graphG= K4 is given by

Φ(K4) = ∑
v∈V(K4)

ϕ(deg(v)) = ϕ(deg(v1)+ϕ(deg(v2)+ϕ(deg(v3)+ϕ(deg(v4)

= 2+2+2+2= 8.

Proposition 1.For all v ∈V(G), deg(v)≥ 1, and a graph G consists of n components G1, . . . ,Gn, then

Φ(G) =
n

∑
i=1

Φ(Gi).

In the following proposition, we determine the general formof generalized Euler’sΦ−function of some standard graphs.

Proposition 2. (1) The Euler’sΦ−function of the path graph Pn, for n≥ 2 vertices, isΦ(Pn) = n.

(2) The Euler’sΦ−function of the cycle graph Cn, for n≥ 3 vertices, isΦ(Cn) = n.

(3) The Euler’sΦ-function of the complete graph Kn, for n≥ 3 vertices, is

Φ(Kn) = nϕ(n−1).

(4) The Euler’sΦ−function of the complete bipartite graph Km,n, for any positive integers m,n vertices, isΦ(Km,n) =

(m∗ϕ(n)+ (n∗ϕ(m)).

(5) The Euler’sΦ−function of the star graph Sn, for n≥ 2 vertices, is

Φ(Sn) = ϕ(n−1)+ (n−1).

(6) The Euler’sΦ−function of the complete k-partite graph Km1,m2,...,mn, for any positive integers m1,m2, . . . ,mn vertices,

is

Φ(Km1,m2,...,mn) = (m1∗ϕ(m2+m3+ · · ·+mn)+ (m2∗ϕ(m1+m3+ · · ·+mn)+ · · ·+(mn∗ϕ(m1+m2+ · · ·+mn))

=
n

∑
i=1

(

mi ∗ϕ

(

∑
j 6=i

mj

))

.

(7) The Euler’sΦ−function of the Wheel graph Wn, for n≥ 4 vertices, is

Φ (Wn) = ϕ(n−1)+2(n−1).

Proof.

(1) The path graphPn of order n, if n = 2, we have two vertices of degree one, then we have

Φ(P2) = ∑v∈V(P2) ϕ (deg(v)) = ϕ (deg(v1))+ϕ (deg(v2)) = 1+1= 2. If n≥ 3, we have two vertices of degree one

c© 2019 BISKA Bilisim Technology
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andn−2 vertices of degree two, then we have

Φ(Pn) = ∑
v∈V(Pn)

ϕ (deg(v)) = 1+1+n−2= n.

(2) In a cycle graphCn of ordern, we have n vertices of degree two, and then we have:

Φ(Cn) = ∑
v∈V(Cn)

ϕ (deg(v)) = ϕ (deg(v1))+ϕ (deg(v2))+ · · ·+ϕ (deg(vn))

= 1+1+ · · ·+1= n

(3) In a complete graphKn of ordern, we have n vertices of degreen−1, and then we have:

Φ(Kn) = ∑
v∈V(Kn)

ϕ (deg(v)) = ϕ (deg(v1))+ϕ (deg(v2))+ · · ·+ϕ (deg(vn))

= ϕ(n−1)+ϕ(n−1)+ · · ·+ϕ(n−1)

= nϕ(n−1).

(4) In a complete bipartite graphKm,n of orderm+n, we haven vertices of degreem and we havem vertices of degree

n, and then we have:

Φ(Km,n) = ∑
v∈V(Km,n)

ϕ (deg(v)) = ϕ (deg(v1))+ϕ (deg(v2))+ · · ·+ϕ (deg(vn))

+ϕ (deg(v1))+ϕ (deg(v2))+ · · ·+ϕ (deg(vm))

= ϕ(n)+ϕ(n)+ · · ·+ϕ(n)+ϕ(m)+ϕ(m)+ · · ·+ϕ(m)

= mϕ(n)+nϕ(m).

(5) In a star graphSn of ordern, we haven−1 vertices of degree one and we have one vertex of degreen−1, sayv1, and

then we have:
Φ(Sn) = ∑

v∈V(Sn)

ϕ (deg(v)) = ϕ (deg(v1))+ϕ (deg(v2))+ · · ·+ϕ (deg(vn))

= ϕ(n−1)+1+ · · ·+1

= ϕ(n−1)+ (n−1).

(6) In a complete k-partite graphKm1,m2,...,mn of orderm1+m2+ · · ·+mn, we havemi vertices of degree∑ j 6=i mj where

j, i = 1,2, . . . ,n, and then we have:

Φ(Km1,m2,...,mn) = ∑
v∈V(Km1,m2,...,mn)

ϕ (deg(v))

= (m1 ∗ϕ(m2+m3+ · · ·+mn))+ (m2∗ϕ(m1+m3+ · · ·+mn))+ · · ·+(mn∗ϕ(m1+m2+ · · ·+mn−1))

=
n

∑
i=1

(

mi ∗ϕ

(

∑
j 6=i

mj

))
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(7) In a wheel graphWn of ordern, we haven−1 vertices of degree three and we have one vertex of degreen−1, say

v1, and then we have:

Φ(Wn) = ∑
v∈V(Wn)

ϕ (deg(v)) = ϕ (deg(v1))+ϕ (deg(v2))+ · · ·+ϕ (deg(vn))

= ϕ(n−1)+ϕ(3)+ · · ·+ϕ(3)

= ϕ(n−1)+2(n−1).

In the following proposition, we introduce generalized Euler’sΦ−Function of the corona product of some special graphs.

The corona productG1 ◦G2 of two graphsG1 andG2 is obtained by taking one copy ofG1 and|V(G1) | copies ofG2;

and by joining each vertex of thei−th copies ofG2 to thei-th vertices ofG1, where 1≤ i ≤|V(G1) |.

Proposition 3.

(1) Φ(Pn ◦K1) = 2n.

(2) Φ(Cn ◦K1) = 3n.

(3) Φ(Kn ◦K1) = n(ϕ(n)+1).

(4) Φ(Km,n ◦K1) = mϕ(n+1)+nϕ(m+1)+m+n.

(5) Φ(Sn ◦K1) = ϕ(n)+2n+1.

(6) Φ(Km1,m2,...,mn ◦K1) = ∑n
i=1

((

mi ∗ϕ
(

∑ j 6=i(mj +1)
))

+mi
)

.

(7) Φ(Wn ◦K1) = ϕ(n)+3n−2.

Proof.The proof is similar to the proof of Proposition2.

3 Generalized Euler’sΦ−function of graphs

In this section, it is shown that for allv∈ G, deg(v) ≥ 1 such that deg(v) with at most 8 distinct prime factors, we have

thatΦ(G) > 1
6 ∑v∈V(G)deg(v). It is also shown a relation between the Euler’sϕ−function and the Mobius function.

The following lemma is the most useful properties of Generalized Euler’sΦ−function for the divisor sum of the degree

of the vertices in graph.

Lemma 1.For all v ∈V(G), deg(v)≥ 1, we have

∑
d|deg(v) for all v∈V(G)

Φd(G) = ∑
v∈V(G)

∑
d|deg(v)

ϕ(d) = ∑
v∈V(G)

deg(v),

where d is the divisor of the degree of vertices in a graph G.

Proof. Let, for v ∈ V(G), F(deg(v)) = ϕ(d1) +ϕ(d2) + · · ·+ϕ(dt), wheredt is any divisor of(deg(v)) and deg(v) =

pa1
1 pa2

2 . . . pat
t . Then, by using the telescoping series, we have thatF(pk) = 1+(p−1)+(p2− p)+(p3− p2)+ · · ·+(pk−

pk−1) = pk, where(1, p, p2, p3, . . . ) are the divisors ofpk. SinceF is multiplicative, so

∑
v∈V(G)

F(deg(v)) = ∑
d|deg(v)

F
(

pa1
1 pa2

2 . . . pat
t

)

= ∑
d|deg(v)

(

F
(

pa1
1

)

∗F
(

pa2
2

)

∗ · · · ∗F (pat
t )
)

= ∑
d|deg(v)

(

pa1
1 ∗ pa2

2 ∗ · · · ∗ pat
t

)

= ∑
d|deg(v)

deg(v)
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Lemma 2.For all v ∈V(G), deg(v)≥ 1, we have

Φ(G) = ∑
v∈V(G)

ϕ(deg(v)) = ∑
v∈V(G)

(

deg(v)∗ ∏
p|deg(v)

(

1−
1
p

)

)

,

where(deg(v)) = pa1
1 pa2

2 . . . pat
t .

Proof.Let v∈V(G),
(

deg(v) = pa1
1 pa2

2 . . . pat
t

)

≥ 1 and sinceϕ is multiplicative, thus

Φ(G) = ∑
v∈V(G)

ϕ(deg(v)) = ∑
v∈V(G)

ϕ
(

pa1
1 pa2

2 . . . pat
t

)

= ∑
v∈V(G)

(

ϕ
(

pa1
1

)

∗ϕ
(

pa2
2

)

. . .ϕ (pat
t )
)

= ∑
v∈V(G)

((

pa1
1 − pa1−1

1

)

∗
(

pa2
2 − pa2−1

2

)

∗ · · · ∗
(

pat
t − pat−1

t

))

= ∑
v∈V(G)

(

pa1
1

(

1−
1
p1

)

∗ pa2
2

(

1−
1
p2

)

∗ · · · ∗ pat
t

(

1−
1
pt

))

= ∑
v∈V(G)

(

(

pa1
1 ∗ pa2

2 ∗ · · · ∗ pat
t

)

(

1−
1
p1

)(

1−
1
p2

)(

1−
1
pt

))

= ∑
v∈V(G)

(

deg(v)∗

(

1−
1
p1

)(

1−
1
p2

)(

1−
1
pt

))

= ∑
v∈V(G)

(

deg(v)∗ ∏
p|deg(v)

(

1−
1
p

)

)

.

From the definition of Generalized Euler’sΦ−function of graph, a relation between the Euler’sϕ−function and the

Mobius function is given in the following lemma:

Lemma 3.For all v ∈V(G), deg(v)≥ 1, we have

Φ(G) = ∑
v∈V(G)

ϕ(deg(v)) = ∑
v∈V(G)

(

∑
d|deg(v)

(

µ(d)∗
deg(v)

d

)

)

,

whereµ is the Mobius function.

Proof.Let v∈V(G), deg(v)≥ 1. Then by lemma2, we have

Φ(G) = ∑
v∈V(G)

ϕ(deg(v)) = ∑
v∈V(G)

(

deg(v)∗ ∏
p|deg(v)

(

1−
1
p

)

)

= ∑
v∈V(G)

(

deg(v)∗

(

1−
1
p1

)(

1−
1
p2

)(

1−
1
pt

))

= ∑
v∈V(G)

(

deg(v)∗

(

1−∑
i

1
pi

+∑
i 6= j

1
pi p j

+ · · ·+(−1)t
1

p1p2 . . . pt

))

If we denote
(

1−∑i
1
pi
+∑i 6= j

1
pi p j

+ · · ·+(−1)t 1
p1p2...pt

)

= A, so each term inA is ±1
d , whered is 1 in the first term or a

product of distinct primes. The signs in front of each term are alternated by(−1)k according to the number of primesp′s
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which is exactly what is done by the Mobius function. So

Φ(G) = ∑
v∈V(G)

ϕ(deg(v)) = ∑
v∈V(G)

(

(deg(v)) ∑
d|deg(v)

µ(d)
d

)

= ∑
v∈V(G)

(

∑
d|deg(v)

µ(d)∗
deg(v)

d

)

.

Theorem 1.For all v ∈V(G), deg(v)≥ 1 such thatdeg(v) with at most8 distinct prime factors, we have that

Φ(G) = ∑
v∈V(G)

ϕ(deg(v))>
1
6 ∑

v∈V(G)

deg(v).

Proof. Firstly, the proposition for a deg(v) with 8 distinct prime factors will be proved. Let deg(v) = p1
a1 p2

a2 . . . pt
at ,

then, for generalized EulerΦ−function, we use Lemma2 and we realize that

Φ(G) = ∑
v∈V(G)

ϕ(deg(v)) = ∑
v∈V(G)

(

deg(v)∗ ∏
p|deg(v)

(

1−
1
p

)

)

=

(

p1
a1 p2

a2 . . . pt
at ∗

(

1−
1
p1

)(

1−
1
p2

)(

1−
1
pt

))

.

Because of the 8 distinct prime factors ofp1, p2, p3, p4, p5, p6, p7, p8, we realize thatp1 ≥ 2, p2 ≥ 3, p3 ≥ 5, p4 ≥ 7, p5 ≥

11, p6 ≥ 13, p7 ≥ 17, p8 ≥ 19, since the first 8 primes are distinct.

Thus,
1
p1

≤
1
2
,

1
p2

≤
1
3
,

1
p3

≤
1
5
,

1
p4

≤
1
7
,

1
p5

≤
1
11

,
1
p6

≤
1
13

,
1
p7

≤
1
17

,
1
p8

≤
1
19

(1)

and then
(

1− 1
2

)

≥
(

1− 1
2

)(

1− 1
3

)

. . .
(

1− 1
19

)

≥
(

1− 1
19

)

. We are now able to substitute( 1) in the equation forΦ(G) =

∑v∈V(G) ϕ(deg(v)), we will obtain that

Φ(G) = ∑
v∈V(G)

ϕ(deg(v))≥ ∑
v∈V(G)

(deg(v))∗

(

1−
1
2

)(

1−
1
3

)

. . .

(

1−
1
19

)

= ∑
v∈V(G)

(deg(v))∗

(

1
2
∗

2
3
∗

4
5
∗

6
7
∗

10
11

∗
12
13

∗
16
17

∗
18
19

)

=
1658880
9699690 ∑

v∈V(G)

(deg(v)) = 0.171∗ ∑
v∈V(G)

(deg(v)).

However,
1
6 ∑

v∈V(G)

deg(v)≈ 0.167∗ ∑
v∈V(G)

deg(v).

This means that

Φ(G) = ∑
v∈V(G)

ϕ(deg(v))>
1
6 ∑

v∈V(G)

deg(v).

Each of the following factors
(

1− 1
p1

)(

1− 1
p2

)

. . .

(

1− 1
p8

)

is less than one because two is the smallest possible prime,

so each of the term in the bracket will be less than one, that isto say that once the product is multiplied by it, its value

will be decreased. Therefore, ifv∈V(G), deg(v) has less than 8 distinct prime factors, the value for its generalized Euler

Φ−function will be greater than the value of generalized EulerΦ−function of deg(v), for all v∈ V(G), with at most 8
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distinct prime factors. Thus, for allv∈ G, deg(v)≥ 1 such that deg(v) with at most 8 distinct prime factors

Φ(G) = ∑
v∈V(G)

ϕ(deg(v))>
1
6 ∑

v∈V(G)

deg(v).

Theorem 2.For all v ∈V(G), we have that

∑
v∈V(G)

deg(v)
ϕ(deg(v))

= ∑
v∈V(G)

∑
d|deg(v)

µ2(d)
ϕ(d)

.

Proof.By lemma2, we have that for eachv∈V(G) deg(v) = p1
a1 p2

a2 . . . pt
at we have

ϕ(deg(v)) = deg(v)∗ ∏
p|deg(v)

(

1−
1
p

)

= deg(v)∗

(

1−
1
p1

)

∗

(

1−
1
p2

)

∗ · · · ∗

(

1−
1
pt

)

=
deg(v)∗ (p1−1)∗ (p2−1)∗ · · ·∗ (pt −1)

p1∗ p2∗ · · · ∗ pt
.

Hence, for eachv∈V(G), we have that

deg(v)
ϕ(deg(v))

=
deg(v)

deg(v)∗(p1−1)∗(p2−1)∗···∗(pt−1)
p1∗p2∗···∗pt

=
p1∗ p2∗ · · · ∗ pt

(p1−1)∗ (p2−1)∗ · · ·∗ (pt −1)
.

By taking summation over the verticesv∈V(G), then

∑
v∈V(G)

deg(v)
ϕ(deg(v))

= ∑
pi |deg(v)

p1∗ p2∗ · · · ∗ pt

(p1−1)∗ (p2−1)∗ · · ·∗ (pt −1)
.

This is what we have obtained from the left hand side of our identity above. From now on in this prove LHS will be

represented to∑v∈V(G)
deg(v)

ϕ(deg(v)) .

For the right hand side (RHS) of our identity above. It is known from the definition of the Mobius function, where

deg(v) = p1p2 . . . pt , µ(deg(v)) = (−1)t andµ(deg(v)) = 0 if deg(v) has a square term. Hence,µ2(d) = 1 if d does not

have a square term andµ2(d) = 0 if d has a square term. Thus, we only have deg(v) which can be factorised as the

product of distinct primes or we also call the product of distinct primes as square-free. From now on in this proofds will

be represented as a square-free. Thus,

∑
ds|deg(v)

µ2(ds)

ϕ(ds)
= ∑

ds|deg(v)

1
ϕ(ds)

.

Sinceds is square-free, so each prime in the factorisation of deg(v) is used once. Therefore, the above expression means

that each of the value 1, (p1, p2, . . . , pt) ,(p1 ∗ p2, p2 ∗ p3, . . . , pt−1 ∗ pt),(p1∗ p2∗ · · · ∗ pt) is taken byds. Therefore, the
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RHS is becoming

∑
ds|deg(v)

1
ϕ(ds)

=
1

ϕ(1)
+

1
ϕ(p1)

+ · · ·+
1

ϕ(p1∗ p2)
+ · · ·+

1
ϕ(p1∗ p2∗ . . . pt)

= 1+
1

p1−1
+ · · ·+

1
(p1−1)∗ (p2−1)

+ · · ·+
1

(p1−1)∗ (p2−1)∗ · · ·∗ (pt −1)

=
((p1−1)∗ · · ·∗ (pt −1))+ ((p2−1)∗ · · ·∗ (pt −1))+ · · ·+((pt −1)+ · · ·+1)

∏t
i=1(pi −1)

=
1+(p1−1)+ · · ·+(pt −1)+ (p1−1)∗ (p2−1)+ · · ·+(p1−1)∗ (p2−1)∗ · · ·∗ (pt −1)

∏t
i=1(pi −1)

=
ϕ(1)+ϕ(p1)+ · · ·+ϕ(pt)+ϕ(p1)∗ϕ(p2)+ · · ·+ϕ(p1)∗ϕ(p2)∗ · · · ∗ϕ(pt)

∏t
i=1(pi −1)

.

Sinceϕ is multiplicative as all primes are relatively primes, so the RHS will become

∑
ds|deg(v)

1
ϕ(ds)

=
ϕ(1)+ϕ(p1)+ · · ·+ϕ(pt)+ϕ(p1∗ p2)+ · · ·+ϕ(p1∗ p2∗ · · · ∗ pt)

∏t
i=1(pi −1)

=
∑dN|(p1∗p2∗···∗pt) ϕ(dN)

∏t
i=1(pi −1)

.

Therefore, for eachv∈V(G) we have, from lemma2, that

∑dN|(p1∗p2∗···∗pt) ϕ(dN)

∏t
i=1(pi −1)

=
deg(v)

∏t
i=1(pi −1)

By taking summation over all verticesv∈V(G), we have

∑
v∈V(G)

∑
ds|deg(v)

1
ϕ(ds)

= ∑
v∈V(G), pi |deg(v)

deg(v)

∏t
i=1(pi −1)

= ∑
pi |deg(v)

(p1∗ p2∗ · · · ∗ pt)

∏t
i=1(pi −1)

,

when deg(v) = (p1∗ p2∗ · · · ∗ pt), which is equal to the LHS. Hence,

∑
v∈V(G)

deg(v)
ϕ(deg(v))

= ∑
v∈V(G)

∑
d|deg(v)

µ2(d)
ϕ(d)

.
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